JPH04224608A - Manufacture of alloy powder containing rare earth metal using reduction diffusing method - Google Patents

Manufacture of alloy powder containing rare earth metal using reduction diffusing method

Info

Publication number
JPH04224608A
JPH04224608A JP2414212A JP41421290A JPH04224608A JP H04224608 A JPH04224608 A JP H04224608A JP 2414212 A JP2414212 A JP 2414212A JP 41421290 A JP41421290 A JP 41421290A JP H04224608 A JPH04224608 A JP H04224608A
Authority
JP
Japan
Prior art keywords
rare earth
powder
alloy powder
mixture
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2414212A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shiotani
塩谷 克彦
Koichiro Maki
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2414212A priority Critical patent/JPH04224608A/en
Publication of JPH04224608A publication Critical patent/JPH04224608A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To offer a method for obtaining magnetic alloy powder contg. rare earth metals excellent in magnetic properties by using a reduction diffusing method. CONSTITUTION:A mixture of metallic Ca powder, rare earth oxide powder and metallic raw material powder is applied with stress and is molded, and this mixture molded body is subjected to heating treatment in the atmosphere of an inert gas or vacuum. CaO by-produced at this time and Ca remaining in a reaction product are removed to obtain metallic grains, which are pulverized to manufacture alloy powder contg. rare earth metals.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、還元拡散法を応力負荷
状況下で利用して希土類金属を含む合金粉末を製造する
方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing alloy powder containing rare earth metals using a reduction-diffusion method under stress conditions.

【0002】0002

【従来の技術】その優れた磁気特性ゆえに、希土類金属
を含有する合金磁石は、家庭電化製品から、通信、音響
機器、医療機器、一般産業機器までの広い分野に亘って
利用されて居る。
BACKGROUND OF THE INVENTION Due to their excellent magnetic properties, alloy magnets containing rare earth metals are used in a wide range of fields, from home appliances to communications, audio equipment, medical equipment, and general industrial equipment.

【0003】このような希土類金属を含有する合金粉末
を、還元拡散法によって製造する方法は公知である。
[0003] A method for producing such alloy powder containing rare earth metals by a reduction diffusion method is known.

【0004】即ち、この方法は、先ず、金属Ca粉末と
、希土類酸化物粉末と、金属原料粉とからなる混合物を
、不活性ガスまたは真空雰囲気下で加熱する事によって
、希土類酸化物を希土類金属に還元すると同時に、生成
してきた希土類金属を合金成分の一部をなす他の金属粒
子中に拡散せしめ、所望組成の合金粉末を得るというも
のである。
That is, in this method, first, a mixture consisting of a metal Ca powder, a rare earth oxide powder, and a metal raw material powder is heated in an inert gas or vacuum atmosphere to convert the rare earth oxide into a rare earth metal. At the same time, the generated rare earth metal is diffused into other metal particles forming a part of the alloy components to obtain an alloy powder with a desired composition.

【0005】この場合、上記混合物を加熱して得られた
反応生成物中に含まれ、または、残留した金属Caとの
反応により副生した上記残留金属の酸化物等の不要物は
、反応生成物の冷却をまって生成物を水中に投入すると
共に、必要に応じて、酸を用いて生成物を洗浄する湿式
処理の実施により反応生成物から除去される。
[0005] In this case, unnecessary substances such as oxides of the residual metal contained in the reaction product obtained by heating the mixture or produced as a by-product by the reaction with the residual metal Ca are removed from the reaction product. It is removed from the reaction product by carrying out a wet process in which the product is poured into water after cooling and, if necessary, the product is washed with acid.

【0006】この方法は、希土類金属原料として比較的
安価な酸化物が利用出来る事、溶解鋳造工程が不要とな
る事、塊状の反応生成物が崩壊性に富むため、所要粒度
の合金粉末が容易に入手出来る事等、種々なる面から優
れた方法とされている。
[0006] This method allows the use of relatively inexpensive oxides as raw materials for rare earth metals, eliminates the need for a melting and casting process, and provides highly disintegrable lumpy reaction products, making it easy to produce alloy powder with the desired particle size. It is considered to be an excellent method from various aspects, such as the fact that it can be obtained easily.

【0007】[0007]

【発明が解決しようとする課題】上記の様に種々なる面
から優れた方法とされている還元拡散法ではあるが、鉄
原料として粉体状を呈していない原料、例えば、箔状体
、針状体、薄状体、板状体、等の原料を用いる場合、こ
れらの鉄原料と他の原料粉末との接触度が悪化するため
、合金元素の拡散が劣化して来て、結果的に、所望の組
成を持った合金の入手が困難であるという問題点が発生
すると共に、得られた合金の結晶粒の成長が一定方向を
指向する事は少なく、製品とされた磁石の磁気方位性を
強化する事が困難であった。
[Problems to be Solved by the Invention] Although the reduction diffusion method is considered to be an excellent method from various aspects as described above, it is necessary to use raw materials that are not in powder form as iron raw materials, such as foils, needles, etc. When using raw materials such as shaped bodies, thin bodies, plate bodies, etc., the degree of contact between these iron raw materials and other raw material powders deteriorates, and the diffusion of alloying elements deteriorates, resulting in However, the problem arises that it is difficult to obtain an alloy with a desired composition, and the crystal grains of the obtained alloy rarely grow in a fixed direction, resulting in a problem with the magnetic orientation of the manufactured magnet. It was difficult to strengthen the

【0008】本発明は、上記の事情に鑑み、還元拡散法
の利用に於いて、鉄原料と他の原料粉末との接触度を向
上すると共に、得られた合金の結晶粒の成長が一定方向
を指向する様に操作する事によって、製品の磁気特性を
向上させる事を目的とする。
In view of the above circumstances, the present invention improves the degree of contact between the iron raw material and other raw material powders in the use of the reduction diffusion method, and also allows the crystal grains of the obtained alloy to grow in a fixed direction. The purpose is to improve the magnetic properties of products by manipulating them in such a way as to direct the magnetic properties of the product.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、Ca金属粉末と、希土類酸化物粉末と、
金属原料粉とからなる混合物に対して、1t/cm2 
以上の応力を負荷して成型した後、この混合物成型体を
不活性ガスまたは真空雰囲気下で加熱処理を施し、この
際に生成した反応生成物を湿式処理し、副生して来るC
aOと、反応生成物中に残留するCaを除去する事によ
って、還元拡散法を利用した希土類金属を含む合金粉末
を製造する方法を提示するものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides Ca metal powder, rare earth oxide powder,
1t/cm2 for a mixture consisting of metal raw material powder
After molding with the above stress applied, this mixture molded body is heat-treated in an inert gas or vacuum atmosphere, and the reaction products generated at this time are wet-treated, and the by-produced C
This paper presents a method for producing alloy powder containing rare earth metals using a reduction diffusion method by removing aO and Ca remaining in the reaction product.

【0010】0010

【作用】本発明において、混合物に対して1t/cm2
 以上の応力を負荷して成型した後、この混合物成型体
に対して不活性ガスまたは真空雰囲気下で加熱処理を施
す様にしたのは、混合物に1t/cm2 以上の応力を
負荷して成型した後に、この混合物成型体に対して熱処
理を施す事により、加熱処理体を構成する結晶の成長方
位が磁化され易い方位に対して垂直な方向に優先的に成
長し、磁気特性が特に一定方向に強くなった合金粉を入
手する事を容易にすると共に、原料混合物を加熱した後
における合金元素の拡散反応をも併せて向上させるため
のものである。
[Operation] In the present invention, 1 t/cm2 for the mixture
After molding with the above stress applied, the mixture molded body is subjected to heat treatment in an inert gas or vacuum atmosphere. Later, by applying heat treatment to this mixture molded body, the growth direction of the crystals constituting the heat-treated body grows preferentially in the direction perpendicular to the direction that is easily magnetized, and the magnetic properties are particularly improved in a certain direction. This is to make it easier to obtain stronger alloy powder, and to also improve the diffusion reaction of alloying elements after heating the raw material mixture.

【0011】[0011]

【実施例】実施例1 本発明を、以下の実施例にて詳述する。すなわち、純度
99.9重量%、平均粒度200メッシュ(タイラー規
格による)の電解鉄粉65.6gと、純度99.9重量
%、平均粒度325メッシュ(タイラー規格による)の
酸化ネオジム粉末42.3gと、純度99.9重量%、
平均粒度325メッシュ(タイラー規格による)の純ボ
ロン粉末1.3gと、純度99重量%の粒状金属Ca2
3gとをVブレンダーを用いて混合した。
EXAMPLES Example 1 The present invention will be explained in detail in the following examples. That is, 65.6 g of electrolytic iron powder with a purity of 99.9% by weight and an average particle size of 200 mesh (according to Tyler standards), and 42.3 g of neodymium oxide powder with a purity of 99.9% by weight and an average particle size of 325 mesh (according to Tyler standards). and purity 99.9% by weight,
1.3 g of pure boron powder with an average particle size of 325 mesh (according to Tyler standard) and granular metal Ca2 with a purity of 99% by weight
3 g using a V-blender.

【0012】ここで得られた混合物をステンレス製の容
器に入れ、2.0t/cm2 の圧力を加えて成型した
後、この混合物成型体をアルゴンガス雰囲気下で100
0℃で4時間に亘って加熱処理を施し、その後は反応生
成物を冷却してから純水中に投じて崩壊させた後、水素
イオン濃度が8以下になるまで攪拌とデカンテーション
を繰り返し、最終的に水分を除去して乾燥させた場合、
約95gの合金粉が回収された。
[0012] The mixture obtained here was placed in a stainless steel container and molded under a pressure of 2.0 t/cm2, and then the molded mixture was heated for 100 min in an argon gas atmosphere.
Heat treatment was performed at 0°C for 4 hours, after which the reaction product was cooled and disintegrated by being thrown into pure water, followed by repeated stirring and decantation until the hydrogen ion concentration became 8 or less. When the moisture is finally removed and dried,
Approximately 95g of alloy powder was recovered.

【0013】この合金粉の組成は、Ndが32.6重量
%であり、Feが65.8重量%であり、Bが1.4重
量%であり、Oが0.2重量%であって、この合金粉を
構成する結晶は何れも一定方向に配向されている事が認
められた。
The composition of this alloy powder is 32.6% by weight of Nd, 65.8% by weight of Fe, 1.4% by weight of B, and 0.2% by weight of O. It was observed that all the crystals constituting this alloy powder were oriented in a certain direction.

【0014】振動ディスクミルを用いて、この合金粉を
粉砕し、得られた平均粒径325メッシュ未満の原料粉
20gに対して、エポキシ樹脂を0.3gと、硬化剤を
0.1g混合し、15kOeの磁界中で4.1t/cm
2 の圧力を加えながら成型してボンド磁石を製作した
This alloy powder was pulverized using a vibrating disk mill, and 0.3 g of epoxy resin and 0.1 g of a hardening agent were mixed with 20 g of the obtained raw material powder with an average particle size of less than 325 mesh. , 4.1t/cm in a magnetic field of 15kOe
A bonded magnet was manufactured by molding while applying a pressure of 2.

【0015】この場合、得られた磁石の残留磁束密度は
11.9KGであって、磁気配向度は49%であった。
In this case, the residual magnetic flux density of the obtained magnet was 11.9 KG, and the degree of magnetic orientation was 49%.

【0016】実施例2 混合物加圧成型時の負荷応力を4.0t/cm2 とし
た以外は、全て実施例1と同様に処理した場合、得られ
た磁石の残留磁束密度は12.1KGであって、磁気配
向度は55%であった。
Example 2 When the process was carried out in the same manner as in Example 1 except that the applied stress during pressure molding of the mixture was 4.0 t/cm2, the residual magnetic flux density of the obtained magnet was 12.1 KG. The degree of magnetic orientation was 55%.

【0017】尚、得られた原料粉の組成は、Ndが33
.0重量%であり、Feが65.5重量%であり、Bが
1.3重量%であり、Oが0.2重量%であった。
[0017] The composition of the obtained raw material powder is as follows: Nd is 33
.. 0% by weight, Fe was 65.5% by weight, B was 1.3% by weight, and O was 0.2% by weight.

【0018】実施例3 混合物加圧成型時の負荷応力を6.0t/cm2 とし
た以外は、全て実施例1と同様に処理した場合、得られ
た磁石の残留磁束密度は12.2KGであって、磁気配
向度は58%であった。
Example 3 When the process was carried out in the same manner as in Example 1 except that the applied stress during pressure molding of the mixture was 6.0 t/cm2, the residual magnetic flux density of the obtained magnet was 12.2 KG. The degree of magnetic orientation was 58%.

【0019】尚、得られた原料粉の組成は、Ndが33
.2重量%であり、Feが65.3重量%であり、Bが
1.3重量%であり、Oが0.2重量%であった。
[0019] The composition of the obtained raw material powder is as follows: Nd is 33
.. 2% by weight, Fe was 65.3% by weight, B was 1.3% by weight, and O was 0.2% by weight.

【0020】比較例1 混合物加圧成型時の負荷応力を0.5t/cm2 とし
た以外は、全て実施例1と同様に処理した場合、得られ
た磁石の残留磁束密度は10.2KGであって、磁気配
向度は3%でしかなかった。
Comparative Example 1 When the process was carried out in the same manner as in Example 1 except that the applied stress during pressure molding of the mixture was 0.5 t/cm2, the residual magnetic flux density of the obtained magnet was 10.2 KG. However, the degree of magnetic orientation was only 3%.

【0021】尚、得られた原料粉の組成は、Ndが33
.3重量%であり、Feが65.3重量%であり、Bが
1.2重量%であり、Oが0.2重量%であった。
[0021] The composition of the obtained raw material powder is as follows: Nd is 33
.. 3% by weight, Fe was 65.3% by weight, B was 1.2% by weight, and O was 0.2% by weight.

【0022】比較例2 混合物加圧成型時の負荷応力を0t/cm2 とした以
外は、全て実施例1と同様に処理した場合、得られた磁
石の残留磁束密度は10.1KGであって、磁気配向度
は1%でしかなかった。
Comparative Example 2 When all treatments were carried out in the same manner as in Example 1 except that the applied stress during pressure molding of the mixture was 0 t/cm2, the residual magnetic flux density of the obtained magnet was 10.1 KG, The degree of magnetic orientation was only 1%.

【0023】尚、得られた原料粉の組成は、Ndが33
.0重量%であり、Feが65.5重量%であり、Bが
1.3重量%であり、Oが0.2重量%であった。
[0023] The composition of the obtained raw material powder is as follows: Nd is 33
.. 0% by weight, Fe was 65.5% by weight, B was 1.3% by weight, and O was 0.2% by weight.

【0024】上記の実施例1〜3及び比較例1、2の磁
気特性及び合金粉末組成を表1に示す。
Table 1 shows the magnetic properties and alloy powder compositions of Examples 1 to 3 and Comparative Examples 1 and 2.

【0025】表1のごとく、本発明による時は、磁石合
金の製造に際しての原料粉を構成する結晶の何れもが同
方向に成長されるところから、磁石を製造した場合に磁
気特性の配向度を大幅に向上させる事が可能となった。
As shown in Table 1, according to the present invention, since all of the crystals constituting the raw material powder are grown in the same direction when producing a magnet alloy, the degree of orientation of the magnetic properties is improved when producing a magnet. It has become possible to significantly improve the

【0026】尚、本発明品の配向度の測定にあたっては
、偏光顕微鏡の接眼用レンズ、対物レンズの何れに対し
ても10倍の倍率のレンズを用いると共に、写真撮影し
た後、写真の視野の中から100ケの結晶粒を選出し、
夫々の結晶粒について、特定方向となす角度の余弦値と
占有面積の積を算出し、この積値の総計を測定の対象と
された結晶粒の総面積で除した後、この値を100倍し
て得られたものを、配向度として表示した。
In measuring the degree of orientation of the product of the present invention, a lens with a magnification of 10 times is used for both the eyepiece lens and the objective lens of the polarizing microscope, and after taking a photograph, the field of view of the photograph is Select 100 crystal grains from among them,
For each crystal grain, calculate the product of the cosine value of the angle with the specific direction and the occupied area, divide the total product value by the total area of the crystal grains targeted for measurement, and then multiply this value by 100. The obtained result was expressed as the degree of orientation.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【発明の効果】本発明による時は、磁石合金の製造に際
しての原料粉を構成する結晶の何れもが同方向に成長さ
れるところから、磁石を製造した場合に磁気特性の配向
度を大幅に向上させる事が可能となった為、精度の高い
材料を、経済的に、しかも、安定した状態で供給する事
が可能になり、かかる事態の出現を望んでいた、斯業界
に寄与するところ大なるものがある。
[Effects of the Invention] According to the present invention, since all of the crystals constituting the raw material powder are grown in the same direction when manufacturing a magnet alloy, the degree of orientation of magnetic properties can be greatly improved when manufacturing a magnet. Since it has become possible to improve the quality of materials, it has become possible to supply highly accurate materials economically and in a stable manner, and this will greatly contribute to the industry, which has been hoping for such a situation to emerge. There is something.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属Ca粉末と、希土類酸化物粉末と、金
属原料粉とからなる混合物に対して1t/cm2 以上
の応力を負荷して成型した後、この混合物成型体を不活
性ガスまたは真空雰囲気下で加熱処理を施し、この際に
生成した反応生成物を湿式処理し、副生して来るCaO
と反応生成物中に残留するCaとを除去する事によって
希土類金属を含有する合金を製造する事を特徴とする還
元拡散法を利用した希土類金属を含む合金粉末の製造方
法。
Claim 1: A mixture consisting of metallic Ca powder, rare earth oxide powder, and metal raw material powder is molded by applying a stress of 1 t/cm2 or more, and then the molded mixture is heated in an inert gas or vacuum. Heat treatment is performed in an atmosphere, and the reaction products generated at this time are wet-treated to remove CaO as a by-product.
A method for producing an alloy powder containing a rare earth metal using a reduction diffusion method, characterized in that an alloy containing a rare earth metal is produced by removing Ca remaining in the reaction product.
JP2414212A 1990-12-25 1990-12-25 Manufacture of alloy powder containing rare earth metal using reduction diffusing method Pending JPH04224608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414212A JPH04224608A (en) 1990-12-25 1990-12-25 Manufacture of alloy powder containing rare earth metal using reduction diffusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414212A JPH04224608A (en) 1990-12-25 1990-12-25 Manufacture of alloy powder containing rare earth metal using reduction diffusing method

Publications (1)

Publication Number Publication Date
JPH04224608A true JPH04224608A (en) 1992-08-13

Family

ID=18522712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414212A Pending JPH04224608A (en) 1990-12-25 1990-12-25 Manufacture of alloy powder containing rare earth metal using reduction diffusing method

Country Status (1)

Country Link
JP (1) JPH04224608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023099A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR20200023109A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR20200023108A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023099A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR20200023109A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR20200023108A (en) * 2018-08-24 2020-03-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
JP2020536172A (en) * 2018-08-24 2020-12-10 エルジー・ケム・リミテッド Manufacturing method of magnet powder and magnet powder
US11491545B2 (en) 2018-08-24 2022-11-08 Lg Chem, Ltd. Method of preparing magnetic powder, and magnetic powder

Similar Documents

Publication Publication Date Title
JP2002020808A (en) METHOD FOR PRODUCING Nd-Fe-B HYPERFINE-GRAINED POWDER
JP4241461B2 (en) Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same
JPH04224608A (en) Manufacture of alloy powder containing rare earth metal using reduction diffusing method
CN111785469A (en) Soft magnetic alloy powder and preparation method thereof
JPH04247813A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JPH04221006A (en) Production of rare-earth metal-containing alloy powder by reductive diffusion
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH04221005A (en) Production of rare-earth metal-containing alloy powder by reductive diffusion
JP2703939B2 (en) Method for producing Fe-Si soft magnetic sintered material
JP2985545B2 (en) Manufacturing method of alloy powder
JPH04247812A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JPH04247811A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JPS61119006A (en) Manufacture of sintered magnet
JPH05226130A (en) Manufacture of smfen magnet powder
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPS61208807A (en) Permanent magnet
JPH05263110A (en) Production of alloy powder containing rare-earth metal by diffusion method
RU2639889C1 (en) Method of producing permanent magnets based on rare-earth metal alloys with iron and nitrogen
JP3108945B2 (en) Method for producing shape anisotropic alloy powder
JPH04259314A (en) Production of alloy powder for magnet containing rare earth metal by using electrolytic substance
JPS62131503A (en) Manufacture of rare earth-iron-boron alloy powder for resin magnet
JPH02121376A (en) Manufacture of magnetostrictive material
JPS6358802A (en) Manufacture of rare earth magnet
JPH03291304A (en) Shape anisotropic and soft magnetic alloy powder and manufacture thereof