JPH0393161A - Nickel positive electrode for battery and manufacture thereof - Google Patents

Nickel positive electrode for battery and manufacture thereof

Info

Publication number
JPH0393161A
JPH0393161A JP1228535A JP22853589A JPH0393161A JP H0393161 A JPH0393161 A JP H0393161A JP 1228535 A JP1228535 A JP 1228535A JP 22853589 A JP22853589 A JP 22853589A JP H0393161 A JPH0393161 A JP H0393161A
Authority
JP
Japan
Prior art keywords
powder
cobalt
nickel
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228535A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Goto
後藤 哲秀
Hideo Kaiya
英男 海谷
Katsumi Yamashita
勝己 山下
Tokuyuki Fujioka
徳之 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1228535A priority Critical patent/JPH0393161A/en
Publication of JPH0393161A publication Critical patent/JPH0393161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nickel positive electrode having high capacity and suitable for high rate discharge by forming cobalt compound powder layers on the surface layers of nickel hydroxide active material powder used in a nonsintered nickel positive electrode. CONSTITUTION:In a nickel positive electrode in which an active material powder mixture mainly comprising nickel hydroxide powder is filled, nickel active material powder on which a cobalt compound layer is uniformly formed is used as the positive active material. Effect of the cobalt compound is efficiently provided and the utilization of the active material can be increased in spite of the addition of small amount of cobalt compound. The nickel positive electrode having high capacity and high performance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池用ニッケル正極に関するものであり、詳
しくはアルカリ電池用の非焼結式ニッケル正極に適用さ
れるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel positive electrode for batteries, and is specifically applied to a non-sintered nickel positive electrode for alkaline batteries.

従来の技術 電池用ニッケル正極は、金属製の筒状,袋状、または格
子状の支持体に活物質を充填したり、金属焼結体に活物
質を充填したものが一般的である。前者の筒状,袋状、
あるいは格子状の支持体を使用すねものは、充填容量が
大きくできるという利点があるが、反面高率での放電特
性が悪いという欠点がある。また後者の金属焼結体の支
持体を使用するものは、高率放電特性が優れているとい
う利点があるが、充填容量が小さいという欠点がある。
Conventional Nickel positive electrodes for batteries are generally made of a metal cylindrical, bag-shaped, or lattice-shaped support filled with an active material, or a metal sintered body filled with an active material. The former is cylindrical, bag-shaped,
Alternatively, a method using a lattice-shaped support has the advantage of increasing the filling capacity, but has the disadvantage of poor discharge characteristics at high rates. The latter, which uses a sintered metal support, has the advantage of excellent high rate discharge characteristics, but has the disadvantage of a small filling capacity.

この両者の欠点を改善するために最近では高多孔度を有
する連続した三次元的な網目構造を持った発泡メタルを
支持体に使用する電池用電極が提案されている。この発
泡メタルに活物質を充填する方法は、高容量,高率放電
に適した電極と言える。
In order to improve both of these drawbacks, battery electrodes have recently been proposed in which a foamed metal having a continuous three-dimensional network structure with high porosity is used as a support. This method of filling foamed metal with active material can be said to be an electrode suitable for high capacity and high rate discharge.

発明が解決しようとする課題 発泡メタルに活物質を充填するような非焼結式の正極は
大きな充填容量が得られるが、一般に焼結式よりも活物
質利用率が若干低く、さらに高エネルギー密度を得るた
めには活物質利用率の向上が必要である。活物質の利用
率を高めるためには、活物質中にコバルトを添加すると
効果があることが一般に知られている。
Problems to be Solved by the Invention Non-sintered positive electrodes, in which foamed metal is filled with active material, can provide a large filling capacity, but generally have a slightly lower active material utilization rate than sintered ones, and also have a higher energy density. In order to obtain this, it is necessary to improve the active material utilization rate. It is generally known that adding cobalt to the active material is effective in increasing the utilization rate of the active material.

このため、コバルトの添加方法として特開昭59−16
5370号,59−165371号に示されるように、
極板の芯体上に活物質層を形成した後、コバルトの硝酸
塩含有液に浸漬する方法が提案されている。しかしこの
ような添加方法では、コバルトが極板の表面に集中して
しまうため、芯材付近の活物質利用率向上には寄与でき
ず、十分な効果が得難く、特開昭52−150526号
に示されるような、芯材へのコバルトメッキ処理等との
併用が必要になってくる。
For this reason, as a method of adding cobalt, JP-A-59-16
As shown in No. 5370, No. 59-165371,
A method has been proposed in which an active material layer is formed on the core of an electrode plate and then immersed in a solution containing cobalt nitrate. However, with this addition method, cobalt concentrates on the surface of the electrode plate, so it cannot contribute to improving the active material utilization rate near the core material, and it is difficult to obtain a sufficient effect. It becomes necessary to use it in combination with cobalt plating treatment on the core material as shown in .

また、特開昭59−165371号に示されるように、
ニッケル粉末とコバルトが混晶状態で存在する粉末を活
物質として用いる方法も提案されているが、活物質粒子
内でコバルトが偏在してしまうため効率良く活物質の利
用率を向上させるのは難しい。
Also, as shown in Japanese Patent Application Laid-Open No. 59-165371,
A method has also been proposed in which a powder containing nickel powder and cobalt existing in a mixed crystal state is used as an active material, but cobalt is unevenly distributed within the active material particles, making it difficult to efficiently improve the utilization rate of the active material. .

本発明は、前記のような従来の問題点を解決し、高容量
,高率放電に適した電池用ニッケル正極、並びにその製
造方法を提供するものである。
The present invention solves the above-mentioned conventional problems and provides a nickel positive electrode for batteries suitable for high capacity and high rate discharge, and a method for manufacturing the same.

課題を解決するための手段 本発明は、非焼結式ニッケル正極に用いる水酸化ニッケ
ル活物質粉末に、表面層にコバルト化合物粉末層を形成
したものを使用したものである。
Means for Solving the Problems The present invention uses a nickel hydroxide active material powder used in a non-sintered nickel positive electrode with a cobalt compound powder layer formed on its surface layer.

また、水酸化ニッケル活物質粉末表面層へのコバルト化
合物粉末層の形成を、無電解メッキ法,ハイブリダイセ
ーション法,イオン注入法、または蒸着法のいずれかの
方法により行ったものである。
Further, the cobalt compound powder layer was formed on the surface layer of the nickel hydroxide active material powder by any one of electroless plating, hybridization, ion implantation, or vapor deposition.

作用 ニッケル活物質に添加され,たコバルトは、充電により
3価の化合物になる。この3価のコバルト化合物は非常
に安定であり、放電時にも2価の化合物に戻ることはな
く、また、活物質である水酸化ニッケルと比べて、高い
導電性を示す。このため、コバルトを添加することによ
りニッケル活物質粒子間の導電性が高まり、利用率が向
上するが、正極容量密度を確保するためには、コバルト
添加量は極力抑えなければならない。
Cobalt added to the active nickel material becomes a trivalent compound upon charging. This trivalent cobalt compound is very stable, does not return to a divalent compound even during discharge, and exhibits higher conductivity than the active material nickel hydroxide. Therefore, by adding cobalt, the conductivity between the nickel active material particles increases and the utilization rate improves, but in order to ensure the positive electrode capacity density, the amount of cobalt added must be suppressed as much as possible.

これに対し、本発明では、表面にコバルト化合物層が均
一に形成された水酸化ニッケル活物質粉末を非焼結式ニ
ッケル正極用の活物質として使用するため、コバルト化
合物の効果が効率的に発揮され、少量のコバルト化合物
の添加で活物質利用率を大幅に向上させることができる
In contrast, in the present invention, nickel hydroxide active material powder with a uniform cobalt compound layer formed on the surface is used as the active material for a non-sintered nickel positive electrode, so the effect of the cobalt compound is efficiently exhibited. Therefore, the active material utilization rate can be significantly improved by adding a small amount of cobalt compound.

実施例 以下実施例をもって本発明を詳細に説明する。Example The present invention will be explained in detail with reference to Examples below.

平均粒径約20μの水酸化ニッケル粉末の表面に、平均
粒径約1μのコバルト粉末の層を形成した活物質粉末を
用意する。水酸化ニッケル表面へのコバルト粉末層の形
成は、無電解メッキより行った。このとき、活物質粉末
の水酸化ニッケルとコバルトとの比率は、モル比率で8
5:15〜100:Oとした。
An active material powder is prepared in which a layer of cobalt powder with an average particle size of about 1 μm is formed on the surface of nickel hydroxide powder with an average particle size of about 20 μm. The cobalt powder layer was formed on the nickel hydroxide surface by electroless plating. At this time, the molar ratio of nickel hydroxide and cobalt in the active material powder is 8.
5:15 to 100:O.

上記活物質粉末を水で練合し、ペースト状として、多孔
度約95%を有するスポンジ状の金属ニッケルに充填し
、その後加圧加工を行って正極単板に形成し、本発明に
よるニッケル正極(a)を得た。また比較例として、水
酸化ニッケル中に共晶の形でコバルトを含む活物質を用
いて同様な方法で得た正極を試作し、これを(b)とし
た。また別の比較例として、水酸化ニッケル粉末をペー
ストとしたものを充填して得た正極をコバルトの硝酸塩
中に含浸してコバルト添加を行い、これを(C)とした
The above active material powder is kneaded with water, made into a paste, and filled into a sponge-like metal nickel having a porosity of about 95%, and then subjected to pressure processing to form a positive electrode single plate, and the nickel positive electrode according to the present invention is prepared. (a) was obtained. In addition, as a comparative example, a positive electrode obtained in a similar manner using an active material containing cobalt in the form of eutectic in nickel hydroxide was fabricated, and this was designated as (b). As another comparative example, a positive electrode obtained by filling a paste of nickel hydroxide powder was impregnated in cobalt nitrate to add cobalt, and this was designated as (C).

第1図に、それぞれの正極の活物質粉末の概略の構成を
示す。第1図中(a)は、本発明による正極の活物質粉
末であり、1は水酸化ニッケル粉末、2はコバルト粉末
をそれぞれ示し、(b),(C)は同様に、比較例の活
物質粉末の構成を示す。
FIG. 1 shows a schematic structure of the active material powder of each positive electrode. In FIG. 1, (a) is the active material powder of the positive electrode according to the present invention, 1 is the nickel hydroxide powder, 2 is the cobalt powder, and (b) and (C) are the active material powder of the comparative example. The composition of the substance powder is shown.

これらの正極を、液温20℃,比重1.26のKOH水
溶液中で充放電することにより、活物質利用率の評価を
行った。なお、利用率は、0.1C m Aで150%
充電した後、0.2CmAで放電を行い、放電容量と、
理論容量との比率で求めた。
The active material utilization rate was evaluated by charging and discharging these positive electrodes in a KOH aqueous solution with a liquid temperature of 20° C. and a specific gravity of 1.26. In addition, the utilization rate is 150% at 0.1CmA.
After charging, discharge at 0.2CmA, and the discharge capacity and
It was determined by the ratio to the theoretical capacity.

また、これらの正極と、通常のペースト式カドミウム負
極を用い、1.5Ah相当の密閉型ニッケルカドミウム
蓄電池を試作し、放電特性の評価を行った。放電特性は
、20℃での0.2CmAの放電容量で評価した。
Furthermore, using these positive electrodes and a normal paste-type cadmium negative electrode, a sealed nickel-cadmium storage battery with a capacity of 1.5 Ah was prototyped, and its discharge characteristics were evaluated. The discharge characteristics were evaluated using a discharge capacity of 0.2 CmA at 20°C.

第2図は、本発明による正極(a)、比較例の正極(b
),(c)についての水酸化ニッケル活物質に対するコ
バルトの添加量と、活物質利用率との関係を表した図で
ある。本発明の正極(a)の充電効率は、従来の比較例
(b) , (c)よりも少ない量のコバルト添加量で
、高い活物質利用率が得られる。その添加物としては、
水酸化ニッケルに対するモル比率で約1%以上あればよ
いと考えられる。これは先に述べた通り、あるいは、第
1図に示す通り、添加したコバルトが最も有効に水酸化
ニッケル粉末に作用しているためと考えられる。
FIG. 2 shows a positive electrode according to the present invention (a) and a positive electrode according to a comparative example (b).
), (c) is a diagram showing the relationship between the amount of cobalt added to the nickel hydroxide active material and the active material utilization rate. The charging efficiency of the positive electrode (a) of the present invention is such that a high active material utilization rate can be obtained with a smaller amount of cobalt added than in the conventional comparative examples (b) and (c). As an additive,
It is considered that a molar ratio of about 1% or more to nickel hydroxide is sufficient. This is considered to be because the added cobalt acts most effectively on the nickel hydroxide powder, as described above or as shown in FIG.

第3図は、本発明による正極を用いた電池A、比較例の
正極(ロ).Oを用いた電池B,Cについてのコバルト
の比率と20℃.0.2CmA放電での放電容量との関
係を表した図である。
FIG. 3 shows a battery A using a positive electrode according to the present invention and a positive electrode (b) of a comparative example. Cobalt ratio for batteries B and C using O and 20°C. It is a figure showing the relationship with discharge capacity in 0.2CmA discharge.

電池A,B,Cともコバルト添加量が多すぎると容量密
度が低下するため放電容量が低下するが、その限界値は
、本発明の正極の場合、コバルトのモル比率10%、比
較例の場合は8%となっている。従って、水酸化ニッケ
ルと、コバルトの適正比率は、モル比率で99:1〜9
0:10程度であると考えられる。同様に、水酸化ニッ
ケルとコバルトの粒径についてみてみると、コバルトの
粒径が小さすぎる場合には、水酸化ニッケル上のコバル
トの層が緻密となり、水酸化ニッケル表面での電解液の
移動を妨害する形となり、放電特性が劣化する。また、
粒径が大きすぎる場合には、十分に水酸化ニッケル粒子
の表面を被覆できないため、活物質利用率に対する効果
が十分に得られなくなる。
For batteries A, B, and C, if the amount of cobalt added is too large, the capacity density decreases and the discharge capacity decreases, but the limit value is 10% molar ratio of cobalt in the case of the positive electrode of the present invention, and 10% in the case of the comparative example. is 8%. Therefore, the appropriate molar ratio of nickel hydroxide and cobalt is 99:1 to 9.
It is thought that the ratio is about 0:10. Similarly, looking at the particle sizes of nickel hydroxide and cobalt, we find that if the particle size of cobalt is too small, the cobalt layer on the nickel hydroxide becomes dense, inhibiting the movement of the electrolyte on the nickel hydroxide surface. This causes interference and deteriorates the discharge characteristics. Also,
If the particle size is too large, the surface of the nickel hydroxide particles cannot be sufficiently coated, so that a sufficient effect on the active material utilization rate cannot be obtained.

第1表は、本発明によって、平均粒径約20μの水酸化
ニッケル粉末の表面にコバルト粉末をモル比率で95=
5の割合で設けたときのコバルトの平均粒径と、活物質
利用率、ならびに電池の放電容量との関係を示す。
Table 1 shows that according to the present invention, cobalt powder is applied to the surface of nickel hydroxide powder with an average particle size of about 20μ at a molar ratio of 95=
The relationship between the average particle size of cobalt, the active material utilization rate, and the discharge capacity of the battery when provided at a ratio of 5 is shown.

(以 下 余 白) 先に述べた通り、水酸化ニッケル粉末の表面に設ける水
酸化カドミウムの平均粒径が大きすぎる場合、活物質利
用率が低下するため、その平均粒径の上限は水酸化ニッ
ケルの平均粒径の約1/10程度であり、また、平均粒
径が小さすぎる場合は、放電特性が劣化するため、その
下限は、水酸化ニッケル平均粒径の杓1/1 00程度
であると考えられる。従って、コバルトの平均粒径は、
水酸化ニッケルの平均粒径に対して、1/10〜1/1
 00程度が適当であると考えられる。
(Left below) As mentioned earlier, if the average particle size of cadmium hydroxide provided on the surface of nickel hydroxide powder is too large, the active material utilization rate will decrease, so the upper limit of the average particle size is It is about 1/10 of the average particle size of nickel, and if the average particle size is too small, the discharge characteristics will deteriorate, so the lower limit is about 1/100 of the average particle size of nickel hydroxide. It is believed that there is. Therefore, the average particle size of cobalt is
1/10 to 1/1 of the average particle size of nickel hydroxide
A value of about 00 is considered appropriate.

本実施例では、金属コバルトを添加した場合について述
べてきたが、酸化コバルト、あるいは水酸化コバルト、
あるいは又これらの混合物でも同様な効果が得られる。
In this example, we have described the case where metallic cobalt is added, but cobalt oxide, cobalt hydroxide,
Alternatively, similar effects can be obtained with a mixture of these.

また、本実施例ではコバルト層を水酸化ニッケル粉末上
に形成するのに、無電解メッキ法を用いたが、ハイブリ
ダイゼーション法,イオン注入法,蒸着法によっても同
様の効果が得られる。
Further, in this example, electroless plating was used to form the cobalt layer on the nickel hydroxide powder, but the same effect can be obtained by hybridization, ion implantation, or vapor deposition.

発明の効果 以上のように本発明によれば、従来の非焼結式の欠点を
改良し、高容量,高性能のニッケル正極が得られる。
Effects of the Invention As described above, according to the present invention, the drawbacks of the conventional non-sintered type can be improved and a high-capacity, high-performance nickel positive electrode can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cは、ニッケル正極活物質粉末の概略図
、第2図はコバルトのモル比率と活物質利用率との関係
を示す図、第3図は同様に、コバルトのモル比率と放電
容量との関係を示す図である。
Figure 1 a, b, and c are schematic diagrams of nickel positive electrode active material powder, Figure 2 is a diagram showing the relationship between the molar ratio of cobalt and the active material utilization rate, and Figure 3 is a diagram showing the relationship between the molar ratio of cobalt and the active material utilization rate. It is a figure showing the relationship between and discharge capacity.

Claims (4)

【特許請求の範囲】[Claims] (1)水酸化ニッケル粉末を主体とする活物質粉末混合
物を、金属基板または支持体内部に充填したニッケル正
極であり、前記水酸化ニッケル粉末の粒子の表面にコバ
ルト粉末、酸化コバルト粉末、あるいは水酸化コバルト
粉末のうちいずれか一種、あるいはこれらの混合物の粉
末層が形成されていることを特徴とする電池用ニッケル
正極。
(1) A nickel positive electrode in which a metal substrate or support is filled with an active material powder mixture mainly composed of nickel hydroxide powder, and the surface of the nickel hydroxide powder particles is coated with cobalt powder, cobalt oxide powder, or water. A nickel positive electrode for a battery, characterized in that a powder layer of any one of cobalt oxide powders or a mixture thereof is formed.
(2)コバルト粉末、酸化コバルト粉末、水酸化コバル
ト粉末の平均粒径が、水酸化ニッケル粉末の平均粒径の
1/10〜1/100の範囲であることを特徴とする、
請求項(1)記載の電池用ニッケル正極。
(2) The average particle size of the cobalt powder, cobalt oxide powder, and cobalt hydroxide powder is in the range of 1/10 to 1/100 of the average particle size of the nickel hydroxide powder,
The nickel positive electrode for batteries according to claim (1).
(3)水酸化ニッケル粉末と、水酸化ニッケル表面に形
成されたコバルト化合物との比率が、モル比率で99:
1〜90:10の範囲であることを特徴とする、請求項
(1)又は(2)記載の電池用ニッケル正極。
(3) The molar ratio of the nickel hydroxide powder and the cobalt compound formed on the surface of the nickel hydroxide is 99:
The nickel positive electrode for batteries according to claim 1 or 2, characterized in that the ratio is in the range of 1 to 90:10.
(4)水酸化ニッケル粉末粒子の表面にコバルト粉末、
酸化コバルト粉末、あるいは水酸化コバルト粉末のうち
いずれか一種、あるいはこれらの混合物の粉末層を形成
する過程において、無電解メッキ法、ハイブリダイゼー
ション法、イオン注入法、または蒸着法のうちのいずれ
かを用いることを特徴とする電池用ニッケル正極の製造
法。
(4) Cobalt powder on the surface of nickel hydroxide powder particles,
In the process of forming a powder layer of cobalt oxide powder, cobalt hydroxide powder, or a mixture thereof, electroless plating method, hybridization method, ion implantation method, or vapor deposition method is used. A method for producing a nickel positive electrode for a battery, characterized in that it is used.
JP1228535A 1989-09-04 1989-09-04 Nickel positive electrode for battery and manufacture thereof Pending JPH0393161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228535A JPH0393161A (en) 1989-09-04 1989-09-04 Nickel positive electrode for battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228535A JPH0393161A (en) 1989-09-04 1989-09-04 Nickel positive electrode for battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0393161A true JPH0393161A (en) 1991-04-18

Family

ID=16877926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228535A Pending JPH0393161A (en) 1989-09-04 1989-09-04 Nickel positive electrode for battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0393161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US6066416A (en) * 1995-11-22 2000-05-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
US6261720B1 (en) 1996-09-20 2001-07-17 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659460A (en) * 1979-10-03 1981-05-22 Lucas Industries Ltd Nickel electrode and method of manufacturing same
JPS62139261A (en) * 1985-12-12 1987-06-22 Matsushita Electric Ind Co Ltd Nickel electrode for alkaline battery
JPS62222566A (en) * 1986-03-24 1987-09-30 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS63150857A (en) * 1986-12-12 1988-06-23 Sanyo Electric Co Ltd Cathode for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659460A (en) * 1979-10-03 1981-05-22 Lucas Industries Ltd Nickel electrode and method of manufacturing same
JPS62139261A (en) * 1985-12-12 1987-06-22 Matsushita Electric Ind Co Ltd Nickel electrode for alkaline battery
JPS62222566A (en) * 1986-03-24 1987-09-30 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS63150857A (en) * 1986-12-12 1988-06-23 Sanyo Electric Co Ltd Cathode for alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066416A (en) * 1995-11-22 2000-05-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
US6261720B1 (en) 1996-09-20 2001-07-17 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100725609B1 (en) Composite positive electrode material and method for making same
EP0337029B1 (en) Nickel electrode for alkaline battery and battery using said nickel electrode
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
JPH10149821A (en) Positive electrode for alkaline storage battery
JPH0393161A (en) Nickel positive electrode for battery and manufacture thereof
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP3371473B2 (en) Paste positive electrode plate for alkaline storage batteries
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3575196B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2679274B2 (en) Nickel-hydrogen battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3561631B2 (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH0429189B2 (en)
JPH0430713B2 (en)
JP3643673B2 (en) Nickel electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH11238507A (en) Alkaline storage battery
JP3292204B2 (en) Nickel sintered electrode for alkaline storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery