JPS63164163A - Nickel positive electrode for alkaline storage battery - Google Patents

Nickel positive electrode for alkaline storage battery

Info

Publication number
JPS63164163A
JPS63164163A JP61311391A JP31139186A JPS63164163A JP S63164163 A JPS63164163 A JP S63164163A JP 61311391 A JP61311391 A JP 61311391A JP 31139186 A JP31139186 A JP 31139186A JP S63164163 A JPS63164163 A JP S63164163A
Authority
JP
Japan
Prior art keywords
silver
nickel hydroxide
particles
nickel
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61311391A
Other languages
Japanese (ja)
Other versions
JPH0766807B2 (en
Inventor
Shoichi Ikeyama
正一 池山
Isao Matsumoto
功 松本
Kazutaka Iwasaki
和隆 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61311391A priority Critical patent/JPH0766807B2/en
Publication of JPS63164163A publication Critical patent/JPS63164163A/en
Publication of JPH0766807B2 publication Critical patent/JPH0766807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve and stabilize the active substance utilization efficiency of a foaming metal type nickel positive electrode especially when it is filled at a high density, by including line particles of metallic silver or silver oxide in the particles of nickel hydroxide which comprises the main body of the active substance. CONSTITUTION:In a nickel positive electrode composed of a metallic holding body and an active substance mainly of nickel hydroxide filled inside or spread over the surface of the metallic holding body, the nickel hydroxide contains silver in the condition of a metallic silver or a silver oxide. Therefore, since the silver oxidized to Ag2O or AgO in the charge reaction is reduced to the metallic silver in the discharge reaction, the electron conductivity in the nickel hydroxide active substance particles is improved, and the utilization rate of the nickel hydroxide active substance is also improved. Such a reaction is exclusive to the sliver which is reduced to the metallic condition of a good electron conductivity from the hydroxide. Moreover, the existance of silver which can be a positive active substance in the spaces produced necessarily in the nickel hydroxide particles can improve the capacity density without increasing the volume of the active substance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ニッケル正極に関するもの
で、とくに水酸化ニッケル粉末を主とする活物質を支持
体内に充填するか、または支持体表面に塗着してなる非
焼結式ニッケル正極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel positive electrode for alkaline storage batteries. This invention relates to a non-sintered nickel positive electrode.

従来の技術 この種のニッケル正極として、スポンジ状ニッケル多孔
体(以後発泡メタルと称する)を支持体に用いる発泡メ
タル式ニッケル正極は、水酸化ニッケル粉末にニッケル
粉末およびコバルト粉末を加え、ペース状にした正極活
物質を上記基板(支持体)の内部に直接充填してなるも
のである。このニッケル正極は、基板の多孔度が90〜
98%と高く、しかも孔径が大きいので、電極の高容量
化が図れる。また基板が三次元的の網状構造を有してい
るので、各種の電極特性は焼結式に近い。
Conventional Technology This type of nickel positive electrode uses a sponge-like porous nickel material (hereinafter referred to as foamed metal) as a support.The foamed metal nickel positive electrode uses nickel hydroxide powder, nickel powder, and cobalt powder as a paste. The positive electrode active material is directly filled inside the substrate (support). This nickel positive electrode has a substrate porosity of 90~
Since the pore size is as high as 98% and the pore diameter is large, it is possible to increase the capacity of the electrode. Furthermore, since the substrate has a three-dimensional network structure, various electrode characteristics are similar to those of the sintered type.

しかしながら、活物質である水酸化ニッケル粉末の大き
さは数μm〜m数百μmの範囲に分布しているためその
中の大きな粒子の活物質利用率が焼結式に較ベロ〜10
%低く、しかも、バラツキが大きく安定性にも欠けると
いう欠点があった。
However, since the size of the nickel hydroxide powder that is the active material is distributed in the range of several μm to several hundred μm, the active material utilization rate of the large particles is 10 to 10% compared to the sintering method.
%, and had the disadvantage of large variations and lack of stability.

そこで、本発明者らは第3図に示すように水酸化ニッケ
ルの粒子内部にコバルトの微粉末を含有させることを検
討した。同図において1は水酸化ニッケル粒子、2はそ
の内部に生ずる空間部、3はコバルト粒子を示す。
Therefore, the present inventors considered incorporating fine cobalt powder inside the nickel hydroxide particles as shown in FIG. In the figure, 1 is a nickel hydroxide particle, 2 is a space formed inside the nickel hydroxide particle, and 3 is a cobalt particle.

