JPS63250865A - Pressure detecting element and manufacture thereof - Google Patents

Pressure detecting element and manufacture thereof

Info

Publication number
JPS63250865A
JPS63250865A JP8646787A JP8646787A JPS63250865A JP S63250865 A JPS63250865 A JP S63250865A JP 8646787 A JP8646787 A JP 8646787A JP 8646787 A JP8646787 A JP 8646787A JP S63250865 A JPS63250865 A JP S63250865A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
substrate
main surface
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8646787A
Other languages
Japanese (ja)
Other versions
JP2508070B2 (en
Inventor
Susumu Azeyanagi
進 畔柳
Tetsuo Fujii
哲夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP8646787A priority Critical patent/JP2508070B2/en
Publication of JPS63250865A publication Critical patent/JPS63250865A/en
Application granted granted Critical
Publication of JP2508070B2 publication Critical patent/JP2508070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To obtain a pressure detecting element which has a small size, can stably measure a pressure even at high temperature, has uniform element characteristics and high sensitivity by forming a pressure sensitive layer made of a single crystal semiconductor on the diaphragm of a first insulating layer, and etching a substrate under the diaphragm to form a cavity. CONSTITUTION:A substrate 1, a first insulating layer 5 bonded to the main surface of the substrate 1 and having good etching resistance, a pressure sensitive layer 11 made of a single crystal semiconductor formed on the diaphragm of the layer 5, second insulating layers 12, 13 so formed as to cover the layer 11, a cavity 15 so formed by etching the substrate 1 under the diaphragm of the layer 5 through an etching hole 14 formed through the layers 12, 13 and 5 perpendicularly to the substrate 1 at the periphery of the diaphragm, and a sealing material 16 for sealing the hole 14. Since the layer 11 is composed of the single crystal semiconductor in this manner, detecting characteristics between the elements are uniformized, and the pressure sensitive layer is surrounded by the first and second insulating layers. Therefore, when it is used at a high temperature, no leakage current is generated to stabilize the detecting characteristics.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、半導体マイクロ素子を用いた高感度、高精度
の圧力検出素子とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a highly sensitive and highly accurate pressure sensing element using a semiconductor microelement and a method for manufacturing the same.

【従来技術】[Prior art]

従来、圧力によって生じる機械的応力をピエゾ抵抗効果
により検出して、圧力を測定する半導体圧力検出素子が
知られている。その半導体圧力検出素子は、単結晶シリ
コン基板の一部の肉厚を薄くしてダイヤプラムを形成し
、そのダイヤフラムに形成されたエピタキシャル層内に
感圧素子を拡散等で形成したものである。そして、圧力
は、ダイヤフラムに加わる圧力により生じるダイヤフラ
ムの歪みを感圧素子のピエゾ抵抗効果によって生じる抵
抗値の変化として検出される。
2. Description of the Related Art Conventionally, semiconductor pressure sensing elements are known that measure pressure by detecting mechanical stress caused by pressure using a piezoresistive effect. The semiconductor pressure sensing element is made by thinning a portion of a single crystal silicon substrate to form a diaphragm, and a pressure sensing element is formed in an epitaxial layer formed on the diaphragm by diffusion or the like. Then, the pressure is detected as a change in the resistance value caused by the piezoresistive effect of the pressure-sensitive element, which is the distortion of the diaphragm caused by the pressure applied to the diaphragm.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

