JPH04119672A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH04119672A
JPH04119672A JP24034390A JP24034390A JPH04119672A JP H04119672 A JPH04119672 A JP H04119672A JP 24034390 A JP24034390 A JP 24034390A JP 24034390 A JP24034390 A JP 24034390A JP H04119672 A JPH04119672 A JP H04119672A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure sensor
substrate
semiconductor pressure
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24034390A
Other languages
Japanese (ja)
Other versions
JP2864700B2 (en
Inventor
Yukihiko Tanizawa
幸彦 谷澤
Hiroshi Okada
寛 岡田
Kazuhisa Ikeda
和久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2240343A priority Critical patent/JP2864700B2/en
Priority to US07/756,223 priority patent/US5289721A/en
Priority to DE4130044A priority patent/DE4130044C2/en
Publication of JPH04119672A publication Critical patent/JPH04119672A/en
Priority to US08/668,005 priority patent/US5877039A/en
Application granted granted Critical
Publication of JP2864700B2 publication Critical patent/JP2864700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enable a semiconductor pressure sensor to be remarkably enhanced in temperature compensation accuracy by a method wherein the sensor is provided with a strain gauge and a silicon crystal base whose plane orientation is nearly the direction of (110) and a pedestal different from the base in thermal expansion coefficient is jointed to the base. CONSTITUTION:A semiconductor pressure sensor is composed of a substrate 1 of a single-crystal silicon chip diced 3mm square provided with a diaphragm 4 and a pedestal 3 electrostatically jointed to the non-diaphragm part 7 or the peripheral part of the substrate 1, and a pressure to measure is introduced into a recessed side of the diaphragm 4 from outside through a pressure introducing hole 31 provided perforating the pedestal 3, and on the other hand, a constant reference pressure is applied onto the flat side of the diaphragm 4. The plane orientation of the substrate 1 is nearly the direction of (110), and the octagonal diaphragm 4 is engraved at the center of the substrate 1 through anisotropic etching. The diaphragm 4 is demarcated by sides which cross a <100> axis, a <110> axis, and a <111> axis at right angles.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、面方位がほぼ(110)である単結晶シリコ
ン基板をエツチングして凹設されたダイヤフラム部を有
する半導体圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor pressure sensor having a diaphragm portion formed by etching a single crystal silicon substrate having an approximately (110) plane orientation.

[従来の技術] 従来の半導体圧力センサの一例を第8図に示す。[Conventional technology] An example of a conventional semiconductor pressure sensor is shown in FIG.

この半導体圧力センサは、面方位がほぼ(11O)であ
る単結晶シリコン基板1aを異方性エツチングして略四
角形状に凹設されたダイヤフラム部4aを有する。面方
位がほぼ(110)の場合、ブリッジを構成する歪みゲ
ージはダイヤフラム部4aの周辺部及び中央部に設けら
れる。
This semiconductor pressure sensor has a diaphragm portion 4a formed by anisotropically etching a single-crystal silicon substrate 1a having a surface orientation of approximately (11O) to form a substantially rectangular recess. When the plane orientation is approximately (110), the strain gauges forming the bridge are provided at the periphery and center of the diaphragm portion 4a.

この基板1aの非ダイヤフラム部7aは、第3図に示す
ように、例えばパイレックスガラス製の台座3に接合さ
れ、台座3の圧力導入孔31を通じて外部からダイヤフ
ラム部4aの凹面に圧力が導入される。
As shown in FIG. 3, the non-diaphragm portion 7a of the substrate 1a is joined to a pedestal 3 made of, for example, Pyrex glass, and pressure is introduced from the outside into the concave surface of the diaphragm portion 4a through the pressure introduction hole 31 of the pedestal 3. .

特公昭60−13314号公報の半導体圧力センサは、
面方位が(100)である半導体結晶の表面における異
なる2種類の結晶軸に平行な辺を有する八角形状のダイ
ヤフラム部を開示している。
The semiconductor pressure sensor disclosed in Japanese Patent Publication No. 60-13314 is
An octagonal diaphragm portion having sides parallel to two different crystal axes on the surface of a semiconductor crystal with a (100) plane orientation is disclosed.

この面方位をもつ半導体圧力センサでは、歪みゲージを
全てダイヤフラム部の周辺部に配置することが一般的で
ある。更に上記公報は、上記構造をとることにより、局
部的な応力集中を排して許容印加圧力の最大値を大きく
できるという効果を秦し得ることについて開示している
In a semiconductor pressure sensor having this surface orientation, all strain gauges are generally arranged around the diaphragm portion. Further, the above-mentioned publication discloses that by adopting the above-mentioned structure, it is possible to eliminate local stress concentration and increase the maximum value of allowable applied pressure.

[発明が解決しようとする課題] 上述したごとき単結晶シリコン基板をそれと究膨張係数
が異なる台座に接合する半導体圧カセ〕すにおいて、従
来より、両者の熱膨張係数の差によりダイヤフラム部に
熱応力が生じ、ダイヤフラム面内におけるこの熱応力の
ばらつきによりブリッジに熱応力に起因した出力(以下
、熱応力出火と呼ぶ。)が発生することが知られている
。こC熱応力出力は、圧力信号以外の信号成分(以下、
オフセット電圧と呼ぶ。)であり、後述するが温度変化
に対する非直線性をもつことが多く、連片簡単な電子回
路では、この非直線性を補償することがむずかしいため
、半導体圧力センサの精度向上の大きな障害となってお
り、それにもかかわらず、従来、有効な解決策は示され
ていなかった。
[Problems to be Solved by the Invention] In the semiconductor pressure case for bonding the above-mentioned single-crystal silicon substrate to a pedestal whose ultimate coefficient of expansion is different from that of the single-crystal silicon substrate, conventionally, thermal stress is generated in the diaphragm part due to the difference in the coefficient of thermal expansion between the two. It is known that this variation in thermal stress within the diaphragm plane causes an output (hereinafter referred to as a thermal stress fire) to occur in the bridge due to thermal stress. This C thermal stress output includes signal components other than the pressure signal (hereinafter referred to as
It is called offset voltage. ), which will be discussed later, often have nonlinearity with respect to temperature changes, and it is difficult to compensate for this nonlinearity with a simple electronic circuit, which is a major obstacle to improving the accuracy of semiconductor pressure sensors. However, no effective solution has been presented to date.

本発明は上記問題点に鑑みなされたものであり温度補償
精度を格段に向上することが可能な半導体圧力センサを
提供することを、その目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor pressure sensor that can significantly improve temperature compensation accuracy.

[課題を解決するための手段] 本発明の半導体圧力センサは、ダイヤフラム部上に設け
られた歪みゲージと、前記ダイヤフラムの基台として面
方位がほぼ(110>であるシリコン結晶の基台とをも
ち、前記基台と異なる熱膨脹率を有し前記基台に接合さ
れる台座とを備える半導体圧力センサにおいて、 前記ダイヤフラム部は、<100>軸、<110〉軸、
<111>軸に直交する辺をもつ八角形状を有すること
を特徴としている。
[Means for Solving the Problems] A semiconductor pressure sensor of the present invention includes a strain gauge provided on a diaphragm portion, and a silicon crystal base having a plane orientation of approximately (110>) as a base for the diaphragm. and a pedestal having a coefficient of thermal expansion different from that of the base and joined to the base, wherein the diaphragm part has a <100> axis, a <110> axis,
It is characterized by having an octagonal shape with sides perpendicular to the <111> axis.

ここで、面方位がほぼ(110)であるとは、(110
)面から例えば数度程度傾斜してもよいということをい
う。トランジスタを集積化するために基板表面にエピタ
キシャル成長を行うにはこのような傾斜が欠陥低減上で
好都合である。
Here, when the plane orientation is approximately (110), it means (110
) This means that it may be tilted, for example, by several degrees from the plane. Such a slope is advantageous in reducing defects when performing epitaxial growth on the substrate surface to integrate transistors.

[作用及び発明の効果コ 本発明に開示するところの、八角形状のダイヤフラム部
をもち面方位がほぼ(110)であるシリコン結晶の基
台と、この基台と異なる熱膨張係数を有する台座とを備
える半導体圧力センサ(以下、(110)型へ角形半導
体圧力センサと称する)は、はぼ四角形状のダイヤフラ
ム部をもつシリコン結晶の基台と、この基台と異なる熱
膨張係数を有する台座とを備える従来の半導体圧力セン
サ(以下、四角形半導体圧力センサと称する)に比べて
、ダイヤフラム部面内における熱応力の分布を変え得る
ことが有限要素法による計算及び試作で判明した。
[Operations and Effects of the Invention] The present invention discloses a silicon crystal base having an octagonal diaphragm portion and a plane orientation of approximately (110), and a base having a coefficient of thermal expansion different from that of the base. A semiconductor pressure sensor (hereinafter referred to as a (110) type rectangular semiconductor pressure sensor) includes a silicon crystal base having a substantially rectangular diaphragm portion, and a base having a coefficient of thermal expansion different from that of the base. Calculations using the finite element method and prototype production revealed that the distribution of thermal stress within the plane of the diaphragm part can be changed compared to a conventional semiconductor pressure sensor (hereinafter referred to as a rectangular semiconductor pressure sensor).

その結果、本発明の(110)型へ角形半導体圧力セン
サによれば、従来より温度変動に関らず出力誤差を極め
て小さくすることができる。
As a result, according to the (110) type rectangular semiconductor pressure sensor of the present invention, the output error can be made much smaller than before regardless of temperature fluctuations.

[実施例] (実施例1) 本発明の半導体圧力センサの一実施例を第1図〜第4図
により説明する。
[Example] (Example 1) An example of the semiconductor pressure sensor of the present invention will be described with reference to FIGS. 1 to 4.

この半導体圧力センサは、第3図に示すように、ダイヤ
フラム部4をもち一辺が約3mmの正方形にダイシング
された単結晶シリコンチップからなる基板1と、基板1
の非ダイヤフラム部7すなわちダイヤフラム部4の周縁
部に静電接合されたパイレックスガラス(商品名)製の
台座3とからなる。台座3に貫孔された圧力導入孔3]
を通じて外部からダイヤフラム部4の凹面側に被測定圧
力が導入され、一方、ダイヤフラム部4の平坦面側に一
定の基準圧力が印加される。
As shown in FIG. 3, this semiconductor pressure sensor consists of a substrate 1 made of a single-crystal silicon chip having a diaphragm portion 4 and diced into a square of approximately 3 mm on each side;
It consists of a pedestal 3 made of Pyrex glass (trade name) which is electrostatically bonded to the non-diaphragm part 7, that is, the peripheral edge of the diaphragm part 4. Pressure introduction hole 3 penetrated through pedestal 3]
A pressure to be measured is introduced from the outside to the concave side of the diaphragm portion 4 through the diaphragm portion 4, while a constant reference pressure is applied to the flat side of the diaphragm portion 4.

基板1の厚さは約0.3mm、面方位はほぼ(110)
であって、基板1の中央部には異方性エツチングにより
八角形状のダイヤフラム部4が凹設されている。
The thickness of the substrate 1 is approximately 0.3 mm, and the plane orientation is approximately (110).
An octagonal diaphragm portion 4 is recessed in the center of the substrate 1 by anisotropic etching.

ダイヤフラム部4は、厚さが約40μmであって、<1
00>軸、<110>軸、<111>軸に直交する辺に
より区画されている。第1辺乙1の長さは約0.54m
m、第2辺乙2の長さは約0.84mm、第3辺乙3の
長さは約0.48mmとされている。
The diaphragm portion 4 has a thickness of approximately 40 μm and <1
It is divided by sides perpendicular to the 00>, <110>, and <111> axes. The length of the first side Otsu 1 is approximately 0.54m
m, the length of the second side Otsu 2 is approximately 0.84 mm, and the length of the third side Otsu 3 is approximately 0.48 mm.

ダイヤフラム部4の周辺部及び中央部には、基板1と反
対導電型の不純物ドープにより4個の歪みゲージ2が形
成され、これら歪みゲージ2は第4図に示すように、ブ
リッジ接続されている。
Four strain gauges 2 are formed at the periphery and center of the diaphragm part 4 by doping with impurities of the opposite conductivity type to the substrate 1, and these strain gauges 2 are bridge-connected as shown in FIG. .

以下、この半導体圧力センサの製造工程について説明す
る。
The manufacturing process of this semiconductor pressure sensor will be explained below.

ほぼ面方位か(110)である単結晶シリコンウェハに
通常の半導体プロセス技術により、歪ゲージ2a〜2d
を形成し、その後、配線、パッシベーション、コンタク
トホール形成、ホンディング用パッドの形成を行う。歪
みゲージ2a〜2dの配置は通常の(110)面を用い
た場合と同様で、ダイヤフラム部4の中心を通る<11
0>軸を対称軸とするように、ゲージ長手方向を<11
0〉方向に合わせ、歪みゲージ2a、2dはダイヤフラ
ム部4の周辺部に、歪みゲージ2b、2Cはその中央部
に配置する。
Strain gauges 2a to 2d are formed using normal semiconductor process technology on a single crystal silicon wafer with approximately (110) plane orientation.
After that, wiring, passivation, contact hole formation, and bonding pad formation are performed. The arrangement of the strain gauges 2a to 2d is the same as when using the normal (110) plane, and the <11
The longitudinal direction of the gauge is set to <11 so that the axis of symmetry is the 0> axis.
0> direction, the strain gauges 2a and 2d are arranged at the periphery of the diaphragm part 4, and the strain gauges 2b and 2C are arranged at the center thereof.

次にウェハ裏面には第2図に示すようにホトリソ法によ
り酸化膜等のエツチング用マスクを形成し、KOH水溶
液などにより異方性エツチングする。このようにすると
、<100>軸、く110〉軸、<111>軸に垂直な
直線によりへ角形をもつダイヤフラム4を形成すること
ができる。
Next, as shown in FIG. 2, an etching mask such as an oxide film is formed on the back surface of the wafer by photolithography, and anisotropic etching is performed using a KOH aqueous solution or the like. In this way, the diaphragm 4 having a helical shape can be formed by straight lines perpendicular to the <100> axis, the <110> axis, and the <111> axis.

次にこのウェハをダイシングし、パイレックスガラス製
の台座3に静電接合し、ホンディング用パッドと図示し
ない入出力ピンとを金線等によりボンディングする。
Next, this wafer is diced and electrostatically bonded to a pedestal 3 made of Pyrex glass, and bonding pads and input/output pins (not shown) are bonded with gold wire or the like.

この種の半導体圧力センサの構造及び製造工程について
は良く知られているので、これ以上の説明は省略する。
Since the structure and manufacturing process of this type of semiconductor pressure sensor are well known, further explanation will be omitted.

次に、ブリッジ(第4図参照)の出力端に発生する熱誤
差オフセット電圧について説明する。
Next, the thermal error offset voltage generated at the output end of the bridge (see FIG. 4) will be explained.

この熱誤差オフセット電圧は、主として台座3と基板1
との熱膨張係数の差や、基板1とそれに被着された熱酸
化膜やパッシベーション膜等との熱膨張係数の差に起因
して生じる熱応力がダイヤフラム部面内においてばらつ
くことにより生じる。
This thermal error offset voltage is mainly caused by the pedestal 3 and the substrate 1.
The thermal stress generated due to the difference in thermal expansion coefficient between the substrate 1 and the thermal oxide film, passivation film, etc. deposited thereon varies within the plane of the diaphragm portion.

パイレックス台座による熱応力を有限要素法によって解
析した径方向における熱応力の分布について第5図に示
す。Aはこの実施例の半導体圧力センサにおける径方向
の熱応力分布を示し、Bはこの実施例の半導体圧力セン
サに対しダイヤフラム部の対向辺間距離が等しい四角形
状の半導体圧力センサ(第8図参照)における径方向の
熱応力分布を示す。
Figure 5 shows the distribution of thermal stress in the radial direction, which was obtained by analyzing the thermal stress due to the Pyrex pedestal using the finite element method. A shows the radial thermal stress distribution in the semiconductor pressure sensor of this example, and B shows a rectangular semiconductor pressure sensor in which the distance between opposing sides of the diaphragm part is equal to that of the semiconductor pressure sensor of this example (see Fig. 8). ) shows the radial thermal stress distribution.

解析条件は、温度差100℃、熱膨張係数差1x10 
−?[’C−”]と仮定し、圧力差はOとした。
The analysis conditions are a temperature difference of 100°C and a thermal expansion coefficient difference of 1x10.
−? ['C-''] and the pressure difference was O.

第5図かられかるように、この実施例の半導体圧力セン
サ(A>は従来の半導体圧力センサ(B)に比較して、
ダイヤフラム部4の面内における熱応力ばらつきが格段
に小さいことがわかる。特に、この実施例の半導体圧カ
センザでは、ダイヤフラム部4の中央部と周辺部とで熱
応力がほぼ等しくなるので、ブリッジ出力Voutに熱
誤差出力電圧がほとんど発生しないことがわかった。
As can be seen from FIG. 5, the semiconductor pressure sensor (A>) of this embodiment has a lower temperature than the conventional semiconductor pressure sensor (B).
It can be seen that the variation in thermal stress within the plane of the diaphragm portion 4 is significantly small. In particular, it has been found that in the semiconductor pressure sensor of this embodiment, the thermal stress is approximately equal between the central portion and the peripheral portion of the diaphragm portion 4, so that almost no thermal error output voltage occurs in the bridge output Vout.

したがって、ダイヤフラム部4の中央部に配置された歪
みゲージ2b、2Cと、周辺部に配置された歪みゲージ
2a、2dとの熱応力の差が極めて小さくでき、その結
果、熱誤差オフセット電圧は大幅に低減される。
Therefore, the difference in thermal stress between the strain gauges 2b and 2C placed at the center of the diaphragm part 4 and the strain gauges 2a and 2d placed at the periphery can be made extremely small, and as a result, the thermal error offset voltage can be significantly reduced. reduced to

なお、第4図のブリッジにおいて、熱誤差オフセット電
圧を含む全オフセット電圧vout (p=○)は、 Vout (p=○) =Vin−(Rb−Rc−Ra−Rd)/((Ra十R
b)   (Rc+Rd))ただし、Ra、 Rb、R
C,Rdはそれぞれ、歪ゲージ2a、2b、2C12d
の抵抗値とし、ダイヤフラム4に加えられる圧力差pは
Oとする。
In addition, in the bridge shown in Fig. 4, the total offset voltage vout (p=○) including the thermal error offset voltage is Vout (p=○) = Vin-(Rb-Rc-Ra-Rd)/((Ra + R
b) (Rc+Rd)) However, Ra, Rb, R
C and Rd are strain gauges 2a, 2b, and 2C12d, respectively.
The resistance value is assumed to be , and the pressure difference p applied to the diaphragm 4 is O.

なあ、歪ゲージ2a〜2dの抵抗値は熱応力とともに、
各歪ゲージ自体の抵抗温度係数TCPのばらつきによっ
て変化する。
By the way, the resistance values of strain gauges 2a to 2d are determined by thermal stress,
It changes depending on the variation in the temperature coefficient of resistance TCP of each strain gauge itself.

いま、空温から150℃程度までの範囲において、パイ
レックスガラスの熱膨張係数αp=3゜2X10 −6
  [℃−”]、温温度下[℃]におけるSiの熱膨張
係数αS丑4.8x10−9T+2.6X10 −6 
[’C−1]とすると、熱歪量6丁は εTl=1./’T’8(αローα5)dT≠1−2.
4X10−9・T2 十〇y6X10−6−T+ε0 となり、温度依存性をもつ。ただし、TBは基板1と台
座3とを接合した時の温度、εOは温度Tが0℃である
場合の熱歪量とする。
Now, in the range from air temperature to about 150℃, the thermal expansion coefficient αp of Pyrex glass is 3゜2X10 -6
[°C-”], thermal expansion coefficient αS of Si at warm temperature [°C] 4.8x10-9T+2.6X10-6
['C-1], the amount of thermal strain for 6 units is εTl=1. /'T'8 (α low α5) dT≠1-2.
4X10-9・T2 10y6X10-6-T+ε0, and has temperature dependence. However, TB is the temperature when the substrate 1 and the pedestal 3 are joined, and εO is the amount of thermal strain when the temperature T is 0°C.

上式の温度下についての2次成分は、熱歪の温度依存性
の非直線性成分を表しており、前述のように熱歪の絶対
値自体よりも、この非直線性成分が温度補償上問題とな
ることが多い。
The quadratic component under temperature in the above equation represents the nonlinear component of the temperature dependence of thermal strain, and as mentioned above, this nonlinear component is more important for temperature compensation than the absolute value of thermal strain itself. This is often a problem.

これらの熱歪量16T1が各歪ゲージ2a〜2dの温度
変動により各抵抗値が変化するが、ブリッジ接続におい
ては、上記オフセット電圧■○Ut (p=O)の式か
られかるように、各歪ゲージ2a〜2dの抵抗値のばら
つき(Rに周辺部の2a、2dと中央部の2b、2Cと
の熱歪量の差〉が実際には熱誤差オフセット電圧(主に
熱応力出力)として現れる。
Each resistance value of these thermal strain amounts 16T1 changes due to temperature fluctuations of each strain gauge 2a to 2d, but in bridge connection, each The variation in the resistance values of the strain gauges 2a to 2d (the difference in thermal strain between the peripheral parts 2a and 2d and the central parts 2b and 2C) is actually used as a thermal error offset voltage (mainly thermal stress output). appear.

次に、この実施例の半導体圧力センサについてダイヤフ
ラム部4の各辺長の比率を種々、変更した試験品を作製
し、その温度変化に対する熱誤差オフセット電圧の変動
量を測定した。比較測量として四角形状で辺間距離が等
しいものも作製し、その温度変化に対する熱誤差オフセ
ット電圧の変動量を1として、第6図に相対表示する。
Next, test products of the semiconductor pressure sensor of this example were prepared in which the ratio of each side length of the diaphragm portion 4 was varied, and the amount of variation in the thermal error offset voltage with respect to temperature change was measured. As a comparative survey, a rectangular shape with the same distance between sides was also prepared, and the variation amount of the thermal error offset voltage with respect to the temperature change was set as 1, and the relative display is shown in FIG.

試験条件は、ダイヤフラム部4の圧力差はO1温度変化
は25℃と120℃、ダイヤフラム部4の第1辺乙1の
長さを乙、豆いに平行で第1辺に直角な両筒2辺間乙2
の距離をし、互いに平行な同第1辺乙1間の距離をL−
とし、L′/Lを1゜04としたく第7図参照)。
The test condition is that the pressure difference between the diaphragm portion 4 is 25 ° C.25 ° C., 120 ° C. Hema Otsu 2
, and the distance between the same first sides B and 1 that are parallel to each other is L-
and L'/L is 1°04 (see Figure 7).

第6図から乙/L=0.4とすると、変動量をほぼOと
することができることかわかった。ただし、パッシベー
ション膜等の影響も考慮すると、ダイヤフラムの厚さ等
のスケールを変えると、第6図に示したグラフは多少変
わる可能性かある。
From FIG. 6, it was found that if O/L=0.4, the amount of variation could be reduced to approximately O. However, if the influence of the passivation film and the like is taken into account, the graph shown in FIG. 6 may change somewhat if the scale of the diaphragm thickness, etc. is changed.

変形態様 歪ゲージ2a〜2dは単結晶シリコン(110>面に不
純物ドープして作製したが、この他、ダイヤフラム4の
上に設けられたポリシリコン抵抗としてもよい。
Although the modified strain gauges 2a to 2d are fabricated by doping single crystal silicon (110> plane with impurities), they may also be made of polysilicon resistors provided on the diaphragm 4.

また、面方位が(110)の基板1に面方位か(100
)の単結晶シリコン基板を張りあわせ、この(100)
基板に歪ゲージ抵抗体を形成してもよい。
Also, if the plane orientation is (100) on the substrate 1 whose plane orientation is (110),
) single crystal silicon substrates are pasted together to form this (100)
A strain gauge resistor may be formed on the substrate.

エツチング方法としては、KOH水溶液の他に、従来知
られている各種のものか採用可能である。
As the etching method, various conventionally known etching methods can be used in addition to the KOH aqueous solution.

台座3は、パイレックスガラス以外の材料を採用するこ
とができる。
The pedestal 3 can be made of a material other than Pyrex glass.

この実施例ではブリッジを構成する4本の歪ゲージ2a
〜2dをダイヤフラム4上に形成したが、ダイヤフラム
4上に歪ゲージ2a、2b、あるいは2C12dのいず
れかの組み合わせで構成されたいわゆるハーフブリッジ
回路でも同様の効果がある。
In this embodiment, there are four strain gauges 2a that constitute the bridge.
Although the strain gauges 2d to 2d are formed on the diaphragm 4, a so-called half-bridge circuit configured with a combination of strain gauges 2a, 2b, or 2C12d on the diaphragm 4 can also have the same effect.

(実施例効果) 以上説明したようにこの実施例のでは、八角形状のダイ
ヤフラム部をもち面方位がほぼ(110)である単結晶
シリコン製の基板と、この基板と異なる熱膨張係数を有
する台座とを備える半導体圧力センサにおいて、ダイヤ
フラム部の第1辺の長さ乙をダイヤフラム部の両筒2辺
間の距離りに対し、その比1/1を変えることにより熱
応力の影響度合を任意に変えることができる。したがっ
て、この実施例によれば、熱応力出力をなくすのみなら
ず、熱応力出力を任意に変えられるので圧力感度の温度
補償のため、熱応力出力を積極的に利用すること(ただ
し、圧力感度とオフセット電圧はまったく異なるものな
ので完全な補償方法ではない。)も可能となり、温度変
化による出力の変動が極めて小ざい半導体圧力センサを
作製することが可能−となる。
(Effects of Example) As explained above, in this example, a substrate made of single crystal silicon having an octagonal diaphragm portion and a plane orientation of approximately (110), and a pedestal having a coefficient of thermal expansion different from that of this substrate. In the semiconductor pressure sensor, the degree of influence of thermal stress can be adjusted arbitrarily by changing the ratio 1/1 of the length of the first side of the diaphragm part to the distance between the two sides of the two cylinders of the diaphragm part. It can be changed. Therefore, according to this embodiment, not only can the thermal stress output be eliminated, but also the thermal stress output can be changed arbitrarily, so the thermal stress output can be actively used to compensate for the temperature of the pressure sensitivity. This is not a perfect compensation method since the offset voltage and offset voltage are completely different.), and it becomes possible to manufacture a semiconductor pressure sensor with extremely small output fluctuations due to temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>は本発明の半導体圧力センサに用いる基板
の一実施例を示す平面図、同図(b)は同図(a)のA
A断面図、同図(C)は同図(a)のCC断面図、同図
(d)は同図(a)のBB断面図、第2図はその製造に
用いるエツチング用マスクを示す平面図、第3図は上記
実施例の半導体圧力センサの断面図、第4図はブリッジ
接続回路図、第5図は径方向の熱応力分布を示す線図、
第6図は温度変化に対するブリッジのオフセット電圧変
動を示す線図、第7図は第6図において用いた試料の寸
法を表わす図、第8図(a)は従来の半導体圧力センサ
の基板の平面図、同図(b)はそのAA断面図、同図(
C)はそのBB断面図である。 1・・・基板 2a〜2d・・・歪みゲ 3・・・台座 4・・・ダイヤフラム部
FIG. 1(a) is a plan view showing an embodiment of the substrate used in the semiconductor pressure sensor of the present invention, and FIG. 1(b) is A of FIG. 1(a).
A cross-sectional view, (C) is a CC cross-sectional view of Figure (a), Figure (d) is a BB cross-sectional view of Figure (a), and Figure 2 is a plane showing the etching mask used in its manufacture. 3 is a sectional view of the semiconductor pressure sensor of the above embodiment, FIG. 4 is a bridge connection circuit diagram, and FIG. 5 is a diagram showing the thermal stress distribution in the radial direction.
Fig. 6 is a diagram showing bridge offset voltage fluctuations with respect to temperature changes, Fig. 7 is a diagram showing the dimensions of the sample used in Fig. 6, and Fig. 8 (a) is a plan view of the substrate of a conventional semiconductor pressure sensor. The figure, (b) is the AA sectional view, the same figure (
C) is its BB sectional view. 1... Substrates 2a to 2d... Distortion game 3... Pedestal 4... Diaphragm part

Claims (1)

【特許請求の範囲】[Claims]  ダイヤフラム部上に設けられた歪みゲージと、前記ダ
イヤフラムの基台として面方位がほぼ(110)である
シリコン結晶の基台とをもち、前記基台と異なる熱膨脹
率を有し前記基台に接合される台座とを備える半導体圧
力センサにおいて、前記ダイヤフラム部は、<100>
軸、<110〉軸、<111>軸に直交する辺をもつ八
角形状を有することを特徴とする半導体圧力センサ。
A strain gauge provided on a diaphragm portion, and a silicon crystal base having a plane orientation of approximately (110) as the base of the diaphragm, and having a coefficient of thermal expansion different from that of the base and bonded to the base. In the semiconductor pressure sensor, the diaphragm portion has a diameter of <100>.
A semiconductor pressure sensor characterized by having an octagonal shape with sides orthogonal to an axis, a <110> axis, and a <111> axis.
JP2240343A 1990-09-10 1990-09-10 Semiconductor pressure sensor and method of manufacturing the same Expired - Lifetime JP2864700B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2240343A JP2864700B2 (en) 1990-09-10 1990-09-10 Semiconductor pressure sensor and method of manufacturing the same
US07/756,223 US5289721A (en) 1990-09-10 1991-09-09 Semiconductor pressure sensor
DE4130044A DE4130044C2 (en) 1990-09-10 1991-09-10 Semiconductor pressure sensor
US08/668,005 US5877039A (en) 1990-09-10 1996-06-19 Method of making a semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240343A JP2864700B2 (en) 1990-09-10 1990-09-10 Semiconductor pressure sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04119672A true JPH04119672A (en) 1992-04-21
JP2864700B2 JP2864700B2 (en) 1999-03-03

Family

ID=17058075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240343A Expired - Lifetime JP2864700B2 (en) 1990-09-10 1990-09-10 Semiconductor pressure sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2864700B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085171A (en) * 2008-09-30 2010-04-15 Denso Corp Flow rate sensor
JP4710147B2 (en) * 2000-06-13 2011-06-29 株式会社デンソー Semiconductor pressure sensor
JP2013033057A (en) * 2012-10-04 2013-02-14 Denso Corp Flow sensor
WO2015072189A1 (en) * 2013-11-14 2015-05-21 シャープ株式会社 Pressure sensor, pressure sensing system, and pressure sensor manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680174A (en) * 1979-12-04 1981-07-01 Omron Tateisi Electronics Co Semiconductor pressure transducer
JPS62259476A (en) * 1986-05-02 1987-11-11 Omron Tateisi Electronics Co Pedestal for semiconductor pressure sensor
JPS63144582A (en) * 1986-12-09 1988-06-16 Omron Tateisi Electronics Co Manufacture of semiconductor pressure sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680174A (en) * 1979-12-04 1981-07-01 Omron Tateisi Electronics Co Semiconductor pressure transducer
JPS62259476A (en) * 1986-05-02 1987-11-11 Omron Tateisi Electronics Co Pedestal for semiconductor pressure sensor
JPS63144582A (en) * 1986-12-09 1988-06-16 Omron Tateisi Electronics Co Manufacture of semiconductor pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710147B2 (en) * 2000-06-13 2011-06-29 株式会社デンソー Semiconductor pressure sensor
JP2010085171A (en) * 2008-09-30 2010-04-15 Denso Corp Flow rate sensor
JP2013033057A (en) * 2012-10-04 2013-02-14 Denso Corp Flow sensor
WO2015072189A1 (en) * 2013-11-14 2015-05-21 シャープ株式会社 Pressure sensor, pressure sensing system, and pressure sensor manufacturing method

Also Published As

Publication number Publication date
JP2864700B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US6595065B2 (en) Pressure detecting apparatus with metallic diaphragm
US5289721A (en) Semiconductor pressure sensor
US6973836B2 (en) Semiconductor pressure sensor having diaphragm
US3270554A (en) Diffused layer transducers
JPS60128673A (en) Semiconductor pressure-sensing device
US5239870A (en) Semiconductor acceleration sensor with reduced cross axial sensitivity
US4683755A (en) Biaxial strain gage systems
US6838303B2 (en) Silicon pressure sensor and the manufacturing method thereof
CN100334453C (en) Acceleration transducer
JP2006177823A (en) Acceleration sensor
JPH04119672A (en) Semiconductor pressure sensor
JPH09304206A (en) Semiconductor pressure transducer
TW200411155A (en) Isolated micro pressure sensor
JP2004279089A (en) Semiconductor pressure sensor
JPS5887880A (en) Semiconductor diaphragm type sensor
JPH05149773A (en) Using method of strain gage
JPH0758795B2 (en) Pressure sensor
CN100422697C (en) Acceleration transducer
JP2001343300A (en) Pressure detecting device
JP3500924B2 (en) Manufacturing method of semiconductor sensor
JPS59154075A (en) Semiconductor pressure sensor
JP3509336B2 (en) Integrated sensor
JP3573262B2 (en) Semiconductor pressure measuring device
JP3120388B2 (en) Semiconductor pressure transducer
JPS61154179A (en) Pressure sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12