JPH01135057A - Lead frame material and manufacture thereof - Google Patents

Lead frame material and manufacture thereof

Info

Publication number
JPH01135057A
JPH01135057A JP29380687A JP29380687A JPH01135057A JP H01135057 A JPH01135057 A JP H01135057A JP 29380687 A JP29380687 A JP 29380687A JP 29380687 A JP29380687 A JP 29380687A JP H01135057 A JPH01135057 A JP H01135057A
Authority
JP
Japan
Prior art keywords
lead frame
copper
copper layer
frame material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29380687A
Other languages
Japanese (ja)
Other versions
JPH055378B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Riichi Tsuno
津野 理一
Ryoichi Ozaki
良一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29380687A priority Critical patent/JPH01135057A/en
Publication of JPH01135057A publication Critical patent/JPH01135057A/en
Publication of JPH055378B2 publication Critical patent/JPH055378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To realize productivity improvement and cost reduction by applying a specified cold rolling process to metal material provided with a specific copper layer on the surface thereof, then providing lead frame material having a copper layer whose surface thickness is not less than a specific value, which is thereafter annealed at a specified temperature. CONSTITUTION:Metal material of soft metal copper is provided which has a copper layer of 1mum or above on the surface, and the maximum surface roughness is 0.4mum or below and Vickers hardness is not more than 65. Since its oxidation resistance and corrosion resistance are approximately equivalent to those of pure copper, stable wirebonding characteristics is consequently realized by heating and bonding gold wire under reducing atmosphere. Furthermore, skin pass rolling or cold rolling is applied to the surface copper layer at an area reduction rate of at least 1% then the maximum surface roughness is adjusted not exceeding 0.4mum and annealing is conducted at a temperature from 200-400 deg.C for at least 5 seconds. In this way, lead frame material of a semiconductor having stable surface characteristics and surface Vickers hardness not exceeding 65 can be provided by reducing voids.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリードフレーム材料に関し、さらに詳しくは、
トランジスタやIC等の半導体用リードフレーム材料で
あり、特に、ボンディングワイヤの金線あるいは銅線を
材料に直接に接合することができ、半田の密着性に優れ
る半導体リードフレーム材料およびその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to lead frame materials, and more specifically:
The present invention relates to a lead frame material for semiconductors such as transistors and ICs, and in particular to a semiconductor lead frame material that allows gold wire or copper wire of a bonding wire to be directly bonded to the material and has excellent solder adhesion, and a method for manufacturing the same.

[従来の技術] 一般に、半導体のリードフレーム材料には銅合金および
4270イが使用されてきているが、最近は軽薄短小化
、素子の高密度化および機器の実装密度の向上の面から
、熱伝導性に優れる銅合金が多く使用されるようになっ
てきた。
[Prior art] Copper alloys and 4270I have generally been used as lead frame materials for semiconductors, but recently, thermal Copper alloys with excellent conductivity have come into widespread use.

リードフレームは、シリコン素子が接合されるダイパッ
ド部あるいはアイランド部、Au線が接合されて樹脂対
じされるインナーリード部、および、信号を出入させる
ためのリード線の役割を果たし、通常は半田めっきされ
るエクスターナルリード部の3部分から成立っている。
The lead frame plays the roles of a die pad or island part to which the silicon element is bonded, an inner lead part to which the Au wire is bonded and connected to the resin, and a lead wire for inputting and outputting signals, and is usually solder-plated. It consists of three parts of the external lead section.

上記の3部分について具体的に説明すると、まず、ダイ
パッド部については、シリコン素子が当該ダイパッド部
にAu−3t、Ag−3i等の共晶接合または拡散接合
、導電ペースト剤による接合あるいは半田付けによって
取り付けられる。
To specifically explain the above three parts, first, regarding the die pad part, the silicon element is attached to the die pad part by eutectic bonding or diffusion bonding of Au-3t, Ag-3i, etc., bonding with a conductive paste, or soldering. It is attached.