その結果、この水酸化ニッケル粒子からなる粉末を用い
て構成したニッケル正極は、充電効率が改善でき、焼結
式の活物質充填密度の最高値である約6o o mAh
/ccの場合において、焼結式と同程度の活物質利用率
90〜96%に向上できる可能性を見い出し、その提案
(特開昭6o−253156)も行なってきた。
As a result, a nickel positive electrode constructed using powder made of nickel hydroxide particles has improved charging efficiency and has a sintered active material packing density of approximately 6 o mAh, which is the highest value.
/cc, we have discovered the possibility of improving the active material utilization rate to 90 to 96%, which is comparable to that of the sintering method, and have also made a proposal (Japanese Patent Application Laid-Open No. 6-253-156).

発明が解決しようとする問題点 しかしこのような従来の構成では、活物質利用率が安定
性を欠き、バラツキが極めて大きく、とくに活物質充填
密度が500mAh/CCを超える高密度においてその
傾向が顕著となる問題点を未だ有していた。すなわち、
数十μm以上の大きな粒子の場合、内部に空間を有する
ため電子伝導性がわるく、充放電反応が進行し難くなる
。これは、コバルト粒子を含有させることによりある程
度は改善できたが、未だ不十分であった。
Problems to be Solved by the Invention However, in such a conventional configuration, the active material utilization rate lacks stability and has extremely large variations, and this tendency is particularly noticeable at high active material packing densities exceeding 500 mAh/CC. It still had the following problems. That is,
In the case of large particles of several tens of micrometers or more, since they have spaces inside, electron conductivity is poor, making it difficult for charging and discharging reactions to proceed. Although this could be improved to some extent by including cobalt particles, it was still insufficient.

本発明はこのような問題点を解決するため、活物質粉末
である水酸化ニッケル粒子内の電子伝導性を向上させる
ことにより、とくに高密度充填時における発泡メタル式
ニッケル正極の活物質利用率の向上と安定化を図ること
を目的とするものである。
In order to solve these problems, the present invention improves the electronic conductivity within the nickel hydroxide particles, which are active material powders, thereby increasing the active material utilization rate of foamed metal nickel positive electrodes, especially when densely packed. The purpose is to improve and stabilize the situation.

問題点を解決するだめの手段 この問題点を解決するだめ本発明は、水酸化ニッケルを
主体とする活物質を金属支持体内部に充填するか、また
はその表面に塗着して構成するニッケル正極において、
活物質の主体をなす水酸化ニッケルの粒子内部に金属銀
あるいは酸化銀の微粒子を含有させたものである。
Means to Solve the Problems To solve the problems, the present invention provides a nickel positive electrode constructed by filling an active material mainly composed of nickel hydroxide inside a metal support or coating it on the surface thereof. In,
Fine particles of metallic silver or silver oxide are contained inside particles of nickel hydroxide, which is the main active material.

作用 この構成によるニッケル正極は、主活物質の水酸化ニッ
ケルの粒子内部に金属銀あるいは酸化銀の微粒子を含有
することにより、充電反応でムg20あるいはAgo 
 まで酸化された銀が、放電反応ではムgの金属銀まで
還元されるので水酸化ニッケル活物質粒子内の電子伝導
性を向上させ、水酸化ニッケル活物質の利用率を向上さ
せる。この作用は放電反応において酸化物が電子伝導性
の良好な金属状態まで還元される銀特有のものである。
Function: The nickel positive electrode with this structure contains fine particles of metallic silver or silver oxide inside the particles of nickel hydroxide, which is the main active material, so that it can generate Mg20 or Ago in a charging reaction.
In the discharge reaction, the silver that has been oxidized to 100% is reduced to metallic silver, which improves the electronic conductivity within the nickel hydroxide active material particles and improves the utilization rate of the nickel hydroxide active material. This effect is unique to silver, in which the oxide is reduced to a metallic state with good electron conductivity during the discharge reaction.

また、水酸化ニッケル粒子の内部に必然的に生じる空間
部に正極活物質となりうる銀が存在することは、活物質
の体積を増加させることなく容量密度を向上できること
となる。
In addition, the presence of silver that can serve as a positive electrode active material in the space that inevitably occurs inside the nickel hydroxide particles makes it possible to improve the capacity density without increasing the volume of the active material.

