JPS63155774A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS63155774A
JPS63155774A JP30136586A JP30136586A JPS63155774A JP S63155774 A JPS63155774 A JP S63155774A JP 30136586 A JP30136586 A JP 30136586A JP 30136586 A JP30136586 A JP 30136586A JP S63155774 A JPS63155774 A JP S63155774A
Authority
JP
Japan
Prior art keywords
pressure
receiving diaphragm
resistance
thickness
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30136586A
Other languages
Japanese (ja)
Inventor
Tadahiro Hayashi
林 忠広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30136586A priority Critical patent/JPS63155774A/en
Publication of JPS63155774A publication Critical patent/JPS63155774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To reduce a scattering in a characteristic of pressure sensitivity, by forming a pressure receiving diaphragm so that it becomes gradually thicker as it goes to the center from the periphery and forming its central part in fixed thickness. CONSTITUTION:Circular step parts 5b and 5c are formed on a rear of a pressure receiving diaphragm 5 so as to be thicker gradually steppedly toward a central part of the diaphragm from the thin part 5a on the periphery. A ratio of thickness h2 of the circular step part 5c to thickness h1 of the peripheral thin part 5a depends on a diameter of the pressure receiving diaphragm 5, and is selected to be 1.2 or so. Piezo-resistance parts 3 and 4 are formed on a front side of the thin part 5a. When pressure P is applied, the thick part of the circular step part 5c functions as a rigid body, and distortion occurs mainly on the side of the peripheral thin part 5a. According to the amount of this distortion, a resistance value of the piezo-resistance part 3 changes in the plus direction, and that of the piezo-resistance part 4 changes in the minus direction. Since the thickness ratio is selected to be a prescribed value of 1.2 or so, non-linearity of the pressure to the resistance changing value becomes approximately zero.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば圧力、差圧伝送器等に用いられる半
導体圧カセンザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor pressure sensor used, for example, in a pressure or differential pressure transmitter.

(従来の技術) 従来の半導体圧カーセンサとしては、例えば第5図に示
すようなものがある。
(Prior Art) As a conventional semiconductor pressure sensor, there is one shown in FIG. 5, for example.

第5図中、1はn形3iの半導体基板で、半導体基板1
には、裏面の中央部が四部加工されて肉薄の受圧ダイヤ
フラム2が形成されている。受圧ダイヤフラム2は、平
面的には直径rの円形に形成されている。
In FIG. 5, 1 is an n-type 3i semiconductor substrate, and the semiconductor substrate 1
A thin pressure receiving diaphragm 2 is formed by processing four parts of the central part of the back surface. The pressure receiving diaphragm 2 is formed into a circular shape with a diameter r in plan view.

半導体基板1の表面部で口つ受圧ダイヤフラム2の周辺
部には、p形不鈍物がドープされて拡散層抵抗が形成さ
れ、この拡散層抵抗によりピエゾ抵抗3.4が形成され
ている。
The surface of the semiconductor substrate 1 and the periphery of the pressure-receiving diaphragm 2 are doped with a p-type inert substance to form a diffusion layer resistance, and this diffusion layer resistance forms a piezoresistance 3.4.

そして受圧ダイヤフラム2に、その表面側から圧力Pが
加えられると、これがたわんでその表面部に歪が発生し
、各ピエゾ抵抗3.4の抵抗値がその歪量に応じて変化
する。
When pressure P is applied to the pressure-receiving diaphragm 2 from its surface side, the pressure-receiving diaphragm 2 is deflected and strain is generated on the surface portion, and the resistance value of each piezoresistor 3.4 changes according to the amount of strain.

この各ピエゾ抵抗3.4の抵抗変化量ΔRは、Siの受
圧ダイヤフラム2が右する圧力−歪特性の非直線性によ
り、次式で近似される。
The resistance change amount ΔR of each piezoresistor 3.4 is approximated by the following equation due to the non-linearity of the pressure-strain characteristic of the Si pressure receiving diaphragm 2.

