JPS63160314A - Manufacture of permanent magnet - Google Patents
Manufacture of permanent magnetInfo
- Publication number
- JPS63160314A JPS63160314A JP61306623A JP30662386A JPS63160314A JP S63160314 A JPS63160314 A JP S63160314A JP 61306623 A JP61306623 A JP 61306623A JP 30662386 A JP30662386 A JP 30662386A JP S63160314 A JPS63160314 A JP S63160314A
- Authority
- JP
- Japan
- Prior art keywords
- rare
- magnetic powder
- added
- molded
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000748 compression moulding Methods 0.000 claims abstract description 19
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000000465 moulding Methods 0.000 claims abstract description 12
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 11
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 10
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 10
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims abstract description 6
- 239000008116 calcium stearate Substances 0.000 claims abstract description 6
- 235000013539 calcium stearate Nutrition 0.000 claims abstract description 6
- 235000019359 magnesium stearate Nutrition 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 19
- 230000007797 corrosion Effects 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 7
- 239000000314 lubricant Substances 0.000 abstract description 7
- 230000006835 compression Effects 0.000 abstract description 6
- 238000007906 compression Methods 0.000 abstract description 6
- 239000006247 magnetic powder Substances 0.000 abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 5
- 235000021355 Stearic acid Nutrition 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 abstract description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 abstract description 4
- 239000008117 stearic acid Substances 0.000 abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 2
- 229960004274 stearic acid Drugs 0.000 abstract 1
- 239000004033 plastic Substances 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000007921 spray Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 Sm (Co Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、圧縮成形によってプラスチック磁石を製造
するのに利用される永久磁石の製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a permanent magnet used for manufacturing a plastic magnet by compression molding.
(従来の技術)
従来、熱硬化性樹脂、例えばエポキシ樹脂を使って圧縮
成形により製作するプラスチック磁石は、高磁気特性を
得るために、約3〜10ton7’cm2の圧力で加圧
成形することにより製作していた。(Prior Art) Conventionally, plastic magnets manufactured by compression molding using thermosetting resins such as epoxy resins are manufactured by compression molding at a pressure of about 3 to 10 tons 7'cm2 in order to obtain high magnetic properties. It was being produced.
(発明が解決しようとする問題点)
したがって、従来の圧縮成形により製作されるプラスチ
ック磁石では、上記のように高い圧縮圧力で加圧成形さ
れるため、成形時あるいは成形後のノックアウト時など
において成形体に割れが入りやすいという問題点があっ
た。(Problem to be Solved by the Invention) Therefore, in plastic magnets manufactured by conventional compression molding, since the plastic magnets are pressure molded under high compression pressure as described above, the The problem was that the body was prone to cracks.
また、圧m成形により製作するプラスチック磁石は、磁
石粉末に添加する樹脂量が、例えば射出成形により製作
するプラスチック磁石の樹脂量に比べて比較的少ない(
例えば、1〜5重量%)ので、磁石粉末が樹脂で完全に
覆われていない状態となることから、多湿環境では錆な
どの発生があリ、必ずしも耐食性が良くないという問題
点もあった。Furthermore, the amount of resin added to the magnet powder for plastic magnets manufactured by pressure molding is relatively small compared to, for example, the amount of resin added to plastic magnets manufactured by injection molding.
(for example, 1 to 5% by weight), the magnet powder is not completely covered with the resin, which leads to the formation of rust in a humid environment, and there is also the problem that corrosion resistance is not necessarily good.
(発明の目的)
この発明は、上述した従来の問題点に着目してなされた
もので、圧縮成形によってプラスチック磁石を成形する
場合において、圧縮成形時あるいは圧縮成形後のノック
アウト時などにおいて成形体に割れを生じがたく、r#
食性をも向上させたプラスチック磁石を製造することが
可能である永久磁石の製造方法を提供することを目的と
しているものである。(Object of the Invention) This invention has been made by focusing on the above-mentioned conventional problems, and when molding a plastic magnet by compression molding, the molded body is Resistant to cracking, r#
The object of the present invention is to provide a method for manufacturing a permanent magnet that makes it possible to manufacture a plastic magnet with improved edibility.
[発明の構成]
(問題点を解決するための手段)
この発明による永久磁石の製造方法は、希土類磁石粉末
にステアリン酸亜鉛、ステアリン酸マグネシウム、ステ
アリン酸カルシウムのうちから選ばれる成形助剤を添加
するとともに熱硬化性樹脂を添加して混合し、次いで圧
縮成形するようにしたことを特徴としているものである
。[Structure of the Invention] (Means for Solving the Problems) A method for manufacturing a permanent magnet according to the present invention includes adding a forming aid selected from zinc stearate, magnesium stearate, and calcium stearate to rare earth magnet powder. It is characterized in that a thermosetting resin is added thereto, mixed, and then compression molded.
この発明が適用される希土類磁石粉末とじては、希土類
−コバルト系の磁石粉末や、希土類−鉄系の磁石粉末な
どがあり、前者の希土類−コバルト系の磁石粉末として
は、RM5系、例えばSm(Co、Fe、Cus番会)
s系や、R2M、、系、例えばSm2 (Co 、F
e 、Cu・・・)17系などのものがあり、後者の希
土類−鉄系の磁石粉末としては”1−a−β−ア(F
e (N i 、 Mn 、 Co) ) ctXβM
、で表わされ、Rは希土類元素の1種以上、XはB、C
。Examples of rare earth magnet powder to which this invention is applied include rare earth-cobalt magnet powder and rare earth-iron magnet powder.The former rare earth-cobalt magnet powder includes RM5 magnet powder, such as Sm (Co, Fe, Cus bankai)
s system, R2M,, system, such as Sm2 (Co, F
e, Cu...) 17 series, and the latter rare earth-iron based magnet powder is "1-a-β-a (F
e (N i , Mn , Co) ) ctXβM
, R is one or more rare earth elements, X is B, C
.
N、St、Pc7)1種以上、MはTi、Zr。N, St, Pc7) one or more, M is Ti, Zr.
Hf 、V、Nb、Ta、Cr、Mo、W、Al。Hf, V, Nb, Ta, Cr, Mo, W, Al.
Zn、Ga、In、T文等の1種以上であって、より望
ましくは、0.60≦α≦0.85゜Oくβ≦0.15
.0≦γ≦0.01からなるものなどがあるが、とくに
限定はされない。One or more types of Zn, Ga, In, T-text, etc., more preferably 0.60≦α≦0.85゜O × β≦0.15
.. There are examples of 0≦γ≦0.01, but there is no particular limitation.
また、上記希土類磁石粉末に添加する成形助剤としては
、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステ
アリン酸カルシウムのうちから選ばれる粉末潤滑剤が用
いられ、この場合の添加量は0.05〜5重量%の範囲
とすることがとくに望ましい。その理由は、粉末潤滑剤
の添加量が少なすぎると、圧縮成形の際の成形時あるい
は成形後のノックアウト時などにおいて成形体に割れが
入るのを防止する効果を十分に得ることができず、反対
に上記ステアリン酸系粉末潤滑剤の添加量が多すぎると
磁石粉末と樹脂との間で良好な接合状態を得ることがで
きず、強度や磁気特性が低下し、また圧縮成形後の熱硬
化性樹脂の硬化処理時において溶出する量が多くなりす
ぎて取り扱いが困難なものとなるので、これらを考慮し
て成形助剤の添加量は0.05〜5重量%の範囲とする
のが望ましい。Further, as a forming aid added to the rare earth magnet powder, a powder lubricant selected from zinc stearate, magnesium stearate, and calcium stearate is used, and the amount added in this case is 0.05 to 5% by weight. It is particularly desirable to have a range of . The reason for this is that if the amount of powder lubricant added is too small, it will not be able to sufficiently prevent cracks from forming in the molded product during compression molding or knockout after molding. On the other hand, if the amount of the stearic acid-based powder lubricant added is too large, it will not be possible to obtain a good bond between the magnet powder and the resin, the strength and magnetic properties will decrease, and the thermosetting after compression molding will deteriorate. The amount eluted during the curing process of the plastic resin becomes too large, making it difficult to handle. Taking this into consideration, it is desirable that the amount of the molding aid added be in the range of 0.05 to 5% by weight. .
また、上記成形助剤を適量添加したものは、圧縮成形後
の熱硬化性樹脂の硬化処理時において成形助剤が適量溶
融し、成形体の表面にしみ出てきて付着することにより
保護膜を形成するので、耐食性を向上させる効果も得ら
れることが判明した。In addition, when an appropriate amount of the above-mentioned molding aid is added, the molding aid melts during the curing process of the thermosetting resin after compression molding, oozes out and adheres to the surface of the molded product, and forms a protective film. It has been found that the effect of improving corrosion resistance can also be obtained because of the formation of
そして、上記希土類磁石粉末と、ステアリン酸系の潤滑
剤である成形助剤と、さらに熱硬化性樹脂とを混合した
のち、圧縮成形型内に装入し、例えば3〜10ton/
cm2程度の加圧力で圧縮成形することにより所望形状
の成形体を得る。Then, after mixing the above rare earth magnet powder, a molding aid which is a stearic acid-based lubricant, and further a thermosetting resin, the mixture is charged into a compression mold, and the mixture is heated, for example, from 3 to 10 tons/h.
A molded article having a desired shape is obtained by compression molding with a pressure of about cm2.
次いで、上記圧縮成形体に対し、必要に応じて例えば1
00〜170℃程度で加熱するキュア処理を施し、磁気
特性の向上と、上記ステアリン酸系潤滑剤ゐ表面溶出付
着による耐食性のより一層の向上などをはかるようにす
ることがより望ましい。Next, if necessary, for example, 1
It is more desirable to perform a curing treatment by heating at about 00 to 170° C. to improve the magnetic properties and further improve the corrosion resistance due to the stearic acid-based lubricant being eluted and adhered to the surface.
さらに、前記圧縮成形後においては、必要に応じて、成
形体表面に熱硬化性樹脂の硬化剤を塗布して、永久磁石
の耐食性をより一層改善できるようにすることもできる
。Furthermore, after the compression molding, if necessary, a thermosetting resin curing agent may be applied to the surface of the molded body to further improve the corrosion resistance of the permanent magnet.
(実施例1)
超急冷後に粒径200ルm以下に粉砕した3ONd−I
B−Fe希土類磁石粉末に、ステアリン酸亜鉛を5.0
重量%以下の範囲で第1表に示すように添加し、さらに
エポキシ樹脂を2.0重量%添加混合したのち、7to
n/cm2の加圧力で圧縮成形することにより、直径1
1mm。(Example 1) 3ONd-I pulverized to a particle size of 200 lm or less after ultra-quenching
Add 5.0% zinc stearate to B-Fe rare earth magnet powder
After adding 2.0% by weight of epoxy resin as shown in Table 1 and mixing with 2.0% by weight of epoxy resin, 7 to
By compression molding with a pressure of n/cm2, the diameter is 1.
1mm.
高さ10mmの円柱状成形体を各供試NO31〜7毎に
10個ずつ製作した。Ten cylindrical molded bodies each having a height of 10 mm were manufactured for each sample No. 31 to No. 7.
次いで、各成形体中における割れ発生の有無を調べたと
ころ、第1表に示す結果であった。Next, the presence or absence of cracking in each molded body was examined, and the results are shown in Table 1.
次に、前記成形体に対し、150℃X4Hr。Next, the molded body was heated at 150°C for 4 hours.
10To r rの真空中でキュア処理を施した後、温
度50″C2湿度98%9時M96HrI)条件で湿潤
試験を行い、目視によって錆発生の有無を調べた。また
、参考までに湿潤試験前後における磁気特性((BH)
max)を調べた。これらの結果を同じく第1表に示す
。After curing in a vacuum of 10 Torr, a humidity test was performed at a temperature of 50'' C2 humidity 98% 9 hours M96 HrI), and the presence or absence of rust was visually inspected. Magnetic properties ((BH)
max) was investigated. These results are also shown in Table 1.
第1表に示す結果より明らかなように、ステアリン酸亜
鉛を添加しない供試No、 1の場合には、圧縮成形体
の全部(10個中lO個)に割れの発生が認められた。As is clear from the results shown in Table 1, in the case of sample No. 1 in which zinc stearate was not added, cracks were observed in all of the compression molded products (10 out of 10).
また、湿潤試験後においても錆の発生が全面に起るため
、磁気特性が著しく低下してしまうことが確認された。Furthermore, it was confirmed that even after the wet test, rust occurred on the entire surface, resulting in a significant decrease in magnetic properties.
そして、ステアリン酸亜鉛を0.01重量%添加した供
試NO12の場合には、成形体の割れが10個中2個と
激減し、湿潤試験後における錆の発生もごくわずかとな
り、錆発生による磁気特性の低下もだいぶ小さくなり、
ステアリン酸亜鉛を0.05重量%以上添加させた供試
No、 3〜7の場合には成形体の割れ発生は全く認め
られず、また湿潤試験後の錆発生も全く認められなかっ
た。In the case of sample No. 12, in which 0.01% by weight of zinc stearate was added, the number of cracks in the molded products was drastically reduced to 2 out of 10, and the occurrence of rust after the wet test was also very small. The decline in magnetic properties is also much smaller,
In the case of Test Nos. 3 to 7 in which 0.05% by weight or more of zinc stearate was added, no cracking of the molded bodies was observed, and no rusting was observed after the wet test.
なお、ステアリン酸亜鉛を5,0重量%超過添加した場
合には割れおよび錆の発生防止の点からは不都合はない
が、多く添加しすぎると強度や磁気特性が低下する傾向
にあり、また、熱硬化性樹脂(エポキシ樹脂)の硬化処
理時にステアリン酸亜鉛の溶出量が多くなって取扱いが
困難となり、生産上の支障をきたすことがありうるので
、5.0重量%以下とするのがよいことがわかった。It should be noted that if zinc stearate is added in excess of 5.0% by weight, there is no disadvantage in terms of preventing the occurrence of cracks and rust, but if too much is added, the strength and magnetic properties tend to decrease. During the curing process of thermosetting resins (epoxy resins), the amount of zinc stearate eluted increases, making it difficult to handle and potentially causing problems in production, so it is recommended that the amount be 5.0% by weight or less. I understand.
(実施例2)
25Sm−15Fe−4Cu−2Zr−Coよりなるイ
ンゴットを1170°Cで4時間溶体化処理したのち、
825℃で5時間保持し、400℃まで2℃/minの
速度で冷却したあと、400℃で10時間保持する時効
処理を行い、次いで不活性雰囲気中でショークラッシャ
ー、ディスククラッシャーにより平均粒径30gmまで
粉砕した。(Example 2) After solution-treating an ingot made of 25Sm-15Fe-4Cu-2Zr-Co at 1170°C for 4 hours,
After holding at 825°C for 5 hours, cooling to 400°C at a rate of 2°C/min, aging treatment was performed by holding at 400°C for 10 hours, and then in an inert atmosphere using a show crusher and a disk crusher to obtain particles with an average particle size of 30 g. crushed to.
次に、上記磁石粉末に、ステアリン酸亜鉛を添加しない
もの、およびステアリン酸亜鉛を0.5重量%添加した
ものに対し、エポキシ樹脂を2.0重量%添加混合した
のち、7 t o n 7cm2の加圧力で圧縮成形す
ることにより、直径IZmm、高さ10mmの円柱状成
形体を各供試No、8.9毎に10個ずつ製作した。Next, 2.0% by weight of epoxy resin was added and mixed to the above magnetic powders, one without zinc stearate and one with 0.5% by weight of zinc stearate, and then 7 tons on 7cm2 Ten cylindrical molded bodies having a diameter of IZmm and a height of 10 mm were manufactured for each sample No. 8.9 by compression molding with a pressure of .
次いで、各成形体中における割れ発生の有無を調べたと
ころ、第2表に示す結果であった。Next, the presence or absence of cracking in each molded body was examined, and the results are shown in Table 2.
次に、前記成形体に対し、150℃X4Hr。Next, the molded body was heated at 150°C for 4 hours.
10To r rの真空中でキュア処理を施した後、9
6Hrの基本噴霧試験を実施して、目視により錆発生の
有無を調べた。また、参考までに塩水噴霧試験前後にお
ける磁気特性((BH)max)を調べた。これらの結
果を同じく第2表に示す。After curing in a vacuum of 10 Torr, 9
A basic spray test for 6 hours was conducted and the presence or absence of rust generation was visually examined. Furthermore, for reference, the magnetic properties ((BH)max) before and after the salt spray test were investigated. These results are also shown in Table 2.
第2表に示す結果より明らかなように、ステアリン酸亜
鉛を添加しない供試No、 8の場合には、圧縮成形体
の全部(10個中10個)に割れの発生が認められた。As is clear from the results shown in Table 2, in the case of sample No. 8 in which zinc stearate was not added, cracks were observed in all of the compression molded products (10 out of 10).
また、塩水噴霧試験後においても錆の発生が全面に起る
ため、磁気特性が著しく低下してしまうことが確認され
た。Furthermore, it was confirmed that even after the salt spray test, rust occurred over the entire surface, resulting in a significant decrease in magnetic properties.
これに対してステアリン酸亜鉛を0.5重量%。To this, 0.5% by weight of zinc stearate.
添加した供試N089の場合には、成形体の割れ発生は
全く認められず、また塩水噴霧試験後の錆発生も全く認
められず、磁気特性の低下も生じないことが認められた
。In the case of the added sample No. 089, no cracking was observed in the molded body, no rust was observed after the salt spray test, and no deterioration of magnetic properties was observed.
[発明の効果]
以上説明してきたように、この発明による永久磁石の製
造方法では、希土類磁石粉末にステアリン酸亜鉛、ステ
アリン酸マグネシウム、ステアリン酸カルシウムのうち
から選ばれる成形助剤を添加するとともに熱硬化性樹脂
を添加して混合し、次いで圧縮成形して永久磁石を製造
するようにしたから、圧縮成形によって永久磁石を製造
する場合に、圧縮成形時あるいは圧縮成形後のノックア
ウト時などにおいて成形体に割れを生じがたくなるので
、永久磁石の製造歩留りを大幅に向上させることが可能
であると共に、耐食性にも著しく優れたプラスチック磁
石とすることが可能であるという非常に優れた効果がも
たらされる。[Effects of the Invention] As explained above, in the method for manufacturing a permanent magnet according to the present invention, a molding aid selected from zinc stearate, magnesium stearate, and calcium stearate is added to rare earth magnet powder, and at the same time, heat curing is performed. Since permanent magnets are manufactured by adding and mixing a magnetic resin and then compression molding, when manufacturing permanent magnets by compression molding, there is no problem with the molded body during compression molding or when knocking out after compression molding. Since cracks are less likely to occur, the manufacturing yield of permanent magnets can be greatly improved, and at the same time, it is possible to produce plastic magnets with extremely excellent corrosion resistance, which is an extremely excellent effect.
Claims (3)
酸マグネシウム、ステアリン酸カルシウムのうちから選
ばれる成形助剤を添加するとともに熱硬化性樹脂を添加
して混合し、次いで圧縮成形することを特徴とする永久
磁石の製造方法。(1) Permanent magnet powder characterized by adding a molding aid selected from zinc stearate, magnesium stearate, and calcium stearate to rare earth magnet powder, and adding and mixing a thermosetting resin, followed by compression molding. How to manufacture magnets.
することを特徴とする特許請求の範囲第(1)項に記載
の永久磁石の製造方法。(2) The method for producing a permanent magnet according to claim (1), characterized in that the amount of the forming aid added is in the range of 0.05 to 5% by weight.
特許請求の範囲第(1)項または第(2)項に記載の永
久磁石の製造方法。(3) The method for manufacturing a permanent magnet according to claim (1) or (2), characterized in that a curing treatment is performed after compression molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306623A JPS63160314A (en) | 1986-12-24 | 1986-12-24 | Manufacture of permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306623A JPS63160314A (en) | 1986-12-24 | 1986-12-24 | Manufacture of permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63160314A true JPS63160314A (en) | 1988-07-04 |
Family
ID=17959317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61306623A Pending JPS63160314A (en) | 1986-12-24 | 1986-12-24 | Manufacture of permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63160314A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244705A (en) * | 1987-03-31 | 1988-10-12 | Seiko Epson Corp | Resin-bonded rare earth/iron magnet |
JPH02155203A (en) * | 1988-12-08 | 1990-06-14 | Tokin Corp | Manufacture of polymer composite type rare earth magnet |
JP2019057654A (en) * | 2017-09-21 | 2019-04-11 | 株式会社タムラ製作所 | Soft magnetic material, compacted powder magnetic core using soft magnetic material, reactor using compacted powder magnetic core, and manufacturing method for compacted powder magnetic core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54125497A (en) * | 1978-03-23 | 1979-09-28 | Seiko Epson Corp | Member equipped with powder molding magnet and method for manufacturing the same |
JPS55154721A (en) * | 1979-05-22 | 1980-12-02 | Matsushita Electric Ind Co Ltd | Annular permanent magnet and manufacture thereof |
-
1986
- 1986-12-24 JP JP61306623A patent/JPS63160314A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54125497A (en) * | 1978-03-23 | 1979-09-28 | Seiko Epson Corp | Member equipped with powder molding magnet and method for manufacturing the same |
JPS55154721A (en) * | 1979-05-22 | 1980-12-02 | Matsushita Electric Ind Co Ltd | Annular permanent magnet and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244705A (en) * | 1987-03-31 | 1988-10-12 | Seiko Epson Corp | Resin-bonded rare earth/iron magnet |
JPH02155203A (en) * | 1988-12-08 | 1990-06-14 | Tokin Corp | Manufacture of polymer composite type rare earth magnet |
JP2019057654A (en) * | 2017-09-21 | 2019-04-11 | 株式会社タムラ製作所 | Soft magnetic material, compacted powder magnetic core using soft magnetic material, reactor using compacted powder magnetic core, and manufacturing method for compacted powder magnetic core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101770862B (en) | Method for preparing radiation oriental magnetic ring and radiation multipolar magnetic ring | |
JPS63160314A (en) | Manufacture of permanent magnet | |
JPH0525506A (en) | Production of injection-molded and sintered pure iron having high strength | |
JPH04133406A (en) | Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property | |
WO2023120184A1 (en) | Resin composition for bonded magnets and bonded magnets using same | |
JPH0521220A (en) | Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density | |
JPS61208808A (en) | Manufacture of sintered magnet | |
JP2767244B2 (en) | Method for producing composite magnet composition | |
JPS63254703A (en) | Manufacture of rare earth permanent magnet with excellent anti-oxidation | |
JPS61119006A (en) | Manufacture of sintered magnet | |
JPH07179983A (en) | Sintered soft-magnetic material having high electric resistance value and its production | |
JPH01155603A (en) | Manufacture of oxidation-resistant rare-earth permanent magnet | |
JPH1012472A (en) | Manufacture of rare-earth bond magnet | |
JP2719792B2 (en) | Manufacturing method of composite magnet | |
JPS61208809A (en) | Manufacture of sintered magnet | |
JPH02219206A (en) | Manufacture of bonded magnetic substance | |
JPH06290919A (en) | Rare earth-iron-boron permanent magnet and manufacture thereof | |
JPH09312211A (en) | Oxide permanent magnet and manufacture thereof | |
JPS61270316A (en) | Production of raw material powder for resin bonded permanent alloy | |
JPH02298231A (en) | Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics | |
JPH04224608A (en) | Manufacture of alloy powder containing rare earth metal using reduction diffusing method | |
JPH0394402A (en) | Manufacture of bonded magnet | |
KR0128136B1 (en) | Prodocing method of al-ni-co magnetic powder | |
JPH04221005A (en) | Production of rare-earth metal-containing alloy powder by reductive diffusion | |
JPH03288405A (en) | Bonded-magnet raw material and manufacture thereof |