実施例 第1図は本発明の実施例で得られた水酸化ニッケル粒子
断面の模式構成図である。この粒子10粒径は約60μ
mである。この粒子は成長時に集合してできたものであ
る。このため水酸化ニッケル粒子1の内部には2で示す
空間部が網状に存在している。本発明はその空間部2に
銀の微粒子4を存在させたもので、はとんどが空間に接
した状態で存在している。
Example FIG. 1 is a schematic diagram of a cross section of nickel hydroxide particles obtained in an example of the present invention. The diameter of 10 of these particles is approximately 60μ
It is m. These particles are formed by aggregation during growth. Therefore, inside the nickel hydroxide particles 1, there is a network of spaces indicated by 2. In the present invention, fine silver particles 4 are present in the space 2, most of which are in contact with the space.

以下その製法について詳述する。The manufacturing method will be explained in detail below.

6水塩の結晶水を有する硫酸ニッケル5.7kgを水に
溶解し、全容積f201とする。これを約25°Cに保
ち、充分撹拌しながら、アルカリとしてか性ソーダ粉末
3.6kgを加える。ついで銀粉末(261zm以下)
0,062/c9を加え、撹拌しながら約50’Cで1
時間放置する。素粒子の集合体を形成して成長した沈澱
物を渥過し、乾燥したのち粉砕して所望の粒度に調製す
る。ついで充分に水洗。
5.7 kg of nickel sulfate containing hexahydrate crystallization water is dissolved in water to a total volume of f201. While maintaining this at about 25°C and stirring thoroughly, 3.6 kg of caustic soda powder is added as an alkali. Then silver powder (261zm or less)
Add 0,062/c9 and heat to 1 at about 50'C with stirring.
Leave it for a while. The precipitate that has grown to form an aggregate of elementary particles is filtered, dried, and then ground to a desired particle size. Then rinse thoroughly with water.

乾燥して水酸ニッケル粉末約2kgを得た。この水酸化
ニッケル粉末は約3wt%の金属銀の微粒子を粒子内部
に含有する。このようにして得た水酸化ニッケル粉末8
8重ff部に、カーボニルニッケル粉末10重量部と、
カーボニルコバルト粉末2型琶部を混合し、水を加えて
ペースト状に練合する。
After drying, about 2 kg of nickel hydroxide powder was obtained. This nickel hydroxide powder contains about 3 wt% of metallic silver particles inside the particles. Nickel hydroxide powder obtained in this way 8
8 parts ff, 10 parts by weight of carbonyl nickel powder,
Carbonyl cobalt powder type 2 Abe is mixed, water is added, and the mixture is kneaded into a paste.

この練合物を多孔度96%、平約孔径20071m 、
厚さ1,3重mの発泡メタルの多孔体内に充填し、乾燥
後加圧して厚さ約0.6fflll、水酸化ニッケルの
充填密度約soo〜s o o mAh/ccの電極を
作製した。この電極を人とする。比較のだめ前記金属銀
粉末の代シに同量のカーボニルコバルト粉末を粒子内部
に含有する水酸化ニッケル粉末を製作し、この粉末を用
いる以外は前記本発明と同じ組成のペースト状練合物を
作製し、この練合物を前記本発明と同じ発泡メタル多孔
体内に充填し、乾燥後加圧して、本発明と同じ厚さおよ
び水酸化ニッケル充填密度の電極を作表しだ。この電極
をBとする。また別の比較例として、上記比較例の水酸
化ニッケル粉末85重量部、銀粉末3重量部、力一ボニ
ルニッケル粉末10重量部、およびカーボニルコバルト
粉末2重量部の組成からなり銀粉末をあとから混合した
粉末を用いてペースト伏線金物を作製し、前記人および
Bと同じ要領で電極を作製した。この電極をCとする。
This kneaded material has a porosity of 96%, an average pore diameter of 20071 m,
It was filled into a porous body of foamed metal with a thickness of 1.3 m, dried and then pressurized to produce an electrode with a thickness of about 0.6 fflll and a packing density of nickel hydroxide of about soo to soo mAh/cc. Let this electrode be a person. For comparison purposes, a nickel hydroxide powder containing the same amount of carbonyl cobalt powder inside the particles was produced in place of the metallic silver powder, and a paste-like mixture having the same composition as the present invention was produced except for using this powder. This kneaded product was filled into the same foamed metal porous body as in the present invention, dried and then pressurized to tabulate an electrode having the same thickness and nickel hydroxide packing density as in the present invention. This electrode is designated as B. As another comparative example, the composition of the above comparative example was 85 parts by weight of nickel hydroxide powder, 3 parts by weight of silver powder, 10 parts by weight of carbonyl nickel powder, and 2 parts by weight of carbonyl cobalt powder, and silver powder was added later. A paste foreshadowing hardware was made using the mixed powder, and an electrode was made in the same manner as the above person and B. This electrode is designated as C.

このようにして作製したニッケル正極人、B、Cと、正
極より容量の大きい汎用のカドミウム負極を組み合せて
、単3形の密閉形ニッケルーカドミウム蓄電池A、B。
By combining the nickel positive electrodes A, B, and C produced in this manner with a general-purpose cadmium negative electrode, which has a larger capacity than the positive electrode, AA-sized sealed nickel-cadmium storage batteries A and B were created.

Cを試作し、その放電容量を測定して活物質利用率を調
べた。この際、ニッケル正極の活物質充填密度を約50
0,560,600mAh/ccに調整し、各10枚に
つき前述の電池を各10セル試作した。
C was prototyped, its discharge capacity was measured, and the active material utilization rate was investigated. At this time, the active material packing density of the nickel positive electrode was set to about 50
The voltage was adjusted to 0,560,600 mAh/cc, and 10 cells of the above-mentioned batteries were manufactured for each 10 cells.

充電は70mAで16時間行ない、放電は140mAで
終止電圧1.Ovまで行なった。試験はいずれも20°
Cで行ない、安定した3サイクル目の放電電気量を測定
し、水酸化ニッケルを主体とする粉末1f当りの電気量
を289 mAh  として活物質利用率を算出した。
Charging was performed at 70 mA for 16 hours, and discharging was performed at 140 mA to a final voltage of 1. I went to Ov. All tests were conducted at 20°
The amount of electricity discharged during the third stable cycle was measured, and the active material utilization rate was calculated based on the assumption that the amount of electricity per 1f of powder mainly composed of nickel hydroxide was 289 mAh.

第2図にこれらの活物質利用率を示す。同図において本
発明のニッケル正極を用いた電池Aの最大値を人、最小
値をA′、比較用粉末からなる電池BはそれぞれBおよ
び9/、まだ、比較用粉末に銀粉末をあとから混合した
電極からなる電池CはそれぞれCおよびC′で示す。第
2図から明らかなように、本発明によるニッケル正極A
は、活物質利用率がBに比べて大幅に向上し、バラツキ
も少くなった。とくに、650 mAh/cc以上の高
密度充填において顕著である。また、金属銀の粉末を水
酸ニッケルの粒子内部ではなく、単に後から混合した場
合Cでは、活物質利用率のバラツキ幅が若干小さくなる
が、大巾な向上を期待できないことが分った。この理由
を推察するに、本発明の正極板は、水酸化ニッケルの粒
子内部に必然的に生ずる空間部に放電反応で金属状態ま
で還元し得る銀を含有することにより、粒子内部の電子
伝導性が良好となって、活物質粒子と電解液との接触が
悪くなる活物質の高密度充填においても、充放電反応が
円滑に進行して活物質利用率が向上するとともに安定化
できたものと考えられる。
Figure 2 shows the utilization rates of these active materials. In the same figure, the maximum value of battery A using the nickel positive electrode of the present invention is 1, the minimum value is A', and battery B made of comparative powder is B and 9/, respectively. Cells C consisting of mixed electrodes are designated C and C', respectively. As is clear from FIG. 2, the nickel positive electrode A according to the present invention
The active material utilization rate was significantly improved compared to B, and the variation was also reduced. This is particularly noticeable in high-density packing of 650 mAh/cc or more. In addition, in case C, where metallic silver powder was simply mixed after the nickel hydroxide particles instead of inside them, the variation in the active material utilization rate became slightly smaller, but it was found that no significant improvement could be expected. . The reason for this is that the positive electrode plate of the present invention contains silver that can be reduced to a metallic state by a discharge reaction in the spaces that inevitably occur inside the nickel hydroxide particles, thereby improving the electronic conductivity inside the particles. As a result, even in densely packed active materials where contact between active material particles and electrolyte is poor, charging and discharging reactions proceed smoothly, improving the active material utilization rate and stabilizing it. Conceivable.

一方、比較例の場合は、コバルトが銀のように金属状態
まで還元されないため高密度充填における利用率の低下
が大きいものと考えられる。また、銀粉末を単に後から
混合した場合には、粒子間の電子伝導性の改善には効果
を有するが、粒子内部までの改善には寄与しないためこ
のような結果になったものと考えられる。また、活物質
利用率の向上のため水酸化ニッケルの粒子を全て数μm
以下にすることは、活物質の充填密度を大幅に低下させ
ることになり好ましくない。
On the other hand, in the case of the comparative example, cobalt is not reduced to a metallic state like silver, so it is thought that the utilization rate decreases significantly in high-density packing. In addition, if silver powder is simply mixed afterward, it is effective in improving the electronic conductivity between particles, but it does not contribute to improving the inside of the particles, which is thought to be the reason for this result. . In addition, in order to improve the active material utilization rate, all the nickel hydroxide particles are several μm in size.
Doing the following is not preferable because it will significantly reduce the packing density of the active material.

なお、本実施例は金属銀の微粉末を用いたが、酸化銀の
微粉末を用いても同じ効果が期待できる。
Note that although fine powder of metallic silver was used in this example, the same effect can be expected even if fine powder of silver oxide is used.

発明の効果 以上のように本発明によれば、活物質の充填密度が高い
時においても高い活物質利用率が得られ、しかもバラツ
キの少い安定した活物質利用率値を示すニッケル正極を
提供できるという効果が得られる。
Effects of the Invention As described above, the present invention provides a nickel positive electrode that can obtain a high active material utilization rate even when the packing density of the active material is high, and also exhibits a stable active material utilization rate value with little variation. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の水酸化ニッケルの構成を示す模式図、
第2図は水酸化ニッケル充填密度と活物質利用率との関
係を示す図、第3図は従来例の水酸化ニッケルの構成を
示す模式図である。 1・・・・・水酸化ニッケル粒子、2・・・・・・水酸
化ニッケル粒子内部の空間部、3・・・・・コバルト粒
子、4・・・・・・金属銀粒子。
FIG. 1 is a schematic diagram showing the structure of nickel hydroxide of the present invention,
FIG. 2 is a diagram showing the relationship between nickel hydroxide packing density and active material utilization rate, and FIG. 3 is a schematic diagram showing the structure of conventional nickel hydroxide. 1...Nickel hydroxide particles, 2...Space inside the nickel hydroxide particles, 3...Cobalt particles, 4...Metal silver particles.

Claims (1)

【特許請求の範囲】[Claims] 金属支持体と、その内部に充填するかまたは表面に塗着
された水酸化ニッケルを主体とする活物質とで構成され
るニッケル正極において、前記水酸化ニッケルは、金属
銀あるいは酸化銀の状態で内部に銀を含有することを特
徴とするアルカリ蓄電池用ニッケル正極。
In a nickel positive electrode composed of a metal support and an active material mainly composed of nickel hydroxide that is filled inside the support or coated on the surface, the nickel hydroxide is in the form of metallic silver or silver oxide. A nickel positive electrode for alkaline storage batteries that contains silver inside.
JP61311391A 1986-12-25 1986-12-25 Nickel positive electrode for alkaline storage battery Expired - Lifetime JPH0766807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311391A JPH0766807B2 (en) 1986-12-25 1986-12-25 Nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311391A JPH0766807B2 (en) 1986-12-25 1986-12-25 Nickel positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63164163A true JPS63164163A (en) 1988-07-07
JPH0766807B2 JPH0766807B2 (en) 1995-07-19

Family

ID=18016618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311391A Expired - Lifetime JPH0766807B2 (en) 1986-12-25 1986-12-25 Nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0766807B2 (en)

Also Published As

Publication number Publication date
JPH0766807B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JPS63164163A (en) Nickel positive electrode for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3077473B2 (en) Alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JPS64787B2 (en)
JPH0393161A (en) Nickel positive electrode for battery and manufacture thereof
JP4305029B2 (en) Alkaline storage battery with non-sintered nickel positive electrode
JPH0794182A (en) Paste type cathode plate for alkaline storage battery
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP2581362B2 (en) Electrodes for alkaline storage batteries
JPH06101332B2 (en) Anode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JPS60253156A (en) Nickel positive electrode for alkaline battery and its manufacturing method
JPH11238507A (en) Alkaline storage battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JPH04262367A (en) Hydrogen storage electrode
JPH04129171A (en) Manufacture of nickel-hydrogen storage battery
JPS61183868A (en) Paste type positive electrode for alkaline storage battery
JPH065279A (en) Paste type nickel electrode for alkaline storage battery
JPH02256162A (en) Paste type nickel positive electrode for alkaline battery