八R−に1 ・ (r/h)2 ・ (P 十K 2  ・PI/3)     ・・・
(1)ここでr:受圧ダイヤフラムの直径 h:受圧ダイヤフラムの厚さ に+ 、K2  :ポアソン比、縦弾性係数等で決まる
定数 第6図は、上記(1)式の圧力P−抵抗変化最八への関
係を示す特性図である。
8R- to 1 ・ (r/h) 2 ・ (P 10K 2 ・PI/3) ...
(1) where r: diameter of the pressure diaphragm h: thickness of the pressure diaphragm +, K2: constant determined by Poisson's ratio, modulus of longitudinal elasticity, etc. 8 is a characteristic diagram showing the relationship to

特性線は、(1)式中のに2 ・p+3の項が効いて非
直線性を示している。
The characteristic line exhibits nonlinearity due to the effect of the term 2·p+3 in equation (1).

しかし、精度のよい半導体圧力センサを構成するために
は圧力P−−抗変化量△Rの特性は直線性を有するもの
が求められる。
However, in order to construct a highly accurate semiconductor pressure sensor, the characteristic of pressure P--resistance change ΔR is required to have linearity.

第7図は、このような圧力P−抵抵抗変化へRの特性を
改善した他の従来例を示すものである。
FIG. 7 shows another conventional example in which the characteristics of R are improved for such pressure P-resistance change.

この従来例では、受圧ダイヤフラム2の裏面側中央部に
円形段部21が形成され、受圧ダイヤフラム2は、この
円形段部21の部分の肉厚部と、その周辺の肉薄部とで
構成されている。肉厚部の厚さは、肉薄部の厚さに対し
て所定の比率を有している。
In this conventional example, a circular stepped portion 21 is formed at the center of the back side of the pressure receiving diaphragm 2, and the pressure receiving diaphragm 2 is composed of a thick portion at the circular stepped portion 21 and a thin portion around the circular stepped portion 21. There is. The thickness of the thick portion has a predetermined ratio to the thickness of the thin portion.

ピエゾ抵抗3.4は、周辺の肉薄部の表面側に形成され
ている。
The piezoresistor 3.4 is formed on the surface side of the peripheral thin portion.

そして受圧ダイヤフラム2に、その表面側から圧力が加
えられると、円形段部21の部分の肉厚部は、剛体とし
て作用し、肉厚部と肉薄部の境界のコーナ一部22に応
用集中が生じて歪が発生する。
When pressure is applied to the pressure-receiving diaphragm 2 from its surface side, the thick part of the circular stepped part 21 acts as a rigid body, and the application concentration is applied to the corner part 22 at the boundary between the thick part and the thin part. This causes distortion.

受圧ダイヤフラム2に、このようなパターンの歪が発生
することにより、圧力P−抵抗変化量八への特性は、直
線性を有するように改善される。
By generating such a pattern of distortion in the pressure receiving diaphragm 2, the characteristic of pressure P-resistance change amount 8 is improved to have linearity.

(発明が解決しようとする問題点) 圧力−抵抗変化量特性を改善した第7図の従来例では、
コーナ一部22に応力集中が生じて、この部分に歪が集
中して発生ずるので、感圧特性の揃った半導体圧力セン
サを作製するためには、受圧ダイヤフラム2の表面側に
形成されるピエゾ抵抗3.4と、裏面側に形成されるコ
ーナ一部22との位置関係を精度よく管理することが必
要とされる。
(Problems to be Solved by the Invention) In the conventional example shown in FIG. 7 in which the pressure-resistance change characteristic is improved,
Stress concentration occurs in the corner part 22, and strain is concentrated in this part. Therefore, in order to produce a semiconductor pressure sensor with uniform pressure-sensitive characteristics, a piezoelectric sensor formed on the surface side of the pressure receiving diaphragm 2 is required. It is necessary to accurately manage the positional relationship between the resistor 3.4 and the corner portion 22 formed on the back side.

しかしながら、ピエゾ抵抗は受圧ダイヤフラムの表面側
に形成されるのに対し、円形段部21は、その裏面側に
形成され、また円形段部21は、通常、砥石による機械
的な研削手段により形成されるので、砥石が摩耗すると
円形段部21の直径に誤差が生じ易い。このため、ピエ
ゾ抵抗3.4と、コーナ一部22との位置関係を精度よ
く管理することが難しく、感圧特性にばらつきが生じて
、製品の歩留りが低下するという問題点があった。
However, while the piezoresistance is formed on the front side of the pressure receiving diaphragm, the circular step 21 is formed on the back side, and the circular step 21 is usually formed by mechanical grinding with a grindstone. Therefore, when the grindstone wears out, errors tend to occur in the diameter of the circular stepped portion 21. For this reason, it is difficult to accurately manage the positional relationship between the piezoresistor 3.4 and the corner portion 22, resulting in variations in pressure-sensitive characteristics and a problem in that the yield of products decreases.

この発明は上記事情に基づいてなされたもので、圧力−
抵抗変化層特性は、直線性を有するとともに、感圧特性
のばらつきが少なく、製品の歩留りを向」二させること
のできる半導体圧力センサを提供することを目的とする
This invention was made based on the above circumstances, and the pressure
The object of the present invention is to provide a semiconductor pressure sensor that has linear resistance change layer characteristics, has little variation in pressure sensitive characteristics, and can improve product yield.

[発明の構成] (問題点を解決するための手段) この発明は上記問題点を解決するために、半導体基板に
、裏面の凹部加工により受圧ダイX7フラムを形成し、
前記半導体基板の表面部で且つ当該受圧ダイヤフラムの
周辺部にピエゾ抵抗を形成した半導体圧カセンザにおい
て、前記受圧ダイヤフラムは、周辺部から中心部に向っ
て漸次肉厚で、当該中心部は所要の厚さに形成されてい
ることを要旨とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention forms a pressure receiving die X7 flammable on a semiconductor substrate by machining a recess on the back surface,
In the semiconductor pressure sensor in which a piezoresistance is formed on the surface of the semiconductor substrate and in the periphery of the pressure receiving diaphragm, the pressure receiving diaphragm has a thickness that gradually increases from the periphery to the center, and the center has a required thickness. The main point is that it is formed in the same way.

(作用) 受圧ダイヤフラムは、所要の厚さに形成されている中心
部が剛体として作用し、主としてその周辺部に応力が生
じるので圧力−抵抗変化量特性は直線性が得られる。
(Function) The pressure-receiving diaphragm has a center portion formed to a required thickness that acts as a rigid body, and stress is mainly generated in the peripheral portion thereof, so that linearity can be obtained in the pressure-resistance change amount characteristic.

また受圧ダイヤフラムは、周辺部から中心部に向って漸
次肉厚となっているので、局部的な応力集中が避けられ
て、応力集中の度合が緩和される。
Further, since the pressure receiving diaphragm gradually becomes thicker from the peripheral portion toward the center, local stress concentration can be avoided and the degree of stress concentration can be alleviated.

このためピエゾ抵抗の形成位置に多少の位置ずれが生じ
ても、感圧特性のばらつきが少なくなる。
For this reason, even if a slight displacement occurs in the formation position of the piezoresistor, variations in pressure-sensitive characteristics are reduced.

(実施例) 以下この発明の実施例を第1図〜第4図に基づいて説明
する。
(Example) Examples of the present invention will be described below based on FIGS. 1 to 4.

第1図は縦断面図、第2図は受圧ダイヤフラムの形成方
法の一例を示す断面図、第3図はピエゾ抵抗の抵抗変化
を電圧変化として取出すためのブリッジ回路の回路図、
第4図は受圧ダイヤフラムの周辺部の厚さに対する中心
部の厚さの比と圧力−抵抗変化量の非直線性との関係を
示す特性図である。
FIG. 1 is a longitudinal sectional view, FIG. 2 is a sectional view showing an example of a method for forming a pressure receiving diaphragm, and FIG. 3 is a circuit diagram of a bridge circuit for extracting resistance changes of a piezoresistor as voltage changes.
FIG. 4 is a characteristic diagram showing the relationship between the ratio of the thickness of the central portion to the thickness of the peripheral portion of the pressure receiving diaphragm and the nonlinearity of the pressure-resistance change amount.

なお第1図等において前記第5図における部材および部
位と同一ないし均等のものは、前記と同一符号を以って
示し、重複した説明を省略する。
In FIG. 1, etc., members and parts that are the same or equivalent to those in FIG.

まず構成を説明すると、この実施例では、受圧ダイヤフ
ラム5の裏面に、周辺の肉薄部5aから中心部に向って
順次肉厚の円形段部5b、5Cが形成され、受圧ダイヤ
フラム5は、周辺部から中心部に向って段階的に漸次肉
厚となるように構成されている。
First, to explain the configuration, in this embodiment, circular step portions 5b and 5C are formed on the back surface of the pressure receiving diaphragm 5, and the circular step portions 5b and 5C are sequentially thick from the peripheral thin portion 5a toward the center. It is constructed so that the thickness gradually increases from the center toward the center.

周辺の肉薄部5aの厚さhlに対する中心の円形段部5
C部分の厚さh2の比h2 /h、は、受圧ダイヤフラ
ム5の直径にも依存するが、後述するように、この比h
2 /h、は、1.2程瓜に選ばれる。
The circular stepped portion 5 at the center is relative to the thickness hl of the peripheral thin portion 5a.
The ratio h2/h of the thickness h2 of the C portion depends on the diameter of the pressure receiving diaphragm 5, but as described later, this ratio h2/h
2/h is selected to be about 1.2.

ピエゾ抵抗3.4は、周辺の肉薄部5aの表面側に形成
されている。
The piezoresistor 3.4 is formed on the surface side of the peripheral thin portion 5a.

第2図は、受圧ダイヤフラム5の形成方法の一例を示す
もので、グラインダー6による研削加工法を採用したも
のである。
FIG. 2 shows an example of a method for forming the pressure receiving diaphragm 5, in which a grinding method using a grinder 6 is employed.

グラインダー6の研削面は、円形段部5b15Cに対応
した凹面に形成されている。
The grinding surface of the grinder 6 is formed into a concave surface corresponding to the circular stepped portion 5b15C.

半導体基板1は、その周縁部等を位置決めの目安として
、ガラス等の台板7に、その表面側が対接するようにワ
ックス8で固定される。
The semiconductor substrate 1 is fixed to a base plate 7 made of glass or the like with wax 8 so that its surface side is in contact with the base plate 7, using its peripheral edge as a guide for positioning.

この状態で、半導体基板1の裏面側中央部に、回転を与
えられたグラインダー6が、水、砥粒を媒介材として押
し付けられ、研削加工が行なわれる。押し付は量を規定
することにより、所定深さまで研削したのち、グライン
ダー6を後退させる。
In this state, the rotated grinder 6 is pressed against the central part of the back side of the semiconductor substrate 1 using water and abrasive grains as mediating materials, and a grinding process is performed. By specifying the pressing amount, the grinder 6 is moved back after grinding to a predetermined depth.

研削加工により、受圧ダイヤフラム5の裏面に生じた微
小な破砕層を、ぶつ酸、硝酸の混合液等により化学エツ
チングを行なって除去する。次いで半導体基板1を台板
7から取外すことにより、裏面に所要の肉薄部5aおよ
び円形段部5b15Cを有する受圧ダイヤフラム5が形
成される。
The minute fracture layer formed on the back surface of the pressure-receiving diaphragm 5 by the grinding process is removed by chemical etching using a mixed solution of butic acid, nitric acid, or the like. Next, by removing the semiconductor substrate 1 from the base plate 7, the pressure receiving diaphragm 5 having the required thinned portion 5a and circular stepped portion 5b15C on the back surface is formed.

第3図は、ピエゾ抵抗3.4の抵抗変化を電圧変化とし
て取出Jためのブリッジ回路の構成を示すものである。
FIG. 3 shows the configuration of a bridge circuit for extracting the resistance change of the piezoresistor 3.4 as a voltage change.

Si半導体基板1が成る一定の結晶面を有するとき、ピ
エゾ抵抗は、その長手方向を、受圧ダイヤフラム5の半
径方向と同方向、またはその円周方向と同方向に形成す
ることにより、感度は同じで抵抗変化の符号の異なるも
のを得ることができる。両ピエゾ抵抗3.4には、この
形成方法が採用されて、ピエゾ抵抗3は、抵抗変化の符
号がプラスであり(これを抵抗Rpとする)、他のピエ
ゾ抵抗4は、抵抗変化の符号がマイナス(これを抵抗R
nとする)となるように構成されている。
When the Si semiconductor substrate 1 has a certain crystal plane, the piezoresistor has the same sensitivity by forming its longitudinal direction in the same direction as the radial direction of the pressure receiving diaphragm 5 or in the same direction as its circumferential direction. It is possible to obtain resistance changes with different signs. This formation method is adopted for both piezoresistors 3.4, and piezoresistor 3 has a positive sign of resistance change (this is referred to as resistance Rp), and the other piezoresistor 4 has a positive sign of resistance change. is negative (this is the resistance R
n).

ブリッジ回路は、この2個のピエゾ抵抗Rp、Rnを2
辺とし、その対辺には固定抵抗Rがそれぞれ接続されて
いる。
The bridge circuit connects these two piezo resistors Rp and Rn to 2
A fixed resistor R is connected to the opposite side.

9a、9bは直流定電圧Einが印加される電源端子、
Ila、11bは検出電圧端子で、検出電圧端子11a
、11bからピエゾ抵抗Rp、Rnの抵抗変化量に対応
した電圧が検出電圧EOUtとして取出される。
9a and 9b are power supply terminals to which a constant DC voltage Ein is applied;
Ila and 11b are detection voltage terminals, and detection voltage terminal 11a
, 11b, a voltage corresponding to the amount of resistance change of the piezoresistors Rp and Rn is extracted as a detection voltage EOUTt.

次に作用を説明する。Next, the action will be explained.

受圧ダイヤフラム5に、その表面側から圧力Pが加えら
れると、円形段部5cにより肉厚に形成された中心部は
剛体として作用し、主として周辺の肉薄部5a側に応力
が生じる。この応ツノにより、受圧ダイヤフラム5の表
面部に歪が発生し、この歪量に応じて、ピエゾ抵抗3は
その抵抗値がプラス方向に変化し、また他のピエゾ抵抗
4はその抵抗値がマイナス方向に変化する。
When pressure P is applied to the pressure-receiving diaphragm 5 from its surface side, the central portion formed thickly by the circular step portion 5c acts as a rigid body, and stress is mainly generated on the peripheral thin portion 5a side. Due to this response, strain occurs on the surface of the pressure receiving diaphragm 5, and according to the amount of strain, the resistance value of the piezoresistor 3 changes in a positive direction, and the resistance value of the other piezoresistors 4 changes in a negative direction. change in direction.

受圧ダイヤフラム5は、中心部の厚さh2と、周辺部の
厚さhlとの比h2/h+ が、その直径に応じた所要
の値の1.2程瓜に選ばれているので、第4図に示すよ
うに圧カー抵抗変化量の非直線性(非直線率)は、はぼ
ゼロとなって、各ピエゾ抵抗3.4からは、圧力Pに正
比例した抵抗変化量が得られる。
The pressure-receiving diaphragm 5 has a ratio h2/h+ of the thickness h2 at the center and the thickness hl at the periphery, which is approximately 1.2, which is the required value according to its diameter. As shown in the figure, the nonlinearity (nonlinearity) of the pressure car resistance change amount is almost zero, and a resistance change directly proportional to the pressure P is obtained from each piezoresistor 3.4.

このピエゾ抵抗3.4の抵抗変化により、当初平衡状態
にあったブリッジ回路の平衡がくずれ、検出電圧端子1
1a、11bからは、圧力Pに比例した検出電圧Eou
tが取出される。
Due to this change in the resistance of the piezoresistor 3.4, the balance of the bridge circuit, which was initially in a balanced state, is lost, and the detection voltage terminal 1
From 1a and 11b, a detection voltage Eou proportional to the pressure P is detected.
t is taken out.

そして、このような、圧力Pの検出作用において、受圧
ダイヤフラム5は、周辺の肉薄部5aから中心部に向っ
て段階的に漸次肉厚となっているので、ピエゾ抵抗3.
4が設けられている肉薄部5aの部分への応力集中の度
合が避けられ、この応力集中の度合が緩和される。
In such a pressure P detection operation, the pressure receiving diaphragm 5 gradually becomes thicker from the peripheral thin portion 5a toward the center, so that the piezoresistor 3.
The degree of stress concentration on the portion of the thin wall portion 5a where 4 is provided can be avoided, and the degree of stress concentration can be alleviated.

このため、肉薄部5aの部分に対づるピエゾ抵抗3.4
の形成位置に多少の位置ずれが生じでいても、感圧特性
のばらつきが少なくなる。
Therefore, the piezo resistance 3.4 for the thin portion 5a is
Even if some misalignment occurs in the formation position, the variation in pressure-sensitive characteristics will be reduced.

なお、この発明は−し述の実施例に限定されるものでは
なく、例えば上述の実施例では、n形S1の半導体基板
に、p形の拡散層抵抗によりピエゾ抵抗を形成したが、
これと逆にp形Siの半導体基板に、r]形の拡散層抵
抗によりピエゾ抵抗を形成することもできる。
Note that the present invention is not limited to the embodiments described above; for example, in the embodiments described above, a piezoresistance is formed using a p-type diffusion layer resistor on an n-type S1 semiconductor substrate.
Conversely, it is also possible to form a piezoresistance on a p-type Si semiconductor substrate using an r]-type diffusion layer resistor.

また、受圧ダイヤフラムの裏面の形成力法についても、
グラインダーによる機械的な研削り法に限らず化学的な
エツヂレグ法により、段差をつ【ノることもできる。
Also, regarding the forming force method on the back side of the pressure receiving diaphragm,
In addition to the mechanical grinding method using a grinder, it is also possible to create the steps using the chemical edge reg method.

[発明の効果] 以上説明したように、この発明の構成によれば、受圧ダ
イヤフラムは、周辺部から中心部に向って漸次肉厚で、
当該中心部は所要の厚さに形成されているので、中心部
が剛体として作用し、応力は主としてその周辺部に生じ
て直線性を右する圧力−抵抗変化量特性が得られる。ま
たこれとともに周辺部への応力集中の度合が緩和されて
、ピエゾ抵抗の形成位置に多少の位置ずれが生じても、
感圧特性のばらつきが少なくなる。したがって製品の歩
留りを向上させることができるという利点がある。
[Effects of the Invention] As explained above, according to the configuration of the present invention, the pressure receiving diaphragm has a thickness that gradually increases from the periphery toward the center.
Since the central portion is formed to have a required thickness, the central portion acts as a rigid body, and stress is generated mainly in the peripheral portion, resulting in a pressure-resistance variation characteristic that determines linearity. At the same time, the degree of stress concentration on the periphery is alleviated, and even if the piezoresistor formation position is slightly misaligned,
Variation in pressure-sensitive characteristics is reduced. Therefore, there is an advantage that the yield of products can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はこの発明に係る半導体圧力センサの実
施例を示すもので、第1図は縦断面図、第2図は受圧ダ
イヤフラムの形成方法の一例を示す断面図、第3図はピ
エゾ抵抗の抵抗変化を電圧変化どして取出すためのブリ
ッジ回路の回路図、第4図は受圧ダイA7フラムの周辺
部の厚さに対する中心部の厚さの比と圧力−抵抗変化量
の非直線性との関係を示す特性図、第5図は従来の」′
導体圧力センサを示す縦断面図、第6図は同上従来例に
おtelる圧力−抵抗変化量の関係を示す特性図、第7
図は他の従来例を示で縦断面図である。 1:半導体基板、 3.4:ピエゾ抵抗、 5:受圧ダイヤフラム、 5a:肉薄部、 5b、5c:円形段部。 代理人  弁理士  則 近  憲 佑代理人  弁理
士  三 俣  弘 文第1図 第2図 第3図 (楚) 第5図 ΔRI        Rレイζ 一孟: 第4図 P□ 第6図 4゜ 第7図
1 to 4 show an embodiment of a semiconductor pressure sensor according to the present invention, in which FIG. 1 is a longitudinal cross-sectional view, FIG. 2 is a cross-sectional view showing an example of a method of forming a pressure receiving diaphragm, and FIG. Figure 4 is a circuit diagram of a bridge circuit for extracting the resistance change of a piezoresistor through a voltage change. A characteristic diagram showing the relationship with nonlinearity, Figure 5 is the conventional ''
FIG. 6 is a longitudinal cross-sectional view showing a conductor pressure sensor; FIG.
The figure is a longitudinal sectional view showing another conventional example. 1: Semiconductor substrate, 3.4: Piezoresistor, 5: Pressure-receiving diaphragm, 5a: Thin wall portion, 5b, 5c: Circular step portion. Agent: Kensuke Chika; Agent: Hiroshi Mitsumata; Figure 1; Figure 2; Figure 3; (Chu); figure

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に、裏面の凹部加工により受圧ダイヤ
フラムを形成し、前記半導体基板の表面部で且つ当該受
圧ダイヤフラムの周辺部にピエゾ抵抗を形成した半導体
圧力センサにおいて、 前記受圧ダイヤフラムは、周辺部から中心部に向つて漸
次肉厚で、当該中心部は所要の厚さに形成されているこ
とを特徴とする半導体圧力センサ。
(1) A semiconductor pressure sensor in which a pressure receiving diaphragm is formed on a semiconductor substrate by machining a recess on the back surface, and a piezoresistor is formed on the front surface of the semiconductor substrate and in a peripheral portion of the pressure receiving diaphragm, wherein the pressure receiving diaphragm is formed in a peripheral portion of the pressure receiving diaphragm. A semiconductor pressure sensor characterized in that the wall thickness gradually increases from the center to the center, and the center is formed to have a required thickness.
(2)前記受圧ダイヤフラムは、周辺部から中心部に向
って段階的に漸次肉厚に形成されていることを特徴とす
る特許請求の範囲第1項記載の半導体圧力センサ。
(2) The semiconductor pressure sensor according to claim 1, wherein the pressure-receiving diaphragm is formed to gradually become thicker in steps from a peripheral portion toward a center portion.
JP30136586A 1986-12-19 1986-12-19 Semiconductor pressure sensor Pending JPS63155774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30136586A JPS63155774A (en) 1986-12-19 1986-12-19 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30136586A JPS63155774A (en) 1986-12-19 1986-12-19 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS63155774A true JPS63155774A (en) 1988-06-28

Family

ID=17895988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30136586A Pending JPS63155774A (en) 1986-12-19 1986-12-19 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS63155774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274332A (en) * 2004-03-24 2005-10-06 Kyocera Corp Package for pressure detector, and pressure detector
JP2007173487A (en) * 2005-12-21 2007-07-05 Disco Abrasive Syst Ltd Method of processing wafer and device
JP2017181436A (en) * 2016-03-31 2017-10-05 京セラ株式会社 Stress sensor
US10866203B2 (en) 2016-03-31 2020-12-15 Kyocera Corporation Stress sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274332A (en) * 2004-03-24 2005-10-06 Kyocera Corp Package for pressure detector, and pressure detector
JP2007173487A (en) * 2005-12-21 2007-07-05 Disco Abrasive Syst Ltd Method of processing wafer and device
JP2017181436A (en) * 2016-03-31 2017-10-05 京セラ株式会社 Stress sensor
US10866203B2 (en) 2016-03-31 2020-12-15 Kyocera Corporation Stress sensor

Similar Documents

Publication Publication Date Title
USRE31459E (en) Solid state force transducer and method of making same
CN101627292B (en) Pressure sensor
JPH07128169A (en) Semiconductor device with piezoelectric resistance-pressure sensor
US4025942A (en) Low pressure transducers employing large silicon diaphragms having non-critical electrical properties
JPH02203233A (en) Laminate semiconductor sensor and manufacture thereof
EP0111640B1 (en) Pressure sensor with semi-conductor diaphragm
JPS63155774A (en) Semiconductor pressure sensor
JPH09304206A (en) Semiconductor pressure transducer
JPH05196525A (en) Pressure sensor, composite sensor using the same, and its manufacture
JPH05340828A (en) Semiconductor pressure sensor
JPS6313357B2 (en)
JP2696894B2 (en) Semiconductor pressure sensor
JP3573262B2 (en) Semiconductor pressure measuring device
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JPH0749281A (en) Manufacture of semiconductor differential pressure measuring device
JP2722718B2 (en) Method of manufacturing vibration transducer
JP2905902B2 (en) Semiconductor pressure gauge and method of manufacturing the same
JPH06148229A (en) Semiconductor acceleration sensor
JPH0618345A (en) Production of pressure sensor
JPH01145873A (en) Manufacture of semiconductor pressure sensor
JPH0792188A (en) Acceleration sensor and manufacture thereof
JPH04119672A (en) Semiconductor pressure sensor
JPH07113708A (en) Manufacture of semiconductor absolute pressure sensor
JP2985462B2 (en) Semiconductor pressure gauge
JP3356031B2 (en) Semiconductor pressure measuring device and manufacturing method thereof