次に、このシリコン素子の電極とインナーリード部の先
端のフィンガーアームと称される部分は、Au線あるい
はCu線が熱圧着あるいは超音波併用熱圧着によって接
合されている。
Next, the electrodes of this silicon element and the portions called finger arms at the tips of the inner lead portions are joined to Au wires or Cu wires by thermocompression bonding or thermocompression bonding combined with ultrasonic waves.

さらに、エクスターナルリード部は、前記したように信
号を出入させるためのリード部であり、通常は錫あるい
は半田付けが行われる。
Further, the external lead section is a lead section for inputting and outputting signals as described above, and is usually made of tin or soldered.

前記した中でシリコン素子の電極とフィンガーアームと
の熱圧着に際しては、信頼性の高い安定した接合性を得
るため、フィンガーアーム部にAgめっきが施されてい
た。ただし、フィンガーアーム部のみのAgめつきは困
難であるため、通常ダイパッド部にも同時にAgめっき
が施されていた。
In the above-mentioned process, when bonding the electrode of the silicon element and the finger arm by thermocompression, the finger arm portion is plated with Ag in order to obtain highly reliable and stable bonding. However, since it is difficult to plate only the finger arm portion with Ag, the die pad portion is usually also plated with Ag at the same time.

リードフレーム材料は取り扱い上、強度と成形加工性等
のバランスのとれた特性が必要であるが、合金化により
その特性が備えられているため、種々の含有元素が目的
に応じて適量含有されている。しかし、含有元素の種類
およびその含有量によって表面特性が変化し易く、その
ままめっき等を施さずに使用するには安定性に欠けてい
た。
Lead frame materials need to have well-balanced properties such as strength and formability for handling, but since these properties are provided through alloying, various elements can be contained in appropriate amounts depending on the purpose. There is. However, the surface characteristics tend to change depending on the type and content of the contained elements, and it lacks stability when used as is without plating or the like.

したがって、従来は前記したようにフィンガーアーム部
およびダイパッド部にAgめつぎが施されている。しか
し、Agめつきは高価であるので、Agめっきに代わっ
てワイヤ接合を安定にする方法の出現が切望されていた
Therefore, conventionally, as described above, the finger arm portion and the die pad portion are provided with Ag pottery. However, since Ag plating is expensive, there has been a strong desire for a method to stabilize wire bonding in place of Ag plating.

上記の方法としてリードフレームを純銅にする方法が考
えられる。純銅のみであればAu線は還元性の雰囲気で
熱圧接が可能であり、したがって、Au線およびCu線
は安定した接合性を有するからである。しかしながら、
純銅のみでは強度が不足したり、耐熱性が劣ったりする
ため、純銅リードフレームは採用することができなかっ
た。
One possible method for the above is to use pure copper as the lead frame. This is because if only pure copper is used, the Au wire can be thermocompressed in a reducing atmosphere, and therefore the Au wire and the Cu wire have stable bonding properties. however,
Pure copper lead frames could not be used because pure copper alone lacks strength and heat resistance.

そこで、前記したような銅合金に銅めっきを施す方法が
考えられる。しかし、めっき直後であればCuめっきに
Au線の熱圧接は可能であるが、Cuめっきはポロシテ
ィが多く、表面粗度も0.8〜1.0μmと粗くなるた
め、短時間で室温で酸化し、また、Au線との加熱接合
中に酸化し易い、また、母材に強化のために含有させた
元素が、ポロシティが多いため、拡散して表面層まで出
てきて、IC等の多ピンのリードではビン全数の接合強
度が安定しなくなるという問題がある。
Therefore, a method of applying copper plating to a copper alloy as described above may be considered. However, heat-pressure welding of Au wire to Cu plating is possible immediately after plating, but Cu plating has a lot of porosity and has a rough surface roughness of 0.8 to 1.0 μm, so it cannot be oxidized at room temperature in a short time. However, it is easily oxidized during heat bonding with the Au wire, and the elements contained in the base material for reinforcement have a lot of porosity, so they diffuse and come out to the surface layer, causing damage to many parts such as ICs. A problem with pin leads is that the bonding strength of all bottles becomes unstable.

また、エクスターナルリード部は特別の銅合金を除外す
れば、錫あるいは半田が剥離することなく使用できるも
のである。銅合金の上に圧延後も厚さ1μm以上の銅め
っきを行って、その上に錫あるいは半田めっきを行うと
半導体としての必須特性である150℃の温度で1oo
o時間保持後も錫あるいは半田が剥離することなく、密
着していることを満足することは難しい、すなわち、銅
めっき層と半田めっき層との間に、表層にη相(Cu6
 S ns ) sその下にε相(Cu、Sn)が生じ
、ε相と銅めっき層の界面にボイドが発生し、これらの
ボイドが連なり剥離を生じることが判明している。
Further, the external lead portion can be used without peeling of tin or solder unless a special copper alloy is used. If copper plating is applied to a thickness of 1 μm or more on a copper alloy after rolling, and then tin or solder plating is applied on top of the copper alloy, it will reach 100°C at a temperature of 150°C, which is an essential characteristic for semiconductors.
It is difficult to ensure that the tin or solder remains in close contact with each other without peeling off even after holding for an hour. In other words, there is a η phase (Cu6
It has been found that an ε phase (Cu, Sn) is generated under the ε phase, voids are generated at the interface between the ε phase and the copper plating layer, and these voids are connected to cause peeling.

この剥離を防止するために銅めっき浴として資化銅浴を
選定するが、効果はあっても完全には剥離を防止するこ
とはできない。
In order to prevent this peeling, an assimilated copper bath is selected as the copper plating bath, but although it is effective, it cannot completely prevent peeling.

このようなことから、ダイパッド部およびフィンガーア
ーム部のみ、部分鋼めっきを行う方法が考えられる。し
かし、表面粗度が0.8〜1.0μmと粗大になり、ポ
ロシティが多いため(特に多ビンの場合)ワイヤボンデ
ィング中に母材中の含有元素が表面に拡散して出てきて
、ボンディング性を劣化させるという問題が生じ、結局
Agの局部めっきを行わなければならないことになる。
For this reason, a method of performing partial steel plating only on the die pad portion and the finger arm portion may be considered. However, because the surface roughness is as large as 0.8 to 1.0 μm and there is a lot of porosity (especially in the case of multiple bins), elements contained in the base material diffuse to the surface during wire bonding, causing the bonding A problem arises in that the properties deteriorate, and eventually local plating with Ag has to be performed.

[発明が解決しようとする問題点] 本発明は上記に説明した従来における半導体リードフレ
ーム材料の種々の問題点に鑑み、本発明者が鋭意研究を
行った結果、半導体リードフレーム材料のダイパッド部
およびフィンガーアーム部に銀めっき等を施すことなく
、リードフレームに直接に金線および銅線を信頼性高く
、確実に接合することが可能な、またエクスターナルリ
ード部の上記の問題点を解決し得る半導体リードフレー
ム材料を開発したのである。
[Problems to be Solved by the Invention] In view of the various problems of conventional semiconductor lead frame materials explained above, the present inventor has conducted intensive research, and as a result, the present invention has been developed to solve the problems of the die pad portion and the semiconductor lead frame material. A semiconductor that can reliably and reliably join gold wires and copper wires directly to lead frames without silver plating on the finger arm parts, and that can solve the above problems with external lead parts. They developed a lead frame material.

[問題点を解決するための手段] 本発明は、表面に厚さ1μm以上の銅層な有するリード
フレーム材料であフて、当該銅層の表面粗さが0.4μ
m以下であり、かつ当該銅層のビッカース硬さが65以
下であることを特徴とするリードフレーム材料に第1の
要旨があり、表面に銅層を有する金属材料に減面率1%
以上、5%以下の冷間圧延加工を行フた後に、表面厚さ
1μm以上の銅層を有するリードフレーム材料とし、そ
の後、当該リードフレーム材料を200〜400℃の温
度で少なくとも5秒間の焼鈍を施すことを特徴とするリ
ードフレーム材料の製造方法に第2の要旨がある。
[Means for Solving the Problems] The present invention provides a lead frame material having a copper layer on the surface with a thickness of 1 μm or more, and the surface roughness of the copper layer is 0.4 μm.
m or less, and the Vickers hardness of the copper layer is 65 or less.
After performing cold rolling of 5% or less, the lead frame material is made into a lead frame material having a copper layer with a surface thickness of 1 μm or more, and then the lead frame material is annealed at a temperature of 200 to 400°C for at least 5 seconds. The second gist lies in a method for manufacturing a lead frame material, which is characterized by performing.

°[作用] 本発明に係る半導体用リードフレーム材料について以下
詳細に説明する。
[Function] The semiconductor lead frame material according to the present invention will be described in detail below.

本発明に係る半導体用のリードフレーム材料は、その表
面に1μm以上の銅層が設けられており、最大表面粗さ
が0.4μm以下であって、通常のめっきでは銅層のめ
つき層の最大表面粗さが、0,8〜1.0μmであるの
に比較して綿かい、また、内部のポロシティが小さく、
ビッカース硬さ65以下と軟質の金属銅となっているた
め、耐酸化性および耐食性も純銅と路間等となっており
、その結果、還元性雰囲気下における金線の加熱圧接に
よるワイヤボンディング性も安定したものとなる。
The lead frame material for semiconductors according to the present invention has a copper layer with a thickness of 1 μm or more on its surface, and has a maximum surface roughness of 0.4 μm or less. Although the maximum surface roughness is 0.8 to 1.0 μm, it is softer than cotton, and the internal porosity is small.
Since it is a soft metallic copper with a Vickers hardness of 65 or less, its oxidation and corrosion resistance is comparable to that of pure copper, and as a result, it has good wire bonding properties by hot pressure welding of gold wire in a reducing atmosphere. It becomes stable.

さらに、本発明に係るリードフレーム材料は、表面の銅
層は少なくとも1%以上の減面率でスキンパス圧延ある
いは冷間圧延を行うことによって、めフき時に保有して
いたボイドな変化させると同時に、最大表面粗さを0,
4μm以下に調整し、その後、200〜400℃の温度
で少なくとも5秒間の焼鈍を行うことによって、ボイド
を減少させると同時にめっき時に含まれたH2ガスおよ
び不純物等を除去拡散させ、表面のビッカース硬さが6
5以下の表面性状の安定した半導体用のリードフレーム
材料となる。
Further, in the lead frame material according to the present invention, the copper layer on the surface is subjected to skin pass rolling or cold rolling with an area reduction rate of at least 1% or more, thereby simultaneously changing voids that were present at the time of flattening. , the maximum surface roughness is 0,
By adjusting the thickness to 4 μm or less and then annealing at a temperature of 200 to 400°C for at least 5 seconds, it reduces voids and at the same time removes and diffuses H2 gas and impurities contained during plating, and improves the Vickers hardness of the surface. Saga 6
It becomes a lead frame material for semiconductors with a stable surface quality of 5 or less.

すなわち、圧延後の銅層の厚みが1μm未満の場合は5
%以下の圧下率の冷間圧延では表面粗さが0.4μm以
下に安定し難い。また、銅層の冷間圧延時の減面率の上
限を5%と規制したのは、圧延ロールがスキンパス専用
ロールであり、そのパスでの最大圧下能力によるもので
ある。なお、銅層は厚い程導電率等が向上するが、価格
上昇となるため上限は5μmとした。
That is, if the thickness of the copper layer after rolling is less than 1 μm,
% or less, it is difficult to stabilize the surface roughness at 0.4 μm or less. Further, the reason why the upper limit of the area reduction rate during cold rolling of the copper layer is regulated to 5% is that the rolling roll is a roll exclusively for skin passes, and this is due to the maximum rolling capacity in that pass. Note that the thicker the copper layer, the better the conductivity, etc., but the higher the price, the upper limit was set at 5 μm.

また、本発明に係るリードフレーム材料の母材は、Hv
lOO以上、導電率30%lAC3以上および軟化温度
400℃以上の銅合金であり、これはパワートランジス
タとして必要な最低の硬度、ICを設計する上で最小の
導電率、さらには、トランジスタやICの製造工程を加
味した必須の耐熱性を有しているものである。
Further, the base material of the lead frame material according to the present invention is Hv
It is a copper alloy with a conductivity of 30% lAC3 or higher, and a softening temperature of 400°C or higher. It has essential heat resistance that takes into consideration the manufacturing process.

母材の含有成分および含有割合として、特にZnとSn
の両元素をZn≦0.5wt%、Sn≦3.0wt%と
限定した銅合金に銅めっき後、減面率1%以上のスキン
パス加工で減面率5%以下の圧延を行い、その後200
〜400℃の温度で少なくとも5秒間の焼鈍によって、
厚さ1μmの銅層を拡散してZnあるいはSnが表面層
に現れるのを防止している。
The components and content ratio of the base material are particularly Zn and Sn.
After copper plating on a copper alloy in which both elements are limited to Zn≦0.5wt% and Sn≦3.0wt%, rolling is performed with a skin pass processing with an area reduction of 1% or more and an area reduction of 5% or less, and then 200%
by annealing at a temperature of ~400°C for at least 5 seconds,
A 1 μm thick copper layer is diffused to prevent Zn or Sn from appearing on the surface layer.

なお、本発明では圧延によって母材にも局部的な応力が
加わるため11表面層のCuを軟化させると同時に母材
の残留応力を除去可能な焼鈍条件としては200〜40
0℃の温度で少なくとも5秒間とするのがよい。
In addition, in the present invention, since local stress is also applied to the base material by rolling, the annealing conditions that can soften the Cu of the surface layer 11 and simultaneously remove the residual stress of the base material are 200 to 40
Preferably, the time is at least 5 seconds at a temperature of 0°C.

また、本発明によれば、エクスターナルリード部におい
ても半田付は後、150℃の温度で1000時間保持後
も半田の剥離を生じることはない、これは銅層が軟質の
金属鋼となっており、めりき時の空孔の数が減少したた
めと考えられる。
Furthermore, according to the present invention, the solder does not peel off even after soldering on the external lead part and even after being held at a temperature of 150°C for 1000 hours. This is because the copper layer is made of soft metal steel. This is thought to be due to a decrease in the number of holes during drilling.

なお、母材としてZn≦0.5wt%、Sn≦3.0w
t%の銅合金について説明したが、本発明に使用する具
体的な合金としては、例えば、Cu−0,1wt%Fe
−0,03wt%PあるいはCu−2,3wt%Fe−
0,03wt%P−0,15wt%Znを代表とするC
u−Fe−P系合金、Cu−3,2wt%Ni−0,7
wt %5i−0,3wt%Zn、Cu−3,2wt%
Ni  −0,7wt%5i−1,25wt%5n−0
,3wt%ZnあるいはCu−1,6wt%NL−0.
 35wt%5i−0,3wt%Znを代表とするCu
−Ni2Si系合金、Cu−1wt%5n−0,1wt
%Fe−0,03wt%P%Cu−2wt%5n−0,
1wt%Fe−0,03wt%PおよびCu−2wt%
5n−0,2wt%Ni−0,05wt%Pを代表する
Cu−3n−P系合金を挙げることができる。
In addition, as a base material, Zn≦0.5wt%, Sn≦3.0w
t% copper alloy has been described, but specific alloys used in the present invention include, for example, Cu-0,1wt%Fe
-0,03wt%P or Cu-2,3wt%Fe-
C represented by 0,03wt%P-0,15wt%Zn
u-Fe-P alloy, Cu-3,2wt%Ni-0,7
wt%5i-0,3wt%Zn,Cu-3,2wt%
Ni -0.7wt%5i-1,25wt%5n-0
, 3wt%Zn or Cu-1, 6wt%NL-0.
Cu represented by 35wt%5i-0,3wt%Zn
-Ni2Si alloy, Cu-1wt%5n-0,1wt
%Fe-0,03wt%P%Cu-2wt%5n-0,
1wt%Fe-0,03wt%P and Cu-2wt%
Examples include Cu-3n-P alloys representing 5n-0.2wt%Ni-0.05wt%P.

[実施例〕 本発明に係るリードフレーム材料について実施例を挙げ
て具体的に説明する。
[Example] The lead frame material according to the present invention will be specifically explained by giving an example.

No、1.Cu−2wt%5n−0,1wt%Fe−0
,03wt%PのH/2材、板厚0.15mmと、N 
o 、  If 、  Cu −3、2w t%Ni−
0,7wt%5t−s、25wt%5n−0,3wt%
ZnのH材、板厚0.15mmの材料を硫酸銅浴でめっ
きを行い、圧延後の銅めっき厚さ、圧延時の減面率、お
よび焼鈍条件を第1表に示す。
No, 1. Cu-2wt%5n-0, 1wt%Fe-0
,03wt%P H/2 material, plate thickness 0.15mm, and N
o, If, Cu-3, 2wt%Ni-
0,7wt%5t-s, 25wt%5n-0,3wt%
A Zn H material with a plate thickness of 0.15 mm was plated in a copper sulfate bath, and the copper plating thickness after rolling, area reduction during rolling, and annealing conditions are shown in Table 1.

これらの材料を10wt%硫酸水溶液で酸洗し、水で洗
浄後乾燥し、Au線によるワイヤボンディ−ング性、湿
潤試験(温度40℃、湿度95%以上、時間4時間)に
よる耐蝕性、さらに、半田付け(Pb−5n共晶半田、
フラックスはアルファ100、温度230℃、浸漬時間
5秒間)後に150℃の温度でt ooo時間の恒温保
持試験を行い、半田の密着性を調べた。また、いずれの
材料も予めエスカによる表面分析を行った。この結果も
第1表に示す。なお、硫酸銅めっき条件は以下のように
した。
These materials were pickled with a 10 wt% sulfuric acid aqueous solution, washed with water and dried, and tested for wire bonding properties with Au wire, corrosion resistance by a wet test (temperature 40°C, humidity 95% or more, time 4 hours), and further , soldering (Pb-5n eutectic solder,
The flux was Alpha 100, the temperature was 230° C., the immersion time was 5 seconds), and then a constant temperature holding test was conducted at 150° C. for too long to examine the solder adhesion. In addition, all materials were subjected to surface analysis using ESCA in advance. The results are also shown in Table 1. The copper sulfate plating conditions were as follows.

・硫酸銅めつぎ条件 硫酸銅(5H20) 200 g / 12 。・Copper sulfate fitting conditions Copper sulfate (5H20) 200 g/12.

Cf1.−40ppm 硫酸(比重1.84)  50g/立 浴温度  25℃ 陽極   電解銅 電流密度  5A/dtn’ また、ワイヤボンデイン試験は以下のように行った。Cf1. -40ppm Sulfuric acid (specific gravity 1.84) 50g/vertical Bath temperature 25℃ Anode Electrolytic copper Current density 5A/dtn' Further, a wire bonding test was conducted as follows.

・ワイヤボンディング試験 熱圧着式ワイヤボンダーのホルダーにリードフレーム材
料を装着し、1100ppのH3を含むN、ガスでシー
ルドし、ホルダーのステージ温度を250℃、接圧荷重
100gの条件下で直径30μmのAuワイヤで接合間
距離を1mmとしてウェッジ型の接合を行う、その後、
プルテスターで破断部および破断荷重を測定した。ただ
しAuワイヤの破断強度は15gである。
・Wire bonding test The lead frame material was attached to the holder of a thermocompression wire bonder, shielded with N gas containing 1100 pp H3, and the stage temperature of the holder was set to 250 °C and the contact pressure load was 100 g. Wedge-type bonding is performed using Au wire with a distance between bonds of 1 mm, and then,
The fracture area and fracture load were measured using a pull tester. However, the breaking strength of the Au wire is 15 g.

第1表において、No、1〜N006は本発明の実施例
であり、銅めっき後の表面粗さが0.8〜1.0nm、
スキンバス加工後のめつき層の厚さを1.5〜3.0μ
mに表面加工を行うことによフて、表面粗さ0.3〜0
.4μmとなり、さらに、200〜400℃の温度で5
秒間以上熱処理することによりて耐食性と半田の150
℃の温度で1000時間における密着性が向上すること
を示している。
In Table 1, No. 1 to No. 006 are examples of the present invention, and the surface roughness after copper plating is 0.8 to 1.0 nm.
The thickness of the plating layer after skin bath processing is 1.5 to 3.0μ.
Surface roughness of 0.3 to 0 by performing surface processing on m
.. 4 μm, and further 5 μm at a temperature of 200 to 400°C.
Corrosion resistance and solder resistance of 150% by heat treatment for more than seconds
It is shown that the adhesion after 1000 hours is improved at a temperature of .degree.

ボンディング強さは、めっき材のままでもその後引き続
いて行われる圧延+焼鈍材でも10g以上の値を示し、
合格ラインにある。しかし、耐食性を考慮するとNo、
7〜No、10に示した銅めっぎのままの比較例では、
表面が活性化されたままで非常に変色し易いため、表面
特性が不安定であり、ボンディング性の経時的な劣化が
回避できないことを示している。
The bonding strength shows a value of 10 g or more whether it is a plated material or a rolled + annealed material that is subsequently performed,
It's on the passing line. However, considering corrosion resistance, No.
In the comparative examples with copper plating as shown in Nos. 7 to 10,
Since the surface remains activated and is extremely susceptible to discoloration, the surface properties are unstable, indicating that deterioration of bonding properties over time cannot be avoided.

No、11はボンディング性、耐食性および半田の密着
性は良好であるが、スキンバス圧延ロールのバス回数が
2回となり経済的に不利となる。
No. 11 has good bonding properties, corrosion resistance, and solder adhesion, but the number of baths of the skin bath rolling roll is 2, which is economically disadvantageous.

[発明の効果] 以上説明したように、本発明によれば、金線のワイヤボ
ンディング時の接合性が安定し、さらに、外部リード部
においても半田の剥離のないリードフレーム材料および
その製造方法を提供でき、トランジスタおよびIC等を
組立てる時に、銀などのめっき時間の短縮による生産性
の向上と低価格化とを同時に可能とすることができる。
[Effects of the Invention] As explained above, according to the present invention, a lead frame material and a method for manufacturing the same are provided that have stable bonding properties during wire bonding of gold wires, and also prevent solder from peeling off at the external lead portion. When assembling transistors, ICs, etc., it is possible to simultaneously improve productivity and reduce costs by shortening the time for plating silver, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に厚さ1μm以上の銅層を有するリードフレ
ーム材料であって、当該銅層の表面粗さが0.4μm以
下であり、かつ当該銅層のビッカース硬さが65以下で
あることを特徴とするリードフレーム材料。
(1) A lead frame material having a copper layer with a thickness of 1 μm or more on the surface, the surface roughness of the copper layer being 0.4 μm or less, and the Vickers hardness of the copper layer being 65 or less. A lead frame material featuring:
(2)表面に銅層を有する金属材料に減面率1%以上、
5%以下の冷間圧延加工を行った後に、表面厚さ1μm
以上の銅層を有するリードフレーム材料とし、その後、
当該リードフレーム材料を200〜400℃の温度で少
なくとも5秒間の焼鈍を施すことを特徴とするリードフ
レーム材料の製造方法。
(2) A reduction in area of 1% or more for a metal material having a copper layer on the surface;
After cold rolling of 5% or less, the surface thickness is 1 μm.
The lead frame material has more than one copper layer, and then
A method for producing a lead frame material, comprising annealing the lead frame material at a temperature of 200 to 400° C. for at least 5 seconds.
JP29380687A 1987-11-20 1987-11-20 Lead frame material and manufacture thereof Granted JPH01135057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29380687A JPH01135057A (en) 1987-11-20 1987-11-20 Lead frame material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29380687A JPH01135057A (en) 1987-11-20 1987-11-20 Lead frame material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01135057A true JPH01135057A (en) 1989-05-26
JPH055378B2 JPH055378B2 (en) 1993-01-22

Family

ID=17799394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29380687A Granted JPH01135057A (en) 1987-11-20 1987-11-20 Lead frame material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01135057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351852A (en) * 2005-06-16 2006-12-28 Tdk Corp Electronic part
KR20160054549A (en) * 2013-09-09 2016-05-16 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015744A (en) * 1973-06-15 1975-02-19
JPS5679810A (en) * 1979-12-03 1981-06-30 Sumitomo Electric Industries Method of manufacturing lead wire for electronic part
JPS6218744A (en) * 1985-07-17 1987-01-27 Kobe Steel Ltd Lead frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015744A (en) * 1973-06-15 1975-02-19
JPS5679810A (en) * 1979-12-03 1981-06-30 Sumitomo Electric Industries Method of manufacturing lead wire for electronic part
JPS6218744A (en) * 1985-07-17 1987-01-27 Kobe Steel Ltd Lead frame

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351852A (en) * 2005-06-16 2006-12-28 Tdk Corp Electronic part
JP4497032B2 (en) * 2005-06-16 2010-07-07 Tdk株式会社 Electronic components
KR20160054549A (en) * 2013-09-09 2016-05-16 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
US20160211195A1 (en) * 2013-09-09 2016-07-21 Dowa Metaltech Co., Ltd. Electronic part mounting substrate and method for producing same
EP3048640A4 (en) * 2013-09-09 2017-07-19 Dowa Metaltech Co., Ltd Electronic-component-equipped substrate and method for producing same
US9831157B2 (en) * 2013-09-09 2017-11-28 Dowa Metaltech Co., Ltd. Method of attaching an electronic part to a copper plate having a surface roughness

Also Published As

Publication number Publication date
JPH055378B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
TWI479581B (en) Copper-rhodium alloy wire used for connecting semiconductor equippments
CN103295993A (en) Copper-platinum alloy wire for connecting in semiconductor apparatus
JP3481392B2 (en) Electronic component lead member and method of manufacturing the same
JPH1112714A (en) Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
JPH01135057A (en) Lead frame material and manufacture thereof
JPH05117898A (en) Lead frame for mounting semiconductor chip and production thereof
JPH01257356A (en) Lead frame for semiconductor
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPS63169056A (en) Lead frame material
JP2529774B2 (en) Semiconductor device lead frame material and manufacturing method thereof
JPS6218744A (en) Lead frame
JP3313006B2 (en) Copper alloy lead frame for bare bond
JPH0368788A (en) Production of copper bar for lead frame
JPS6353958A (en) Lead frame material
JPH0674496B2 (en) Lead frame material manufacturing method
JP2542735B2 (en) Semiconductor lead frame material and manufacturing method thereof
JPH0524216B2 (en)
JPS63312935A (en) Copper alloy material for semiconductor lead frame
JPH09116064A (en) Lead frame material
JPS6142941A (en) Lead frame for semiconductor
JP2721259B2 (en) Wire bonding method and copper-based lead frame used therefor
JPS6353287A (en) Ag-coated electric conductor
JPH08153843A (en) Lead frame for semiconductor chip mounting
JPH05320842A (en) Production of material for reed switch
JPH02170935A (en) Copper alloy having superior direct bonding property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees