JPS63168054A - Manufacture of semiconductor pressure sensor - Google Patents

Manufacture of semiconductor pressure sensor

Info

Publication number
JPS63168054A
JPS63168054A JP31328986A JP31328986A JPS63168054A JP S63168054 A JPS63168054 A JP S63168054A JP 31328986 A JP31328986 A JP 31328986A JP 31328986 A JP31328986 A JP 31328986A JP S63168054 A JPS63168054 A JP S63168054A
Authority
JP
Japan
Prior art keywords
substrate
bonded
sensor
oxide film
sensor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31328986A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
利昭 藤井
Kiyoshi Odohira
尾土平 きよし
Nobuo Miyaji
宣夫 宮地
Hiroshi Suzuki
広志 鈴木
Tetsuya Fujita
藤田 哲哉
Nobuyuki Yamashita
信行 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP31328986A priority Critical patent/JPS63168054A/en
Publication of JPS63168054A publication Critical patent/JPS63168054A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve sensitivity and to contrive to reduce a cost by mass production by a method wherein a thick Si substrate is bonded to an Si sensor substrate, the sensor substrate is polished to a prescribed thickness and after a base plate having penetrating holes is bonded to the sensor substrate is removed and pressure gauges are formed at prescribed positions. CONSTITUTION:An oxide film 22 is formed on an Si sensor substrate 21 and a thick supporting substrate 23 is bonded to the substrate 21 through the film 22. The substrate 21 is polished to shave its thickness (t) to 50-300mum. Then, penetrating holes 25 and 26 are made in an Si base plate 24 and with a shattered layer at the time of processing of the holes removed by chemical etching, square parts are each formed at the upper parts 25a and 26a of the holes 25 and 26. The substrate 21 and the plate 24 are bonded together by heating through an oxide film 27. The oxide film 22 is removed, gauges 28 and 29, whose pressures are changed by applying measuring pressure, are formed by an ion-implantation method and so on and the whole surface is covered with a protective oxide film 30. This structure is split into plural pieces to use as pressure sensors 31 and 32.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリコンのダイヤフラムに形成されたゲージ
で測定圧力に対応した電気抵抗の変化としてこの測定圧
力を検出する半導体圧カセンリ°の製造方法に係り、特
にそのダイヤフラムの製造方法を改良した半導体圧力セ
ンサの製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for manufacturing a semiconductor pressure sensor in which measured pressure is detected as a change in electrical resistance corresponding to the measured pressure with a gauge formed on a silicon diaphragm. In particular, the present invention relates to a method for manufacturing a semiconductor pressure sensor, which is an improved method for manufacturing a diaphragm.

〈従来の技術〉 第2図は従来の半導体圧ツノセン勺の構成を示すm断面
図である。
<Prior Art> FIG. 2 is a sectional view showing the structure of a conventional semiconductor pressure sensor.

10はn形のシリコン単結晶で作られたダイヤフラムで
あり四部11を有し、このダイ)1フラム10は凹部1
1の形成により11結品の厚さの薄(なった起を部12
とその周辺の固定部13とを有している。
10 is a diaphragm made of n-type silicon single crystal and has four parts 11;
Due to the formation of part 1, the thickness of the part 11 becomes thinner
and a fixed part 13 around it.

起歪部12と固定部13との境界の付近にはゲージ14
が不純物の拡散により伝導形がn形として形成されてい
る。ダイヤフラム10の上面はゲージ14を保護するた
め酸化躾(S(02> 15で覆われている。
A gauge 14 is installed near the boundary between the strain generating part 12 and the fixed part 13.
However, due to the diffusion of impurities, the conduction type is n-type. The upper surface of the diaphragm 10 is covered with an oxide layer (S(02>15) to protect the gauge 14.

固定部13は測定圧力Pを導入する口過孔1Gを有する
シリコンの基板17に例えばガラス酵模などを介して陽
極接合などにより固定され、更に基板17は金属性の筐
体18に接合されている。
The fixing part 13 is fixed to a silicon substrate 17 having an opening 1G through which the measurement pressure P is introduced, for example, by anodic bonding via a glass mold, and the substrate 17 is further bonded to a metal casing 18. There is.

測定圧力Pがダイヤフラム10に印加されると、これに
よって起歪部12に歪みが生じ、この歪みがゲージ14
に伝達され測定圧力Pに対応してゲージ14の抵抗が変
化づる。従って、ゲージ14の抵抗変化から測定圧力を
求めることができる。
When the measurement pressure P is applied to the diaphragm 10, a strain is generated in the strain-generating portion 12, and this strain is applied to the gauge 14.
The resistance of the gauge 14 changes in response to the measured pressure P. Therefore, the measured pressure can be determined from the change in resistance of the gauge 14.

第3図はこの様な半導体圧カセンザを作るための工程の
概要を示す工程図である。
FIG. 3 is a process diagram showing an outline of the process for manufacturing such a semiconductor pressure sensor.

第3図(イ)はn形のシリコン基板19の所定の位置に
例えばp形の不純物を拡散することにより測定圧力に感
知するゲージ14を形成し、この上を酸化膜15で覆う
工程を示している。
FIG. 3(a) shows a step of forming a gauge 14 that senses the measured pressure by diffusing, for example, a p-type impurity in a predetermined position of an n-type silicon substrate 19, and covering the gauge 14 with an oxide film 15. ing.

この後、第3図(ロ)に示づようにシリコン基板19の
ゲージ形成側とは反対側に研削或いはエツチングなどに
より四部11を作り、これにより起歪部12を形成する
Thereafter, as shown in FIG. 3(b), four parts 11 are formed by grinding or etching on the opposite side of the silicon substrate 19 from the side on which the gauge is formed, thereby forming the strain-generating part 12.

以上のようにして作られたダイヤフラム10は第3図(
ハ)に示すように基板17と例えば陽極接合などの接合
方法により接合する。
The diaphragm 10 made as described above is shown in Figure 3 (
As shown in c), it is bonded to the substrate 17 by a bonding method such as anodic bonding.

次に、基板17で絶縁されたダイヤフラム10は基板1
7を介して金属性の筐体18に固定される(第3図(ニ
))。
Next, the diaphragm 10 insulated by the substrate 17 is connected to the substrate 1
It is fixed to a metal casing 18 via 7 (FIG. 3(d)).

第2図に示づ半導体圧力ごンサは概略以上のよ)<’に
工程をへて作られている。
The semiconductor pressure sensor shown in FIG. 2 is manufactured through the steps outlined above.

〈発明が解決しようとする問題点〉 しかしながら、この様な従来の半導体圧力ピン号の製造
方法には次のような問題点がある。
<Problems to be Solved by the Invention> However, such conventional methods of manufacturing semiconductor pressure pins have the following problems.

(イ)凹部11を研削で形成する場合、特に圧力レンジ
が低いとき拳よ300〜500μmの厚みを持つシリコ
ン基板19を50μmfi!度まで削る必要があり、こ
のため起歪部12の厚ざを正確に制御づるのが難しい。
(a) When forming the recess 11 by grinding, especially when the pressure range is low, the silicon substrate 19 with a thickness of 300 to 500 μm should be formed with a thickness of 50 μm! Therefore, it is difficult to accurately control the thickness of the strain-generating portion 12.

また、研削加工の場合には第5図に示びょうに起歪部の
底部に突起20が残り易く平坦に加工することがむづか
しい。
Further, in the case of grinding, as shown in FIG. 5, protrusions 20 tend to remain at the bottom of the strain-generating portion, making it difficult to process it flat.

その上、シリコン基板19を広い下面状としてこの上に
複数の孔加工をして多数のダイ11フラム10を形成す
ることが出来ないので、天吊生産によるコストの低減が
困難となる。史に、加工時の振動に対するゲージ14の
形成面の保護が必要になる。
Furthermore, since it is not possible to form a large number of dies 11 and flamms 10 by forming a plurality of holes on the silicon substrate 19 with a wide bottom surface, it is difficult to reduce costs through ceiling-mounted production. Historically, it has become necessary to protect the forming surface of the gauge 14 from vibrations during processing.

(ロ)凹部11をエツチングで形成する場合に、異方性
エツチングのときは円形の孔加工が出来づ、等方位エツ
チングのときは深い孔を形成プることが出来ない。
(b) When forming the recess 11 by etching, it is not possible to form a circular hole when using anisotropic etching, and it is not possible to form a deep hole when using isotropic etching.

〈問題点を解決するための手段〉 この発明は、以上の問題点を解決するため、シリコンで
てさ゛たセンサ”基板にこのセンサ基板に対して厚みの
あるシリコンの支持基板を接合してこのセンサ基板を所
定の厚みに研磨した後、測定圧力を導入する貫通孔の開
けられたシリコンのベースプートをセンサ基板に接合し
てから支持基板を除去した後、センサ基板の所定位置に
前記測定圧力の印加により抵抗値が変化するゲージを形
成して半導体圧力センサを製造するようにしたものであ
る。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention provides a sensor by bonding a thick silicon support substrate to a silicon sensor substrate. After polishing the substrate to a predetermined thickness, a silicon base plate with a through hole for introducing measurement pressure is bonded to the sensor substrate, the support substrate is removed, and the measurement pressure is applied to a predetermined position on the sensor substrate. A semiconductor pressure sensor is manufactured by forming a gauge whose resistance value changes according to the method.

〈実施例〉 以下、本発明の実施例について図面に基づき説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の1実施例を示す製造工程を示す工程図
である。
FIG. 1 is a process diagram showing a manufacturing process according to an embodiment of the present invention.

第1図(イ)に示すようにシリコンでできたセンサ基板
21の上に1μm程度の厚みの酸化膜<St 02 >
 22を例えば熱酸化法などで形成する。次に、シリコ
ンでできた厚みのある支持基板23を酸化pIQ22を
介して接合する(第1図(ハ))。
As shown in FIG. 1(A), an oxide film <St 02 > with a thickness of about 1 μm is formed on the sensor substrate 21 made of silicon.
22 is formed by, for example, a thermal oxidation method. Next, a thick supporting substrate 23 made of silicon is bonded via the oxidized pIQ 22 (FIG. 1(c)).

この後、第1図に)に示すようにセンサ基板21を研磨
してその厚みtを50〜300μmにしてこれを適正な
ダイキシフラムの厚みとする。
Thereafter, as shown in FIG. 1), the sensor substrate 21 is polished to a thickness t of 50 to 300 μm, which is the appropriate thickness of dixiphram.

次に、第1図(ホ)に示すように厚みのあるシリコンの
単結晶でできたベースプレート24に測定圧力Pを導入
する貫通孔25.26を間ける。
Next, as shown in FIG. 1(E), through holes 25 and 26 for introducing the measurement pressure P are formed in the base plate 24 made of thick single crystal silicon.

この貫通孔25.26は1ナンドブラストや研削機によ
り入団にかつ短時間に形成可能である。この後、ケミカ
ルエツチングにより貫通孔25.26の孔加工のときに
生じたその周面の破砕層を除去りると共に第1図(へ)
に承りように起歪部の支点を明確にするために貫通孔2
5.26の−E部25a、268に角部を段りるバター
ニングをする。
The through holes 25 and 26 can be formed easily and in a short time by using a one-shot blast or a grinding machine. After this, the crushed layer on the circumferential surface of the through-holes 25 and 26, which was created when drilling the through-holes 25 and 26, is removed by chemical etching, and as shown in FIG.
In order to clarify the fulcrum of the strain-generating part, the through hole 2
5. Perform patterning on the -E parts 25a and 268 of 26 to step the corners.

第1図(ト)に示す接合工程で厚さtに研磨されたセン
サ基板21とベースプレー1−24とは酸化膜27を介
して加熱接合される。
The sensor substrate 21 and the base plate 1-24, which have been polished to a thickness t in the bonding step shown in FIG.

次に、厚みのある支持基板23は例えばエツチングレー
トの相違を利用したケミカルエッチングなどの方法で除
去する(第1図(ヂ))。
Next, the thick support substrate 23 is removed by, for example, chemical etching that takes advantage of the difference in etching rate (FIG. 1(d)).

この後、酸化膜22を除去して所定の厚みのセンサ基板
21の所定の位置に測定圧力Pの印加により抵抗値が変
化するゲージ28.29が例えばイオン注人払などによ
り形成され、その上をゲージ28.29を保護するため
酸化膜30で覆う(第1図(す))。
Thereafter, the oxide film 22 is removed, and gauges 28 and 29 whose resistance value changes upon application of measurement pressure P are formed at predetermined positions on the sensor substrate 21 with a predetermined thickness by, for example, ion implantation. The gauges 28 and 29 are covered with an oxide film 30 to protect them (see FIG. 1).

この後、第1図(ヌ)で示づダイシング工程で?Q数個
に分割されて、それぞれ圧力センサ31.32とされる
After this, in the dicing process shown in Figure 1 (N)? It is divided into several Q pieces, each serving as a pressure sensor 31 and 32.

なお、以上の工程のうら第1図(ハ)、(ト)に示づ接
合工程では酸化膜22.27を介して接合したが、これ
らの酸化膜22.27は必ずしも必要ではなく、ウェー
ハ同志を直接接合するウェハー接合法により接合しても
よい。この接合に当たっては、各接合面をそれぞれ鏡面
研磨し、これ等の研磨面をそれぞれ硫酸と過酸化水素の
混合液に浸すなどして親水性化処理をした後、これらの
接合面間に買物が混在しない条件の基にこれらの接合面
を直接密着させて加熱し相互に接合する。
Although the oxide films 22 and 27 are bonded in the bonding process shown in FIGS. They may also be bonded by a wafer bonding method in which they are directly bonded. For this joining, each joint surface is polished to a mirror finish, and each of these polished surfaces is soaked in a mixture of sulfuric acid and hydrogen peroxide to make it hydrophilic. These bonding surfaces are directly brought into close contact and heated to bond each other under conditions that do not mix.

史に、今までの説明ではヒンサ駐板21にゲージのみを
形成するどしで説明したが、これに限らずゲージの他に
例えばこのゲージを駆動しその出力を増幅して信号処理
Jる信号処理回路を同一のf−ツブ−Lに形成するよう
にしてもよい。
In the explanation so far, only a gauge is formed on the parking plate 21, but this is not limited to this.For example, in addition to the gauge, it is also possible to drive the gauge, amplify its output, and perform signal processing. The processing circuits may be formed in the same f-tube L.

・、:発明の効果〉 以上、実施例と共に具体的に説明したように本発明の製
造方法によれば、以下のような各種の効果がある。
・,: Effects of the Invention> As specifically explained above with the examples, the manufacturing method of the present invention has various effects as described below.

(イ)支持基板は十分な厚みを持っているのでセンサ基
板の全面を均一にしかも薄くまで研削することがでさる
。従って、ゲージを形成覆る拡散抵抗の接合深さより少
し厚い程度(例えば2μm程度)までダイヤフラムを薄
りすることができる。
(a) Since the support substrate has sufficient thickness, it is possible to grind the entire surface of the sensor substrate uniformly and to a thin layer. Therefore, the diaphragm can be made thinner to a degree (for example, about 2 μm) that is slightly thicker than the junction depth of the diffused resistor forming and covering the gauge.

このため、感度を上げることができるので低圧ノルレン
ジのセンサが実現でき、更にダイヤフラムの直径を小さ
くできるのでチップ面積が小さくなる。
Therefore, the sensitivity can be increased, making it possible to realize a low-pressure nor-range sensor, and the diameter of the diaphragm can also be made smaller, so the chip area can be reduced.

(ロ)すべての工程がウェー八単位で行うことが出来る
ので人聞生産が可能であり、ウェーハの大形化によりス
ケールメリットが出しやすい。従って、低コスト化が容
易である。
(b) All processes can be performed in units of eight wafers, so production can be done by one person, and economies of scale can be easily achieved by increasing the size of the wafers. Therefore, cost reduction is easy.

(ハ)本発明によれば、ベースプレートを厚くできるの
でセンサ基板をこれに接合しても熱膨張係数の差に起因
する温度ピロ点誤差を小さくすることができる。
(c) According to the present invention, since the base plate can be made thicker, it is possible to reduce the temperature pillow point error caused by the difference in coefficient of thermal expansion even when the sensor substrate is bonded to the base plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例のvJ造方法を示づ工程図、
第2図は従来の半導体圧力センサの構成を示づ縦断面図
、第3図は第2図に示す半導体圧力センサ゛を作る工程
を示す工程図、第4図は第2図に承り半導体圧力センサ
の問題点を説明する説明図rある。 10、・・・ダイヤフラム、11・・・凹部、12・・
・起歪部、14.28.29・・・ゲージ、17・・・
基板、18、・・・筺体、21・・・センサ基板、23
・・・支持基板、24・・・ベースプレート、25.2
G・・・口過孔、28.29・・・ゲージ、31.32
・・・圧カセンザ。
FIG. 1 is a process diagram showing a vJ manufacturing method according to an embodiment of the present invention;
Fig. 2 is a vertical cross-sectional view showing the structure of a conventional semiconductor pressure sensor, Fig. 3 is a process diagram showing the process of manufacturing the semiconductor pressure sensor shown in Fig. 2, and Fig. 4 is a semiconductor pressure sensor based on Fig. 2. There is an explanatory diagram r explaining the problem. 10,...diaphragm, 11...recess, 12...
・Strain part, 14.28.29... Gauge, 17...
Substrate, 18,... Housing, 21... Sensor board, 23
...Support board, 24...Base plate, 25.2
G... Mouth hole, 28.29... Gauge, 31.32
...Pressure Kasenza.

Claims (1)

【特許請求の範囲】[Claims] シリコンでできたセンサ基板にこのセンサ基板に対して
厚みのあるシリコンの支持基板を接合してこのセンサ基
板を所定の厚みに研磨した後、測定圧力を導入する貫通
孔の開けられたシリコンのベースブートを前記センサ基
板に接合してから前記支持基板を除去した後、前記セン
サ基板の所定位置に前記測定圧力の印加により抵抗値が
変化するゲージを形成したことを特徴とする半導体圧力
センサの製造方法。
A thick silicon support substrate is bonded to a sensor substrate made of silicon, and after polishing the sensor substrate to a specified thickness, a silicon base with a through hole for introducing measurement pressure is formed. Manufacture of a semiconductor pressure sensor, characterized in that after bonding a boot to the sensor substrate and removing the support substrate, a gauge whose resistance value changes upon application of the measurement pressure is formed at a predetermined position on the sensor substrate. Method.
JP31328986A 1986-12-29 1986-12-29 Manufacture of semiconductor pressure sensor Pending JPS63168054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31328986A JPS63168054A (en) 1986-12-29 1986-12-29 Manufacture of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31328986A JPS63168054A (en) 1986-12-29 1986-12-29 Manufacture of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS63168054A true JPS63168054A (en) 1988-07-12

Family

ID=18039423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31328986A Pending JPS63168054A (en) 1986-12-29 1986-12-29 Manufacture of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS63168054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156465C1 (en) * 2001-11-16 2003-07-10 Infineon Technologies Ag Bonded assembly of two wafers is formed using wafer recessed to make penetrations, and results in highly temperature-stable, detachable connection
DE10238601A1 (en) * 2002-08-22 2004-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wafer for handling substrates in the semiconductor industry comprises a first surface on which an adhesive layer is applied to keep a substrate mechanically stable for subsequent processing, a second surface, and a feed line for solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156465C1 (en) * 2001-11-16 2003-07-10 Infineon Technologies Ag Bonded assembly of two wafers is formed using wafer recessed to make penetrations, and results in highly temperature-stable, detachable connection
DE10238601A1 (en) * 2002-08-22 2004-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wafer for handling substrates in the semiconductor industry comprises a first surface on which an adhesive layer is applied to keep a substrate mechanically stable for subsequent processing, a second surface, and a feed line for solvent

Similar Documents

Publication Publication Date Title
JP3444639B2 (en) Manufacturing method and apparatus for integrated pressure transducer
JPH06349806A (en) Method for manufacture of sensor and sensor
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
JPS60158675A (en) Diaphragm sensor
US3848329A (en) Method for producing a semiconductor strain sensitive element of an electromechanical semiconductor transducer
JP2005043159A (en) Pressure sensor
JPS63250865A (en) Pressure detecting element and manufacture thereof
JPS63168054A (en) Manufacture of semiconductor pressure sensor
JP2696894B2 (en) Semiconductor pressure sensor
JPS63178567A (en) Manufacture of semiconductor pressure sensor
JPS63168055A (en) Manufacture of semiconductor pressure sensor
JPH0533018Y2 (en)
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JPH05340957A (en) Semiconductor sensor and manufacture thereof
JP2600393B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH08248061A (en) Acceleration sensor and manufacture thereof
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPS6037177A (en) Semiconductor pressure sensor
JPH0412436Y2 (en)
JPH01145873A (en) Manufacture of semiconductor pressure sensor
JP3573262B2 (en) Semiconductor pressure measuring device
JPH06163941A (en) Semiconductor pressure sensor
JP3356031B2 (en) Semiconductor pressure measuring device and manufacturing method thereof
JPS63155774A (en) Semiconductor pressure sensor