上記の感圧素子は単結晶シリコン基板内にPN接合で絶
縁されて形成されているため、圧力検出素子が高温環境
で使用されると、PN接合でのリーク電流が増加し、圧
力を正確に安定して検出できないという問題がある。 また、ダイヤフラムの形成は単結晶シリコン基板を感圧
素子の形成される側と反対側からエツチングすることに
より行われるため、ダイヤフラムの膜厚の均一な制御が
困難であり、素子の検出特性が不均一となる。 また、エツチングを単結晶シリコン基板の裏面から行っ
ており、ダイヤフラムを極薄く形成することが困難であ
るため、感圧素子を小型に構成することが困難である。 更に、絶縁層上に感圧素子を形成して、感圧素子を電気
的に絶縁するには、感圧素子に多結晶半導体が用いられ
ているが、多結晶半導体で感圧素子を構成すると、素子
特性の均一性と感度の点で問題がある。また、絶縁膜上
の多結晶シリコンを再結晶化して単結晶の感圧層を形成
することも行われているが、依然として素子特性の均一
性に問題があり、再結晶化するための特別の装置を必要
とするという問題もある。 本発明は上記の問題点を解決するためになされたもので
あり、その目的とするところは、小型で、高温でも安定
して圧力測定の可能な且つ素子特性が均一な高感度の圧
力検出素子とその製造方法を提供することである。
The above pressure sensing element is formed in a single crystal silicon substrate insulated with a PN junction, so when the pressure sensing element is used in a high temperature environment, leakage current at the PN junction increases, making it difficult to accurately measure pressure. There is a problem that stable detection is not possible. Furthermore, since the diaphragm is formed by etching the single-crystal silicon substrate from the side opposite to the side on which the pressure-sensitive element is formed, it is difficult to control the film thickness of the diaphragm uniformly, resulting in poor detection characteristics of the element. It becomes uniform. Furthermore, since etching is performed from the back side of the single crystal silicon substrate, it is difficult to form an extremely thin diaphragm, making it difficult to construct a pressure sensitive element in a small size. Furthermore, in order to electrically insulate the pressure sensitive element by forming it on an insulating layer, a polycrystalline semiconductor is used for the pressure sensitive element. However, there are problems in terms of uniformity of device characteristics and sensitivity. In addition, attempts have been made to recrystallize polycrystalline silicon on an insulating film to form a single-crystal pressure-sensitive layer, but there is still a problem with the uniformity of device characteristics, and special methods are required for recrystallization. Another problem is that it requires equipment. The present invention has been made to solve the above problems, and its purpose is to provide a compact, highly sensitive pressure sensing element that can stably measure pressure even at high temperatures and has uniform element characteristics. and its manufacturing method.

【問題点を解決するための手段】[Means to solve the problem]

本発明は上記問題点を解決するため、以下の手段を採用
する。即ち、本発明は、基板と、基板の主面に接合され
た耐エッチ性の良い第1絶縁層と、前記第1絶縁層のダ
イヤフラム部上に形成された単結晶半導体から成る感圧
層と、前記感圧層を覆うように形成された第2絶縁層と
、前記ダイヤフラム部周辺に前記基板に垂直な方向に、
前記第2絶縁層、前記第1絶縁層を貫通して形成された
エッチ孔と、そのエッチ孔を介して、前記第1絶縁層の
ダイヤフラム部下の前記基板をエツチングして形成され
た空洞と、前記エッチ孔を封止する封止材とから成る圧
力検出素子である。また、その製造方法発明は、素子基
板の主面の一定領域にエッチ速度の速い中間層を形成し
、単結晶半導体基板の主面から不純物をドープして感圧
層を形成し、感圧層の形成された単結晶半導体基板の主
面に第1絶縁層を形成し、第1絶縁層の形成された単結
晶半導体基板の主面と前記素子基板の主面とを接合し、
素子基板に接合された単結晶半導体基板のうち、前記感
圧層を残して残部の半導体を除去し、前記感圧層を覆う
ように第2絶縁層を形成し、前記中間層の周辺部に前記
素子基板に垂直な方向に、前記第2絶縁層及び前記第1
絶縁層を貫通し前記中間層に至るエッチ孔を形成し、そ
のエッチ孔を介して、前記中間層及び中間層下の前記素
子基板の一部をエツチングして空洞を形成し、前記エッ
チ孔を封止することをことを特徴とする。
In order to solve the above problems, the present invention employs the following means. That is, the present invention includes a substrate, a first insulating layer with good etch resistance bonded to the main surface of the substrate, and a pressure sensitive layer made of a single crystal semiconductor formed on a diaphragm portion of the first insulating layer. , a second insulating layer formed to cover the pressure sensitive layer, and a second insulating layer formed around the diaphragm portion in a direction perpendicular to the substrate;
an etch hole formed through the second insulating layer and the first insulating layer, and a cavity formed by etching the substrate below the diaphragm of the first insulating layer through the etch hole; and a sealing material that seals the etched hole. In addition, the manufacturing method invention includes forming an intermediate layer having a high etch rate in a certain region of the main surface of the element substrate, doping impurities from the main surface of the single crystal semiconductor substrate to form a pressure sensitive layer, and forming the pressure sensitive layer. forming a first insulating layer on the main surface of the single crystal semiconductor substrate on which the first insulating layer is formed, and joining the main surface of the single crystal semiconductor substrate on which the first insulating layer is formed and the main surface of the element substrate;
Of the single crystal semiconductor substrate bonded to the element substrate, the remaining semiconductor is removed leaving the pressure sensitive layer, a second insulating layer is formed to cover the pressure sensitive layer, and a second insulating layer is formed around the intermediate layer. the second insulating layer and the first insulating layer in a direction perpendicular to the element substrate;
forming an etch hole that penetrates the insulating layer and reaching the intermediate layer; etching the intermediate layer and a portion of the element substrate under the intermediate layer through the etch hole to form a cavity; It is characterized by being sealed.

【作用】[Effect]

ダイヤフラムは第1絶縁層で構成され、そのダイヤフラ
ム下に空洞をアンダーカットエツチングにより形成して
、極薄い膜厚制御の容易なダイヤフラムが形成される。 ダイヤフラムは検出圧に応じて変形し、その変形が第1
絶縁層上に形成された単結晶半導体の感圧層により検出
されることにより圧力の検出が行われる。
The diaphragm is composed of a first insulating layer, and a cavity is formed under the diaphragm by undercut etching to form an extremely thin diaphragm whose thickness can be easily controlled. The diaphragm deforms according to the detected pressure, and this deformation is the first
Pressure is detected by being detected by a single crystal semiconductor pressure sensitive layer formed on the insulating layer.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図に示すように、例えば(100)面を主面とし、
N型導電型、比抵抗3〜6Ωcmの素子基板としての第
1の単結晶シリコン基板1上に5i−N=膜2がLPC
VD法又はプラズマCVD法により、500〜2000
人の厚さに形成される。次に、第2図に示すように、上
方にダイヤフラムが形成される領域3の5iJ4[2を
ホトリソグラフィ・エツチング工程により除去し、シリ
コン基板1の主面を露出させる。次に、第3図に示すよ
うに、領域3及びその周辺の51−N4M2上に、多結
晶シリコン層4を0.5〜2μmの厚さに形成する。こ
の多結晶シリコンはエッチ速度の速い中間層となる。次
に、第4図に示すように、多結晶シリコン層4及び5L
N4膜2−ヒに5i=N、膜5を500〜2000人厚
さに形成する。こうして形成されたSi、N4膜2及び
SiJ<膜5とで素子基板の主面に形成される絶縁層が
構成される。 次に、第5図に示すように、第1の単結晶シリコン基板
1とは別の、N型導電型の例えば(100)面を主面と
し、比抵抗3〜6Ωcmの第2の単結晶シリコン基板1
0の主面10aに、所定パターンに形成されたSin、
膜をマスクとして硼素を高濃度に拡散し、マスクのS’
+02膜を除去してP+ピエゾ抵抗素子11を形成する
。このP+ピエゾ抵抗素子11が感圧層となる。そして
、第6図に示すように、P+ピエゾ抵抗素子11の形成
された第2の単結晶シリコン木板10の主面10a上に
Si、N4膜12を厚さ 500〜2000人に形成す
る。このSi+IN、膜12が第1絶縁層となる。 次に、第7図に示すように、第1の単結晶シリコン基板
1の最表面層であるS+3N−Wj!5上に、S○G 
(Spin On Glass)膜6を約1〜3μmの
厚さに形成する。次に、第8図に示すように、第2の単
結晶シリコン基板10の最表面層である5iJ4膜12
がSOG膜6に接合するように第1の単結晶シリコン基
板1と第2の単結晶シリコン基板10とを赤外顕微鏡で
位置合わせし重ね合わせる。 そして、300〜400℃に加熱し、5〜10kg/C
rlに加圧して、5I3N−膜5と5isN4W112
、即ち、第1絶縁層と第2絶縁層とを5OGII*6を
介して接合する。更に、接合強度を得るため、SOG膜
6の燃焼を900〜1000℃で行い、接合素子Aを得
る。 次に、第9図に示すように、接合素子Aにおける第2の
単結晶シリコン基板10を表面からラッピングにより大
部分除去し、最終的に、他の面をワックス等で覆い、エ
チレンジアミン(260ml)、ピロカテコール(45
g) 、水(120ml)を主成分とするエツチング液
で第2の単結晶シリコン基板10の基板部分を完全に除
去する。この時N型シリコンの基板部分が選択的にエツ
チングされ、高濃度にボロンを拡散したP+ピエゾ抵抗
素子11は殆どエツチングされずに残る。 次に、第10図に示すように、接合素子Aの最表面に第
2絶縁層としての5i3114膜13を500〜200
0Aの厚さに形成する。 次に、第11図に示すように、接合素子Aの最表面から
5iaN<膜13.5iaL膜12、SOG膜6.51
3N4膜5を貫通し多結晶シリコン層4に至るエッチ孔
14を、ホトリソグラフィ、ドライエツチングにより形
成する。 次に、第12図に示すように、80〜90℃の水酸化カ
リウム(KOll)アルカリ溶液中に接合素子Aを浸し
、エツチングにより空洞15を形成する。このエツチン
グ工程において、5iaL膜13.5t3N4膜12、
SOC膜6.5ipNn膜5は、殆どエツチングされず
、多結晶シリコン層4と単結晶シリコン基板1がエツチ
ングされる。多結晶シリコン層4はエッチ速度が速いた
め、5iJn膜5下のアンダーカットエツチングが良好
に行われる。また、単結晶シリコン基板1に対しては、
上記のエッチンダ液は異方性エツチングとして機能する
ため、単結晶シリコン基板1には所定形状の空洞15が
形成される。続いて、エツチング液を除去し接合素子A
を洗浄する。 次に、第13図に示すように、減圧中で、プラズマCV
DでP−SiN膜16を結合素子Aの最表面上に形成し
、エツチング孔14を封止する。このP−SiN膜16
が封止材となる。こうして、空洞15は真空状態で外界
から遮断されるため、空洞15の内圧はほぼ0気圧とな
り圧力検出の基串圧が得られる。 その後、通常のICウェハ製造工程により配線層等を形
成し、超小型で感圧層が単結晶シリコンよりなる半導体
圧力検出素子が得られる。上記の構成では、5iJ4膜
12、SOG膜6、SiJ<膜5でグイツヤラムが構成
されている。 尚、第1の単結晶シリコン基板1の主面は(100)面
をを用いているが、(110)面であってもよく、P型
厚電型であってもよい。 上記実施例では、空洞15を形成するのにエツチングさ
れる体位は比較的小さくなっているので、第1の単結晶
シリコン基板1を有効に使用することができる。このた
め、第1の単結晶シリコン基板1内にピエゾ抵抗素子1
1からの信号を処理する回路を形成する場合に、素子全
体を小型化することができる。また、信号処理回路はピ
エゾ抵抗素子11を513N4膜12上に形成する工程
でピエゾ抵抗素子11と同時に形成してもよい。 また、ピエゾ抵抗素子11のパターン形成は513N4
膜12とSI3N4膜5とを接合した後、ホトリソグラ
フィ、エツチング工程により行ってもよい。 また、アンダーカットエツチングを容易に行うためのエ
ッチ速度の速い中間層は、多結晶シリコンの他、非晶質
シリコン等を用いることができる。 また、上記実施例では中間層は、素子基板、即ち、第1
の単結晶シリコン基板1の主面上に形成しているが、主
面直下の基板をイオン打込により非晶質化させたりして
もよい。 また、3iJ4膜12と5isN4膜5との接合に、S
OG膜6を用いているが、PSG膜による接合。 Siの直接接合等の方法で接合してもよい。 また、素子基板である第1の単結晶シリコン基板1の主
面に形成される絶縁膜の5i−N、膜5はなくてもよく
、Si、N、膜12を中間ツの形成された第1の単結晶
シリコン基板1の主面に、陽極接合(アノ−ディックボ
ンディング)により接合してもよい。 また、エッチ孔14の形状は特に限定されるものではな
く、円形状、角状、溝状であってもよい。 また、絶縁層は5iJ4膜の他5iO7膜で形成しても
良い。
The present invention will be described below based on specific examples. As shown in FIG. 1, for example, the (100) plane is the main surface,
A 5i-N=film 2 is formed by LPC on a first single crystal silicon substrate 1 as an element substrate of N type conductivity type and a specific resistance of 3 to 6 Ωcm.
500 to 2000 by VD method or plasma CVD method
Formed to the thickness of a person. Next, as shown in FIG. 2, 5iJ4[2 in the region 3 where the diaphragm is formed above is removed by a photolithography/etching process to expose the main surface of the silicon substrate 1. Next, as shown in FIG. 3, a polycrystalline silicon layer 4 is formed to a thickness of 0.5 to 2 .mu.m on the region 3 and the 51-N4M2 around it. This polycrystalline silicon becomes an intermediate layer with a high etch rate. Next, as shown in FIG. 4, polycrystalline silicon layers 4 and 5L are formed.
5i=N on the N4 film 2-H, and the film 5 is formed to a thickness of 500 to 2,000 layers. The Si, N4 film 2 and SiJ< film 5 thus formed constitute an insulating layer to be formed on the main surface of the element substrate. Next, as shown in FIG. 5, a second single crystal of N type conductivity type, for example, the (100) plane is the main surface and has a specific resistance of 3 to 6 Ωcm, which is different from the first single crystal silicon substrate 1. Silicon substrate 1
Sin formed in a predetermined pattern on the main surface 10a of 0,
Using the film as a mask, boron is diffused at a high concentration, and the S' of the mask is
The +02 film is removed to form a P+ piezoresistive element 11. This P+ piezoresistive element 11 becomes a pressure sensitive layer. Then, as shown in FIG. 6, a Si, N4 film 12 is formed to a thickness of 500 to 2000 on the main surface 10a of the second single-crystal silicon wood board 10 on which the P+ piezoresistive element 11 is formed. This Si+IN film 12 becomes the first insulating layer. Next, as shown in FIG. 7, the outermost layer of the first single crystal silicon substrate 1, S+3N-Wj! 5 on top, S○G
A (Spin On Glass) film 6 is formed to a thickness of about 1 to 3 μm. Next, as shown in FIG. 8, the 5iJ4 film 12 which is the outermost layer of the second single crystal silicon substrate 10
The first single-crystal silicon substrate 1 and the second single-crystal silicon substrate 10 are aligned and overlapped using an infrared microscope so that they are bonded to the SOG film 6. Then, heat it to 300-400℃ and apply 5-10kg/C.
Apply pressure to RL, 5I3N-membrane 5 and 5isN4W112
That is, the first insulating layer and the second insulating layer are bonded via 5OGII*6. Further, in order to obtain bonding strength, the SOG film 6 is burned at 900 to 1000° C. to obtain a bonded element A. Next, as shown in FIG. 9, most of the second single-crystal silicon substrate 10 in bonding element A is removed from the surface by lapping, and finally the other surface is covered with wax or the like, and ethylenediamine (260 ml) is applied. , pyrocatechol (45
g) Completely remove the substrate portion of the second single-crystal silicon substrate 10 using an etching solution mainly composed of water (120 ml). At this time, the N-type silicon substrate portion is selectively etched, and the P+ piezoresistive element 11 in which boron is diffused at a high concentration remains almost unetched. Next, as shown in FIG. 10, a 5i3114 film 13 with a thickness of 500 to 200
Formed to a thickness of 0A. Next, as shown in FIG. 11, from the outermost surface of the bonding element A, 5iaN< film 13.
An etch hole 14 penetrating the 3N4 film 5 and reaching the polycrystalline silicon layer 4 is formed by photolithography and dry etching. Next, as shown in FIG. 12, the bonding element A is immersed in a potassium hydroxide (KOll) alkaline solution at 80 to 90 DEG C., and a cavity 15 is formed by etching. In this etching step, the 5iaL film 13.5t3N4 film 12,
The SOC film 6.5ipNn film 5 is hardly etched, but the polycrystalline silicon layer 4 and the single crystal silicon substrate 1 are etched. Since the polycrystalline silicon layer 4 has a high etch rate, undercut etching under the 5iJn film 5 can be performed satisfactorily. Furthermore, for the single crystal silicon substrate 1,
Since the etching solution described above functions as an anisotropic etching, a cavity 15 of a predetermined shape is formed in the single crystal silicon substrate 1. Subsequently, the etching solution is removed and the bonding element A is removed.
Wash. Next, as shown in FIG. 13, under reduced pressure, the plasma CV
In step D, a P-SiN film 16 is formed on the outermost surface of the coupling element A, and the etching hole 14 is sealed. This P-SiN film 16
becomes the sealing material. In this way, since the cavity 15 is isolated from the outside world in a vacuum state, the internal pressure of the cavity 15 becomes approximately 0 atmospheres, and the base pressure for pressure detection is obtained. Thereafter, a wiring layer and the like are formed by a normal IC wafer manufacturing process to obtain an ultra-small semiconductor pressure sensing element whose pressure sensitive layer is made of single crystal silicon. In the above configuration, the 5iJ4 film 12, the SOG film 6, and the SiJ< film 5 constitute the guide layer. Although the main surface of the first single crystal silicon substrate 1 is a (100) plane, it may be a (110) plane or a P-type thick dielectric type. In the embodiment described above, the portions etched to form the cavity 15 are relatively small, so the first single crystal silicon substrate 1 can be used effectively. Therefore, the piezoresistive element 1 is placed inside the first single crystal silicon substrate 1.
When forming a circuit that processes signals from 1, the entire device can be miniaturized. Furthermore, the signal processing circuit may be formed simultaneously with the piezoresistive element 11 in the step of forming the piezoresistive element 11 on the 513N4 film 12. Moreover, the pattern formation of the piezoresistive element 11 is 513N4.
After bonding the film 12 and the SI3N4 film 5, photolithography and etching steps may be performed. Further, the intermediate layer having a high etch rate for easily performing undercut etching may be made of amorphous silicon or the like in addition to polycrystalline silicon. Further, in the above embodiment, the intermediate layer is the element substrate, that is, the first layer.
Although it is formed on the main surface of the single crystal silicon substrate 1, the substrate directly under the main surface may be made amorphous by ion implantation. Further, S is added to the junction between the 3iJ4 film 12 and the 5isN4 film 5.
The OG film 6 is used, but the PSG film is used for bonding. The bonding may be performed by a method such as direct bonding of Si. Furthermore, the 5i-N insulating film formed on the main surface of the first single crystal silicon substrate 1, which is the element substrate, and the film 5 may be omitted, and the Si, N, and film 12 may be formed on the main surface of the first single crystal silicon substrate 1, which is the element substrate. It may be bonded to the main surface of the single crystal silicon substrate 1 by anodic bonding. Further, the shape of the etch hole 14 is not particularly limited, and may be circular, angular, or groove-shaped. Further, the insulating layer may be formed of a 5iO7 film instead of a 5iJ4 film.

【発明の効果】【Effect of the invention】

感圧層は単結晶半導体で構成されているため圧力検出感
度が向上し、圧力検出特性が安定し、素子間での検出特
性が均一化される。また、感圧層はvJl絶縁層と第2
絶縁層で囲まれているので、高温で使用されてもリーク
電流がなく検出特性が安定する。また、ダイヤプラムは
第1絶縁層で構成され、そのダイヤフラム下の空洞は基
板をアンダーカットエツチングすることにより形成され
ているので、ダイヤフラムの厚さ制御が容易となり、素
子間での検出特性が均一化される。また、ダイヤフラム
の厚さと基板の厚さを薄く構成できるので、検出素子を
小型化できる。さらに、感圧層は単結晶半導体基板に不
純物ドープにより形成されているので、レーザ再結晶化
装置の様な装置を必要としないので素子の製造が安価に
できる。
Since the pressure sensitive layer is made of a single crystal semiconductor, pressure detection sensitivity is improved, pressure detection characteristics are stabilized, and detection characteristics are made uniform between elements. In addition, the pressure sensitive layer is a vJl insulating layer and a second
Since it is surrounded by an insulating layer, there is no leakage current and the detection characteristics are stable even when used at high temperatures. In addition, the diaphragm is composed of the first insulating layer, and the cavity under the diaphragm is formed by undercut etching the substrate, making it easy to control the thickness of the diaphragm and ensuring uniform detection characteristics between elements. be converted into Further, since the thickness of the diaphragm and the thickness of the substrate can be made thin, the detection element can be made smaller. Further, since the pressure sensitive layer is formed by doping a single crystal semiconductor substrate with impurities, a device such as a laser recrystallization device is not required, so that the device can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第13図は、本発明の実施例に係る半導体圧
力検出素子の製造工程を示した断面図である。 1・・・第1の単結晶シリコン基板 2・・・5iJ4
膜4 ・多結晶シリコン層 5・ Si、N、膜 6・
・・SOG膜 10・・・・第2の単結晶シリコン基板
 11・・ピエゾ抵抗素子 12−・−3iJJI  
13・・S+tN、膜 14“・エッチ孔 15°・′
・空洞 16パ・Si。 N4膜 特許出願人  日本電装株式会社 第1図 第4図 第12図 7  第13図
1 to 13 are cross-sectional views showing the manufacturing process of a semiconductor pressure sensing element according to an embodiment of the present invention. 1...First single crystal silicon substrate 2...5iJ4
Film 4 - Polycrystalline silicon layer 5 - Si, N, film 6 -
...SOG film 10...Second single crystal silicon substrate 11...Piezoresistance element 12--3iJJI
13...S+tN, film 14"・etch hole 15°・'
・Cavity 16 Pa・Si. N4 membrane patent applicant Nippondenso Co., Ltd. Figure 1 Figure 4 Figure 12 Figure 7 Figure 13

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、 基板の主面に接合された耐エッチ性の良い第1絶縁層と
、 前記第1絶縁層のダイヤフラム部上に形成された単結晶
半導体から成る感圧層と、 前記感圧層を覆うように形成された第2絶縁層と、 前記ダイヤフラム部周辺に前記基板に垂直な方向に、前
記第2絶縁層、前記第1絶縁層を貫通して形成されたエ
ッチ孔と、 そのエッチ孔を介して、前記第1絶縁層のダイヤフラム
部下の前記基板をエッチングして形成された空洞と、 前記エッチ孔を封止する封止材と から成る圧力検出素子。
(1) a substrate, a first insulating layer with good etch resistance bonded to the main surface of the substrate, a pressure sensitive layer made of a single crystal semiconductor formed on a diaphragm portion of the first insulating layer, and the pressure sensitive layer formed on the diaphragm portion of the first insulating layer; a second insulating layer formed to cover the pressure layer; an etch hole formed around the diaphragm portion in a direction perpendicular to the substrate and penetrating the second insulating layer and the first insulating layer; A pressure sensing element comprising: a cavity formed by etching the substrate below the diaphragm of the first insulating layer through the etching hole; and a sealing material sealing the etching hole.
(2)素子基板の主面の一定領域にエッチ速度の速い中
間層を形成し、 単結晶半導体基板の主面から不純物をドープして感圧層
を形成し、 感圧層の形成された単結晶半導体基板の主面に第1絶縁
層を形成し、 第1絶縁層の形成された単結晶半導体基板の主面と前記
素子基板の主面とを接合し、 素子基板に接合された単結晶半導体基板のうち、前記感
圧層を残して残部の半導体を除去し、前記感圧層を覆う
ように第2絶縁層を形成し、前記中間層の周辺部に前記
素子基板に垂直な方向に、前記第2絶縁層及び前記第1
絶縁層を貫通し前記中間層に至るエッチ孔を形成し、 そのエッチ孔を介して、前記中間層及び中間層下の前記
素子基板の一部をエッチングして空洞を形成し、 前記エッチ孔を封止する ことを特徴とする圧力検出素子の製造方 法。
(2) Form an intermediate layer with a high etch rate in a certain area on the main surface of the element substrate, dope impurities from the main surface of the single crystal semiconductor substrate to form a pressure sensitive layer, and then forming a first insulating layer on a main surface of a crystalline semiconductor substrate; bonding the main surface of the single crystal semiconductor substrate on which the first insulating layer is formed and the main surface of the element substrate; and forming a single crystal bonded to the element substrate. The remaining semiconductor of the semiconductor substrate is removed leaving the pressure sensitive layer, a second insulating layer is formed to cover the pressure sensitive layer, and a second insulating layer is formed around the intermediate layer in a direction perpendicular to the element substrate. , the second insulating layer and the first
forming an etch hole that penetrates the insulating layer and reaching the intermediate layer; etching the intermediate layer and a portion of the element substrate under the intermediate layer through the etch hole to form a cavity; A method for manufacturing a pressure sensing element, characterized by sealing it.
(3)前記中間層は多結晶シリコンから成ることを特徴
とする特許請求の範囲第2項記載の圧力検出素子の製造
方法。
(3) The method for manufacturing a pressure sensing element according to claim 2, wherein the intermediate layer is made of polycrystalline silicon.
(4)中間層の形成された素子基板の主面に絶縁層を形
成した後、その絶縁層の主面と前記単結晶半導体基板に
形成された第1絶縁層の主面とを接合させることを特徴
とする特許請求の範囲第2項記載の圧力検出素子の製造
方法。
(4) After forming an insulating layer on the main surface of the element substrate on which the intermediate layer is formed, joining the main surface of the insulating layer to the main surface of the first insulating layer formed on the single crystal semiconductor substrate. A method for manufacturing a pressure sensing element according to claim 2, characterized in that:
JP8646787A 1987-04-08 1987-04-08 Pressure detecting element and manufacturing method thereof Expired - Fee Related JP2508070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8646787A JP2508070B2 (en) 1987-04-08 1987-04-08 Pressure detecting element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8646787A JP2508070B2 (en) 1987-04-08 1987-04-08 Pressure detecting element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63250865A true JPS63250865A (en) 1988-10-18
JP2508070B2 JP2508070B2 (en) 1996-06-19

Family

ID=13887762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8646787A Expired - Fee Related JP2508070B2 (en) 1987-04-08 1987-04-08 Pressure detecting element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2508070B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095401A (en) * 1989-01-13 1992-03-10 Kopin Corporation SOI diaphragm sensor
US5177661A (en) * 1989-01-13 1993-01-05 Kopin Corporation SOI diaphgram sensor
US5296730A (en) * 1992-01-16 1994-03-22 Oki Electric Industry Co., Ltd. Semiconductor pressure sensor for sensing pressure applied thereto
US5445991A (en) * 1993-12-24 1995-08-29 Kyungdook National University Sensor Technology Research Center Method for fabricating a semiconductor device using a porous silicon region
US5490034A (en) * 1989-01-13 1996-02-06 Kopin Corporation SOI actuators and microsensors
JP2003530234A (en) * 2000-04-07 2003-10-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical structure element and corresponding manufacturing method
JP2005246601A (en) * 2004-03-03 2005-09-15 Robert Bosch Gmbh Micro-machining type component and suitable manufacturing method
USRE40347E1 (en) 1992-04-27 2008-06-03 Denso Corporation Acceleration sensor and process for the production thereof
WO2012020930A2 (en) * 2010-08-13 2012-02-16 전자부품연구원 Capacitive pressure sensor and method for manufacturing same
CN110146177A (en) * 2019-05-23 2019-08-20 北京北方高业科技有限公司 A kind of preparation method of temperature-detecting device
WO2020158156A1 (en) * 2019-01-31 2020-08-06 オムロン株式会社 Method for forming detection element and detection device
JP2020122747A (en) * 2019-01-31 2020-08-13 オムロン株式会社 Detection device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177661A (en) * 1989-01-13 1993-01-05 Kopin Corporation SOI diaphgram sensor
US5095401A (en) * 1989-01-13 1992-03-10 Kopin Corporation SOI diaphragm sensor
US5490034A (en) * 1989-01-13 1996-02-06 Kopin Corporation SOI actuators and microsensors
US5493470A (en) * 1989-01-13 1996-02-20 Kopin Corporation SOI diaphragm sensor
US5552347A (en) * 1992-01-16 1996-09-03 Oki Electric Industry Co., Ltd. Fabrication process for a semiconductor pressure sensor for sensing pressure applied thereto
US5296730A (en) * 1992-01-16 1994-03-22 Oki Electric Industry Co., Ltd. Semiconductor pressure sensor for sensing pressure applied thereto
USRE40561E1 (en) 1992-04-27 2008-11-04 Denso Corporation Acceleration sensor and process for the production thereof
USRE41047E1 (en) 1992-04-27 2009-12-22 Denso Corporation Acceleration sensor and process for the production thereof
USRE42083E1 (en) 1992-04-27 2011-02-01 Denso Corporation Acceleration sensor and process for the production thereof
USRE40347E1 (en) 1992-04-27 2008-06-03 Denso Corporation Acceleration sensor and process for the production thereof
USRE41213E1 (en) 1992-04-27 2010-04-13 Denso Corporation Dynamic amount sensor and process for the production thereof
US5445991A (en) * 1993-12-24 1995-08-29 Kyungdook National University Sensor Technology Research Center Method for fabricating a semiconductor device using a porous silicon region
JP2003530234A (en) * 2000-04-07 2003-10-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical structure element and corresponding manufacturing method
JP2005246601A (en) * 2004-03-03 2005-09-15 Robert Bosch Gmbh Micro-machining type component and suitable manufacturing method
WO2012020930A2 (en) * 2010-08-13 2012-02-16 전자부품연구원 Capacitive pressure sensor and method for manufacturing same
WO2012020930A3 (en) * 2010-08-13 2012-05-03 전자부품연구원 Capacitive pressure sensor and method for manufacturing same
KR101215919B1 (en) 2010-08-13 2012-12-27 전자부품연구원 Capacitive type pressure sensor and method for fabricating the same
US8754453B2 (en) 2010-08-13 2014-06-17 Korea Electronics Technology Institute Capacitive pressure sensor and method for manufacturing same
WO2020158156A1 (en) * 2019-01-31 2020-08-06 オムロン株式会社 Method for forming detection element and detection device
JP2020122747A (en) * 2019-01-31 2020-08-13 オムロン株式会社 Detection device
CN110146177A (en) * 2019-05-23 2019-08-20 北京北方高业科技有限公司 A kind of preparation method of temperature-detecting device

Also Published As

Publication number Publication date
JP2508070B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JPH077160A (en) Method and apparatus for manufacturing integral-type pressure transducer
US3994009A (en) Stress sensor diaphragms over recessed substrates
JPH05190872A (en) Semiconductor pressure sensor and manufacture thereof
JPS63250865A (en) Pressure detecting element and manufacture thereof
WO2000034754A1 (en) Semiconductor pressure sensor and its manufacturing method
JPH07128169A (en) Semiconductor device with piezoelectric resistance-pressure sensor
US3820401A (en) Piezoresistive bridge transducer
WO2020248466A1 (en) Back hole lead type pressure sensor and manufacturing method therefor
JP2002122497A (en) Semiconductor device with thin-film sensing part, and its manufacturing method
JP4168497B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
JPH11142270A (en) Integrated piezoresistive pressure-sensor with diaphragm of polycrystalline semiconductor material and manufacture thereof
JP2005043159A (en) Pressure sensor
JP2000155030A (en) Manufacture of angular velocity sensor
JP2696894B2 (en) Semiconductor pressure sensor
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JP3055508B2 (en) Manufacturing method of pressure detector
JP2000124466A (en) Semiconductor pressure sensor and its manufacture
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
JPS63156365A (en) Manufacture of semiconductor pressure sensor
JP2570712B2 (en) Semiconductor pressure sensor
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
JPH03284871A (en) Semiconductor device and manufacture thereof
JPH06260660A (en) Semiconductor distortion sensor
JPS5938744B2 (en) Pressure-electricity converter and its manufacturing method
JPH0533018Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees