JPS62291951A - Lead frame with oxidation resistant nickel plating resistant to release of solder - Google Patents

Lead frame with oxidation resistant nickel plating resistant to release of solder

Info

Publication number
JPS62291951A
JPS62291951A JP13690786A JP13690786A JPS62291951A JP S62291951 A JPS62291951 A JP S62291951A JP 13690786 A JP13690786 A JP 13690786A JP 13690786 A JP13690786 A JP 13690786A JP S62291951 A JPS62291951 A JP S62291951A
Authority
JP
Japan
Prior art keywords
plating
layer
thickness
solder
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13690786A
Other languages
Japanese (ja)
Inventor
Masumitsu Soeda
副田 益光
Shin Ishikawa
伸 石川
Hiroshi Nakamura
弘志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13690786A priority Critical patent/JPS62291951A/en
Publication of JPS62291951A publication Critical patent/JPS62291951A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improvement in resistance to release of solder by a method wherein the outside layer of double layer plating is thickly formed. CONSTITUTION:When a soldering work is performed, an Ni-Sn alloy layer is grown on the contact interface between Ni plating and solder, and its thickness reaches 0.1-0.3mum. Then, the alloy layer is increased to 0.3-0.5mum or thereabout by the thermal variation with time after soldering. When the thickness of the alloy layer reaches the interlayer of double layer plating, an interlayer exfoliation is generated due to the stress concentration between layers. Accordingly, the release of solder can be prevented completely by forming the plating thickness of the outside layer thicker than the thickness of 0.3-0.5mum at which the Ni-Sn alloy layer can be grown. Besides, the desired upper limit of plating thickness is 2.0mum or smaller taking into consideration of an economical reason. Therefore, the improvement in resistance to release of solder of the lead frame can be achieved by forming the oxidation-resistive Ni alloy plated layer in the thickness of 0.7-2.0mum.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は耐半田剥離性を有する耐酸化性ニッケルめっき
付きリードフレームに係り、特にIC、トランジスタ等
の半導体装置を組立てる際の加熱を行なっても良好な半
田付は性が得られ、且つその半田付は部が他の半導体組
立て工程中における加熱や曲げ加工においても剥離する
ことがないように構成したものに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a lead frame with oxidation-resistant nickel plating that is resistant to solder peeling, and is particularly applicable to semiconductor devices such as ICs and transistors. The present invention relates to a structure in which good soldering properties can be obtained even when heated during assembly, and the soldering parts are configured so that they do not peel off even during heating or bending during other semiconductor assembly processes.

[従来の技術] 半導体装置のリードフレームにはCu合金や42合金、
コバール等のFe合金及び純鉄等が用いられている。
[Prior art] Lead frames of semiconductor devices are made of Cu alloy, 42 alloy,
Fe alloys such as Kovar, pure iron, etc. are used.

これらのリードフレーム材料を使用して半導体装置を組
立てるに際しては、半導体素子とリードフレームの接合
及び接合後の半導体素子とリードフレームの電気的接続
を行なう必要がある。このような組立て工程において、
リードフレームは通常200℃〜400℃に加熱される
ため1通常行なわれているNiめっきではリードフレー
ム表面に強固な酸化皮膜が形成され、リードフレームの
ワイヤーポンディングやリード部の半田付けを行なう場
合に満足し得る結果を得ることができない。
When assembling a semiconductor device using these lead frame materials, it is necessary to bond the semiconductor element and the lead frame and to electrically connect the semiconductor element and the lead frame after bonding. In such an assembly process,
Since the lead frame is usually heated to 200°C to 400°C, a strong oxide film is formed on the surface of the lead frame with the commonly used Ni plating, which is difficult to use when wire bonding the lead frame or soldering the leads. cannot obtain satisfactory results.

このための対策として、リードフレームに耐酸化性を付
与する方法として、Nt−B合金めっきが行なわれてい
る。
As a countermeasure for this, Nt--B alloy plating is used as a method of imparting oxidation resistance to lead frames.

しかし、N1−B合金めつきは1通常のNiめっきと比
較して処理コストが高くなり、生産性が劣るため、一般
的にはNiめつきを施した後にN1−Bめっきを0.1
〜0.3pm程度の厚みで施す二層めっきを行なう手段
が採用されている。
However, N1-B alloy plating has a higher processing cost and lower productivity than normal Ni plating, so generally after applying Ni plating, N1-B plating is applied by 0.1
A method of performing two-layer plating with a thickness of about 0.3 pm has been adopted.

このように二層めっきを施す結果、リードフレームの耐
酸化性の向上が図られ、半導体組立て工程における加熱
による酸化皮膜の生成に伴なう問題点は解消されること
になる。
As a result of applying two-layer plating in this manner, the oxidation resistance of the lead frame is improved, and problems associated with the formation of an oxide film due to heating in the semiconductor assembly process are resolved.

[発明が解決しようとする問題点] しかしながら、二層めっきを施すことにより酸化皮膜の
生成に伴なう問題は解消されても、逆に二層としたこと
に基づいて半田剥離性の問題が生じることになる。
[Problems to be Solved by the Invention] However, although the problem associated with the formation of an oxide film is solved by applying two-layer plating, on the contrary, the problem of solder removability arises due to the two-layer plating. will occur.

即ち、リード部の半田付けを行なった後にリード部を曲
げ加工することによって半田層が二層めっきの接合部か
ら剥離する現象が生じる。 そして、この現象は半導体
装置の機能を損なうという大きな問題となる。
That is, by bending the lead portion after soldering the lead portion, a phenomenon occurs in which the solder layer peels off from the joint portion of the two-layer plating. This phenomenon poses a serious problem of impairing the functionality of the semiconductor device.

本発明は上記の問題点に着目し、半導体装この組立て工
程における熱影響を受けた後でも良好なワイヤーポンデ
ィング性及び半田付は性が得られるとともに、半田付は
部の半田剥離現象が生じないリードフレームを提供する
ことを目的として創作された。
The present invention focuses on the above-mentioned problems, and makes it possible to obtain good wire bonding and soldering properties even after being affected by heat during the assembly process of semiconductor devices, and to avoid the phenomenon of solder peeling in the soldering parts. It was created with the purpose of providing a lead frame that does not require a lead frame.

[問題点を解決するための手段] 本発明は、ニッケルめっき皮膜の外側に耐酸化性ニッケ
ル合金めっきを積層させることにより、二層のめっき層
を形成したリードフレームであって、該二層めっきにお
ける外側層の耐酸化性ニッケル合金めっき層の厚みを0
.7〜2.04mに設定したことを特徴とする耐半田!
[性を有する耐酸化性ニッケルめっき付きリードフレー
ムに係る。
[Means for Solving the Problems] The present invention provides a lead frame in which two plating layers are formed by laminating an oxidation-resistant nickel alloy plating on the outside of a nickel plating film, and the two-layer plating The thickness of the oxidation-resistant nickel alloy plating layer of the outer layer is 0.
.. Solder resistant, characterized by being set at 7 to 2.04 m!
[Related to a lead frame with oxidation-resistant nickel plating that has properties.]

[作用] 上記の問題点である半田付は部の半田剥離を防止し、そ
の改善を図るためには、先ず半田剥離現象が如何なる原
因で生じるかが問題となる。
[Function] In order to prevent and improve the above-mentioned problem of solder peeling of parts, the first question is what causes the solder peeling phenomenon.

この原因について種々の検討を加えた結果。This is the result of various studies regarding the cause.

半田剥離は半田付は時及びその後の熱影響により生成・
成長したNi−5n合金の厚みに起因することを発見し
た。従って、改善策としては、二層めっきの外側層の耐
酸化Ni合金めっきの厚みを半田付は時及びその後の熱
影響により生成するNi−5n合金層の厚みより厚く形
成しておくことにより半田剥離の問題を解消できるとい
う結論を得、各種の確認試験を行なった結果、その事実
を実証的に確認するとともに、半田剥離が生じないリー
ドフレームを得ることに成功した。
Solder peeling is caused by the soldering process and subsequent heat effects.
It was discovered that this is caused by the thickness of the grown Ni-5n alloy. Therefore, as an improvement measure, the thickness of the oxidation-resistant Ni alloy plating on the outer layer of the two-layer plating is made thicker than the thickness of the Ni-5n alloy layer that is generated during soldering and due to the subsequent heat effect. We came to the conclusion that the problem of solder peeling could be solved, and as a result of conducting various confirmation tests, we were able to empirically confirm this fact and succeed in obtaining a lead frame that does not cause solder peeling.

以下、その事実を詳細に説明する。This fact will be explained in detail below.

半田剥離の機構については、次のように解析できる。The mechanism of solder peeling can be analyzed as follows.

リード部を半田付けする場合には通常5n−Pbの共晶
半田が使用され、230〜265℃の温度で半田付けが
行なわれている。
When soldering the lead portions, 5n-Pb eutectic solder is usually used, and soldering is performed at a temperature of 230 to 265°C.

この場合、半田付は時の影響により、Niめっきと半田
との接触界面でNi−5n合金層が生成され、その厚み
は0.1〜0.3pLmに達する。そして更に、半田付
は後の熱経時によりその厚みは成長し、一般に行なわれ
る実際の使用環境を想定した信頼性試験(125〜15
0℃、16〜25Hr)においては、その合金層は0.
3〜0.5pm程度に成長するとされている。
In this case, due to the influence of time during soldering, a Ni-5n alloy layer is generated at the contact interface between the Ni plating and the solder, and its thickness reaches 0.1 to 0.3 pLm. Furthermore, the thickness of soldering grows as it heats up over time, and reliability tests (125 to 15
0°C, 16-25 hours), the alloy layer has a temperature of 0.
It is said that it grows to about 3 to 0.5 pm.

この成長した合金層はNiめっき層及び半田層と物理的
性質が大きく異なるため、合金層の厚みが二層めっきの
層間に達した場合に、居間における応力集中により居間
31Mを生じることになる。
This grown alloy layer has physical properties that are significantly different from the Ni plating layer and the solder layer, so when the thickness of the alloy layer reaches between the layers of the two-layer plating, stress concentration in the living room causes the living room 31M.

以上が半田剥離現象の機構であるが、この現象分析に基
づくと、外側層のめっき層の厚みをNi−5n合金層が
生成し得る厚みより厚くしておくと、半田剥離を有効に
防止することができることになる。
The above is the mechanism of the solder peeling phenomenon. Based on the analysis of this phenomenon, if the thickness of the outer plating layer is made thicker than the Ni-5n alloy layer can form, solder peeling can be effectively prevented. You will be able to do that.

次に外側層の耐酸化性ニッケル合金めっき層の厚みを0
.7〜2.0pmに規定した理由について説明する。
Next, the thickness of the outer oxidation-resistant nickel alloy plating layer is set to 0.
.. The reason why it is specified to be 7 to 2.0 pm will be explained.

二層めっきにおける外側層のめっきの厚みが0.7以下
では、前記の半田剥離現象の機構の説明から明らかなよ
うにNi−5n合金の成長により剥離を完全に防止でき
ないことになるからである。
If the thickness of the outer layer in two-layer plating is 0.7 or less, peeling cannot be completely prevented due to the growth of the Ni-5n alloy, as is clear from the explanation of the mechanism of solder peeling phenomenon described above. .

一方、その厚みの上限を2.07pmと規定したのは、
2.OILmを越えると剥離に対しては前記の半田剥離
現象の機構からみるとより安全な領域になることになる
が、経済的な点で好ましくないため同厚みを上限とした
のである。
On the other hand, the upper limit of the thickness was specified as 2.07pm because
2. If the thickness exceeds OILm, it becomes a safer region with respect to peeling from the viewpoint of the mechanism of the solder peeling phenomenon described above, but it is not preferable from an economic point of view, so the same thickness was set as the upper limit.

一方、下地めっき厚みについて規定していないが、これ
は半田剥離に影響しないことが確認されたためであり、
リードフレームの目標めっき厚みに応じてその厚みを設
定し、経済的な二層めっき層を構成すれば良いといえる
On the other hand, the thickness of the base plating is not specified, as it has been confirmed that it does not affect solder peeling.
It can be said that it is sufficient to set the thickness according to the target plating thickness of the lead frame and construct an economical two-layer plating layer.

[実施例] りん脱酸間のトランジスタリードフレームを用い、一般
的なめっき前処理を行なった後、下記■のNiめっき浴
を用いて種々のめっき厚みのめっきを行ない、次いで下
記■の耐酸化Ni合金めっき浴を用いて同様に種々のめ
っき厚みのめっきを行ない、各種めっき厚みの組合せの
異なるめっきサンプルを作成した。
[Example] After performing general plating pretreatment using a transistor lead frame between phosphorus deoxidizers, plating with various plating thicknesses was performed using the Ni plating bath described in (1) below, and then oxidation resistance as described in (2) below. Plating with various plating thicknesses was similarly performed using a Ni alloy plating bath to create plating samples with different combinations of various plating thicknesses.

■ニッケルめっき浴条件 NiSO4−6Hz O:250 (g/1)NiC1
z  −6H20:  45 (g/1)H3BO3:
  30 (g/l) 光沢剤  :O〜2(cc/1) 温度   :55℃ 電流密度 : 2 (A/am”) ■ニッケルー硼素めっき浴条件 N i S 04  ・6H20: 200 (g/l
)HBO3:  30(g/l) トリメチルアミンポラン:10(g/I)温度   :
40℃ 電流密度 : 2 (A/drrr’)次に、上記サン
プルをグイポンディングを想定した大気中で360℃、
5分間加熱を行ない、リード部に田村化研製TF−30
フラックスを用いて共晶半田にて260℃で5sec間
半田付けした。
■Nickel plating bath conditions NiSO4-6Hz O:250 (g/1)NiC1
z -6H20: 45 (g/1)H3BO3:
30 (g/l) Brightener: O~2 (cc/1) Temperature: 55°C Current density: 2 (A/am”) ■Nickel-boron plating bath conditions N i S 04 ・6H20: 200 (g/l
)HBO3: 30 (g/l) Trimethylamine poran: 10 (g/I) Temperature:
40°C Current density: 2 (A/drrr') Next, the above sample was heated at 360°C in the atmosphere assuming guiponding.
Heat for 5 minutes and apply Tamura Kaken TF-30 to the lead part.
Soldering was performed at 260° C. for 5 seconds using eutectic solder using flux.

更に、半田付は後のサンプルを大気中125℃で16H
r加熱し、その後リード部を曲げ加工(内半径0.5m
m、90”曲げ)を行ない、半田剥離の有無を調べた。
Furthermore, after soldering, the sample was soldered in air at 125℃ for 16H.
r Heating, then bending the lead part (inner radius 0.5m)
m, 90" bending) to check for solder peeling.

この結果は、内側層Niめっきの厚み及び外側層耐酸化
性Ni合金めっきの厚みと併せて第1表に示される。
The results are shown in Table 1 together with the thickness of the inner layer Ni plating and the thickness of the outer layer oxidation-resistant Ni alloy plating.

尚、半田剥離状況は、10個の試片について前記曲げ加
工後に剥離が発生している試片が何個あるかをその指数
とした。
Incidentally, the solder peeling condition was determined by the number of test pieces in which peeling occurred after the bending process among the 10 test pieces.

同表から明らかなように、従来の方法によると外側層の
めっきの厚みが0.1〜0.37℃mであるため、全て
剥離を発生しているが、本発明の範囲内であると、何れ
の場合も全く剥離が生じなかった。
As is clear from the same table, according to the conventional method, the thickness of the outer layer plating is 0.1 to 0.37°Cm, so peeling occurs in all cases, but it is within the scope of the present invention. In all cases, no peeling occurred.

尚、外側層耐酸化性Ni合金めっきの厚みを2.57z
mとすると剥離は生じていないものの著しいクラックが
発生している。これは耐酸化性Ni合金めっき層の硬さ
に起因しているものと推測される。
In addition, the thickness of the outer layer oxidation-resistant Ni alloy plating is 2.57z.
At m, no peeling occurred, but significant cracking occurred. This is presumed to be due to the hardness of the oxidation-resistant Ni alloy plating layer.

[発明の効果] 以上のように、本発明は熱#響を受けた後でも良好なワ
イヤーポンディング性及び半田付は性が得られるととも
に、半田付は部の半田剥離現象が生じないという効果を
有するリードフレームであり、より実用的な半導体装置
のリードフレームを提供することを可能とした。
[Effects of the Invention] As described above, the present invention has the effect that good wire bonding and soldering properties can be obtained even after being exposed to heat and vibration, and the phenomenon of solder peeling does not occur during soldering. This lead frame has the following features, making it possible to provide a more practical lead frame for semiconductor devices.

Claims (1)

【特許請求の範囲】[Claims]  ニッケルめっき皮膜の外側に耐酸化性ニッケル合金め
っきを積層させることにより、二層のめっき層を形成し
たリードフレームであって、該二層めっきにおける外側
層の耐酸化性ニッケル合金めっき層の厚みを0.7〜2
.0μmに設定したことを特徴とする耐半田剥離性を有
する耐酸化性ニッケルめっき付きリードフレーム。
A lead frame in which a two-layer plating layer is formed by laminating an oxidation-resistant nickel alloy plating on the outside of a nickel plating film, and the thickness of the outer layer of the oxidation-resistant nickel alloy plating layer in the two-layer plating is 0.7~2
.. A lead frame with oxidation-resistant nickel plating that has solder peeling resistance set to 0 μm.
JP13690786A 1986-06-11 1986-06-11 Lead frame with oxidation resistant nickel plating resistant to release of solder Pending JPS62291951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13690786A JPS62291951A (en) 1986-06-11 1986-06-11 Lead frame with oxidation resistant nickel plating resistant to release of solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13690786A JPS62291951A (en) 1986-06-11 1986-06-11 Lead frame with oxidation resistant nickel plating resistant to release of solder

Publications (1)

Publication Number Publication Date
JPS62291951A true JPS62291951A (en) 1987-12-18

Family

ID=15186357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13690786A Pending JPS62291951A (en) 1986-06-11 1986-06-11 Lead frame with oxidation resistant nickel plating resistant to release of solder

Country Status (1)

Country Link
JP (1) JPS62291951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213004A (en) * 1989-02-10 1990-08-24 Sky Alum Co Ltd Conductive component of aluminium alloy for electronic equipment
US6207298B1 (en) * 1997-12-25 2001-03-27 Japan Solderless Terminal Mfg. Co., Ltd. Connector surface-treated with a Sn-Ni alloy
CN104425126A (en) * 2013-08-20 2015-03-18 株式会社村田制作所 Ceramic electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213004A (en) * 1989-02-10 1990-08-24 Sky Alum Co Ltd Conductive component of aluminium alloy for electronic equipment
US6207298B1 (en) * 1997-12-25 2001-03-27 Japan Solderless Terminal Mfg. Co., Ltd. Connector surface-treated with a Sn-Ni alloy
CN104425126A (en) * 2013-08-20 2015-03-18 株式会社村田制作所 Ceramic electronic component

Similar Documents

Publication Publication Date Title
JP2746840B2 (en) Integrated circuit package and lead frame
WO2015053356A1 (en) Electrode connection method and electrode connection structure
JPH09232493A (en) Lead frame
JP2006269903A (en) Lead frame for semiconductor device
JP2020534695A (en) Alloy diffusion barrier layer
US9421645B2 (en) Solder joint material and method of manufacturing the same
JPS62291951A (en) Lead frame with oxidation resistant nickel plating resistant to release of solder
US7268021B2 (en) Lead frame and method of manufacturing the same
JPH11330340A (en) Semiconductor device and mounting structure thereof
JPH01257356A (en) Lead frame for semiconductor
JP3407839B2 (en) Method of forming solder bump for semiconductor device
JPS6242037B2 (en)
US10461050B2 (en) Bonding pad structure of a semiconductor device
JPH01305551A (en) Lead frame for semiconductor device and semiconductor device
JPS63169056A (en) Lead frame material
JPH10163404A (en) Input/output terminal for ball grid array(bga)
WO2022014319A1 (en) Insulation substrate and method for manufacturing same
JPH08204081A (en) Lead frame for semiconductor device, semiconductor device, and manufacturing method thereof
JP2944128B2 (en) Ceramic package
JP2682226B2 (en) Lead frame for semiconductor device
JPH09252070A (en) Lead frame and semiconductor device using the frame
JPS628532A (en) Gold-plated electronic component package
JPH05190725A (en) Lead frame and semiconductor device
JPH11186483A (en) Lead frame for semiconductor device
JPH0290661A (en) Semiconductor device lead frame and semiconductor device