JPH05263110A - Production of alloy powder containing rare-earth metal by diffusion method - Google Patents

Production of alloy powder containing rare-earth metal by diffusion method

Info

Publication number
JPH05263110A
JPH05263110A JP2562191A JP2562191A JPH05263110A JP H05263110 A JPH05263110 A JP H05263110A JP 2562191 A JP2562191 A JP 2562191A JP 2562191 A JP2562191 A JP 2562191A JP H05263110 A JPH05263110 A JP H05263110A
Authority
JP
Japan
Prior art keywords
alloy
earth metal
alloy powder
weight
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2562191A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shiotani
克彦 塩谷
Koichiro Maki
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2562191A priority Critical patent/JPH05263110A/en
Publication of JPH05263110A publication Critical patent/JPH05263110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a magnetic alloy powder contg. a rare-earth metal and excellent in magnetic characteristics by the diffusion method. CONSTITUTION:A mixture of rare-earth metal and boron, a rare-earth metal- boron alloy or their mixture are brought into contact with the surface of the extra-fine wire or extra-thin sheet consisting essentially of iron or iron and boron and having <=5mum average crystalline grain size, the wire or sheet is heated at 600-1100 deg.C, and the formed alloy is crushed to obtain an alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、拡散法を利用して希土
類金属を含む合金粉末を製造する方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for producing an alloy powder containing a rare earth metal by using a diffusion method.

【0002】[0002]

【従来の技術】その優れた磁気特性ゆえに、希土類金属
を含有する合金磁石は、家庭電化製品から、通信、音響
機器、医療機器、一般産業機器までの広い分野に亘って
利用されて居る。
2. Description of the Related Art Due to their excellent magnetic properties, alloy magnets containing rare earth metals have been used in a wide range of fields from home appliances to communications, audio equipment, medical equipment, and general industrial equipment.

【0003】このような希土類金属を含有する合金粉末
を、還元拡散法によって製造する方法は公知である。
A method for producing such alloy powder containing a rare earth metal by a reduction diffusion method is known.

【0004】即ち、この方法は、先ず、金属Ca粉末
と、希土類酸化物粉末と、金属原料粉とからなる混合物
を、不活性ガスまたは真空雰囲気下で加熱する事によっ
て、希土類酸化物を希土類金属に還元すると同時に、生
成してきた希土類金属を合金成分の一部をなす他の金属
粒子中に拡散せしめ、所望組成の合金粉末を得るという
ものである。
That is, in this method, first, a mixture of a metal Ca powder, a rare earth oxide powder, and a metal raw material powder is heated in an inert gas or a vacuum atmosphere to convert the rare earth oxide into a rare earth metal. Simultaneously with the reduction, the generated rare earth metal is diffused into other metal particles forming a part of the alloy component to obtain an alloy powder having a desired composition.

【0005】この場合、上記混合物を加熱して得られた
反応生成物中に含まれ、または、残留した金属Caとの
反応により副生した上記残留金属の酸化物等の不要物
は、反応生成物の冷却をまって生成物を水中に投入する
と共に、必要に応じて、酸を用いて生成物を洗浄する湿
式処理の実施により反応生成物から除去される。
In this case, unnecessary substances such as oxides of the residual metal contained in the reaction product obtained by heating the mixture or by-produced by the reaction with the residual metal Ca are generated by the reaction. When the product is cooled, the product is put into water, and if necessary, the product is removed from the reaction product by carrying out a wet treatment in which the product is washed with an acid.

【0006】この方法は、希土類金属原料として比較的
安価な酸化物が利用出来る事、溶解鋳造工程が不要とな
る事、塊状の反応生成物が崩壊性に富むため、所要粒度
の合金粉末が容易に入手出来る事等、種々なる面から優
れた方法とされている。
According to this method, a relatively inexpensive oxide can be used as a rare earth metal raw material, a melting and casting process is not necessary, and a lumpy reaction product is highly disintegratable, so that an alloy powder having a required particle size can be easily obtained. It is considered to be an excellent method from various aspects such as that it can be obtained.

【0007】[0007]

【発明が解決しようとする課題】上記の様に種々なる面
から優れた方法とされている還元拡散法ではあるが、鉄
原料として粉体状を呈していない原料、例えば、箔状
体、針状体、薄状体、板状体、等の原料を用いる場合、
これらの鉄原料と他の原料粉末との接触度が悪化するた
め、合金元素の拡散が劣化して来て、結果的に、所望の
組成を持った合金の入手が困難であるという問題点が発
生すると共に、得られた合金の結晶粒の成長が一定方向
を指向する事は少なく、製品とされた磁石の磁気方位性
を強化する事が困難であった。
Although it is a reduction diffusion method which is considered to be an excellent method from various aspects as described above, it is a raw material which is not in the form of powder as an iron raw material, for example, a foil-shaped body, a needle. When using a raw material such as a sheet, a sheet, or a plate,
Since the degree of contact between these iron raw materials and other raw material powders deteriorates, diffusion of alloying elements deteriorates, and as a result, it is difficult to obtain an alloy having a desired composition. As the alloy particles were generated, the growth of the crystal grains of the obtained alloy was rarely directed in a fixed direction, and it was difficult to enhance the magnetic orientation of the magnet used as a product.

【0008】また、従来の還元拡散法に拠った合金粉の
平均結晶粒度は10μm以上の製品しか得られず、高性
能を期待される樹脂結合型磁石の原料粉として利用する
事は困難であった。
Further, the alloy powder based on the conventional reduction-diffusion method can only obtain a product having an average grain size of 10 μm or more, and it is difficult to use it as a raw material powder for a resin-bonded magnet, which is expected to have high performance. It was

【0009】本発明は、上記の事情に鑑み、拡散法の利
用に於いて、鉄原料の結晶粒度を規制する事によって、
得られた合金の結晶粒の成長が一定方向を指向すると共
に、製品の磁気特性を向上させる事を目的とする。
In view of the above circumstances, the present invention provides a method of controlling the crystal grain size of an iron raw material in the use of the diffusion method.
The growth of crystal grains of the obtained alloy is directed in a fixed direction, and the magnetic properties of the product are improved.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するため、鉄または鉄と硼素を主成分とし、平
均結晶粒度が5μm以下である極細線または極薄板の表
面に、希土類金属と硼素の混合物及び希土類ー硼素合金
のいずれかもしくはこれらの混合物を接触させた状態の
まま、600℃〜1100℃の温度下で加熱し、生成し
た合金を粉砕して粉末とする事を特徴とする拡散法を利
用した希土類金属を含む合金粉末の製造方法に関する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have found that on the surface of an ultrafine wire or an ultrathin plate containing iron or iron and boron as main components and having an average grain size of 5 μm or less, A mixture of a rare earth metal and boron, a rare earth-boron alloy, or a mixture thereof is heated in a state of being in contact with the mixture at a temperature of 600 ° C to 1100 ° C, and the resulting alloy is pulverized into powder. The present invention relates to a method for producing an alloy powder containing a rare earth metal using a diffusion method.

【0011】[0011]

【作用】本発明において、鉄または鉄と硼素を主成分と
し、平均結晶粒度が5μm以下である極細線または極薄
板の表面に、希土類金属と硼素の混合物及び希土類ー硼
素合金のいずれかもしくはこれらの混合物を接触させた
状態のまま、600℃〜1100℃の温度下で加熱し、
生成した合金を粉砕して粉末とする様にしたのは、平均
結晶粒度が5μm以下である極細線または極薄板を原料
とする事によって、加熱処理体を構成する結晶の成長が
抑制され、拡散生成した合金粉末の結晶粒度を微細にす
る事が可能になると共に、拡散反応を促進させる作用を
も持たせ、樹脂結合型磁石の原料粉として利用するのに
適した極微細結晶粒で構成された原料粉を容易に入手出
来る様にするためのものである。
In the present invention, either a mixture of a rare earth metal and boron, or a rare earth-boron alloy or a mixture thereof is formed on the surface of an ultrafine wire or an ultrathin plate containing iron or iron and boron as main components and having an average grain size of 5 μm or less. While keeping the mixture in contact with, heating at a temperature of 600 ℃ ~ 1100 ℃,
The generated alloy was pulverized into powder because the ultrafine wire or ultrathin plate having an average crystal grain size of 5 μm or less was used as a raw material, the growth of crystals constituting the heat-treated body was suppressed, and diffusion was performed. It is possible to make the crystal grain size of the generated alloy powder fine, and it also has the function of promoting the diffusion reaction, and is composed of ultrafine crystal grains suitable for use as raw material powder for resin-bonded magnets. This is to make the raw material powder easily available.

【0012】平均結晶粒度を5μm以下としたのは、平
均結晶粒度が5μmを超えた極細線または極薄板を原料
として用いた場合には、樹脂結合型希土類合金磁石の保
磁力を向上する事が出来なくなるためである。
The average grain size is set to 5 μm or less because the coercive force of the resin-bonded rare earth alloy magnet is improved when an ultrafine wire or an ultrathin plate having an average grain size of more than 5 μm is used as a raw material. This is because it will not be possible.

【0013】さらに、希土類金属や硼素を拡散させる為
の加熱処理温度を600℃〜1100℃と規定したの
は、600℃未満の温度で処理した場合には希土類金属
や硼素の拡散反応が極めて進行しにくく、逆に、110
0℃を超えて処理した場合には合金が溶解してしまい、
所望する形状の合金を得る事が出来なくなる為である。
Further, the heat treatment temperature for diffusing the rare earth metal or boron is defined as 600 ° C. to 1100 ° C. The reason is that the diffusion reaction of the rare earth metal or boron is extremely advanced when the temperature is lower than 600 ° C. Difficult to do, on the contrary, 110
If processed above 0 ° C, the alloy will melt,
This is because it becomes impossible to obtain an alloy having a desired shape.

【0014】[0014]

【実施例】【Example】

実施例1 鉄および硼素の各イオンを含む電解溶液を用いた電解析
出法によって製造され、その組成として、Feが98.
0重量%であり、Bが2.0重量%であり、平均厚さが
24μmであり、平均結晶粒度が0.6μmである、F
e−B合金の薄片67gと、純度が99.9重量%であ
って、平均厚さが12μmである、金属ネオジウム薄片
33gとを交互に重ね合わせて加圧した後、この加圧体
をアルミナ製の容器に移し、1×10-5Torrの高真
空雰囲気中で1000℃で4時間保持して後、そのまま
冷却して得た反応物は、薄片状の合金粉末であって、そ
の組成はNdが33.1重量%であり、Feが65.4
重量%であり、Bが1.3重量%であり、Oが0.2重
量%であった。
Example 1 It was produced by an electrolytic deposition method using an electrolytic solution containing iron and boron ions, and had a composition of 98.
0 wt%, B is 2.0 wt%, average thickness is 24 μm, average grain size is 0.6 μm, F
67 g of e-B alloy flakes and 33 g of metallic neodymium flakes having a purity of 99.9% by weight and an average thickness of 12 μm were alternately laminated and pressed, and then the pressed body was made of alumina. The resulting reaction product was a flaky alloy powder, and the composition of the reaction product was obtained by transferring the reaction product to a container made of aluminum and holding it at 1000 ° C. for 4 hours in a high vacuum atmosphere of 1 × 10 −5 Torr. Nd is 33.1% by weight and Fe is 65.4.
% By weight, B was 1.3% by weight and O was 0.2% by weight.

【0015】以上の如くにして得られた合金片の断面を
顕微鏡にて観察したところ、その結晶粒度は1.5μm
であった。
When the cross section of the alloy piece obtained as described above is observed with a microscope, the crystal grain size is 1.5 μm.
Met.

【0016】次に、この合金片をディスクミルを用いて
35メッシュ(JIS)以下の粒度に粉砕して得た合金
粉末の100gに対して、エポキシ樹脂の1.5gと、
硬化剤の0.5gを混合し、この混合物に対して4.2
t/cm2の圧力を加えて圧縮成型した後、120℃で1
時間に亘った加熱処理を施し、その後は加熱成型物を冷
却して、直径が10mm、高さが7.5mmの硬化物と
し、この硬化物の保磁力をCioffi型自記自束計を
用いて測定したところ、5KOeの値を示した。
Next, 1.5 g of the epoxy resin was added to 100 g of the alloy powder obtained by crushing the alloy pieces to a particle size of 35 mesh (JIS) or less using a disc mill.
0.5g of hardener is mixed and 4.2 for this mixture
After applying pressure of t / cm 2 for compression molding, 120 ° C for 1
After heat treatment over time, the heat-molded product is cooled to obtain a cured product having a diameter of 10 mm and a height of 7.5 mm, and the coercive force of this cured product is measured using a Cioffi type self-focusing meter. When measured, it showed a value of 5 KOe.

【0017】実施例2 成型体加熱時の処理温度を900℃とした以外は、全て
実施例1と同様に処理した場合、得られた磁石の保磁力
は5.1KOeであって、その結晶粒度は1.4であっ
た。
Example 2 When the same treatment as in Example 1 was carried out except that the treatment temperature at the time of heating the molded body was 900 ° C., the obtained magnet had a coercive force of 5.1 KOe and a crystal grain size thereof. Was 1.4.

【0018】尚、得られた合金粉の組成は、Ndが3
3.2重量%であり、Feが65.3重量%であり、B
が1.3重量%であり、Oが0.2重量%であった。
The composition of the obtained alloy powder has Nd of 3
3.2 wt%, Fe 65.3 wt%, B
Was 1.3% by weight and O was 0.2% by weight.

【0019】実施例3 成型体加熱時の処理温度を700℃とした以外は、全て
実施例1と同様に処理した場合、得られた磁石の保磁力
は3.8KOeであって、その結晶粒度は1.2であっ
た。
Example 3 When the same treatment as in Example 1 was carried out except that the treatment temperature at the time of heating the molded body was 700 ° C., the obtained magnet had a coercive force of 3.8 KOe and a crystal grain size thereof. Was 1.2.

【0020】尚、得られた合金粉の組成は、Ndが3
2.4重量%であり、Feが66.0重量%であり、B
が1.3重量%であり、Oが0.3重量%であった。
The composition of the obtained alloy powder has Nd of 3
2.4 wt%, Fe 66.0 wt%, B
Was 1.3% by weight and O was 0.3% by weight.

【0021】実施例4 電解析出法により製造され、純度が99.9重量%であ
り、平均厚さが23μmであり、平均結晶粒径が0.8
μmである鉄箔66gと、その組成としてNdが96.
2重量%であり、Bが3.8重量%であって、平均厚さ
が15μmであるNd−B合金箔34gとを交互に重ね
合わせ、4.2t/cm2 の圧力で加圧成型し、この成型
体をアルミナ製の容器に移し、1×10-5Torrの高
真空下で1000℃で4時間の加熱処理を施して得られ
た反応物は、薄片状の合金粉であって、その組成はNd
が33.4重量%であり、Feが65.1重量%であ
り、Bが1.2重量%であり、Oが0,3重量%であっ
て、その平均結晶粒度は1.6μmであった。
Example 4 Produced by the electrolytic deposition method, the purity was 99.9% by weight, the average thickness was 23 μm, and the average crystal grain size was 0.8.
66 g of iron foil with a Nd of 96.
2% by weight, B is 3.8% by weight, and 34 g of Nd-B alloy foil having an average thickness of 15 μm are alternately laminated and pressure-molded at a pressure of 4.2 t / cm 2. The molded product was transferred to an alumina container and subjected to heat treatment at 1000 ° C. for 4 hours under a high vacuum of 1 × 10 −5 Torr, and the reaction product was flaky alloy powder, Its composition is Nd
Is 33.4% by weight, Fe is 65.1% by weight, B is 1.2% by weight, O is 0.3% by weight, and the average grain size is 1.6 μm. It was

【0022】この様にして得られた合金粉をディスクミ
ルを用いて35メッシュ(JIS)以下に粉砕した後、
粉砕合金粉末の50gと、エポキシ樹脂1gと、硬化剤
0.2gとを混合し、この混合物を7t/cm2 の圧力で
圧縮成型し、さらに、120℃で1時間加熱して、直径
が10mm、高さが7.5mmの加熱成型体とし、この
加熱成型体について、Cioffi型自記磁束計を用い
て保磁力を測定したところ、5KOeの値が示された。
The alloy powder thus obtained was crushed to a size of 35 mesh (JIS) or less using a disc mill,
50 g of crushed alloy powder, 1 g of epoxy resin and 0.2 g of curing agent are mixed, the mixture is compression molded at a pressure of 7 t / cm 2 , and further heated at 120 ° C. for 1 hour to have a diameter of 10 mm. As a heat-molded body having a height of 7.5 mm, the coercive force of this heat-molded body was measured using a Cioffi type self-recording magnetometer, and a value of 5 KOe was shown.

【0023】実施例5 成型体加熱時の処理温度を900℃とした以外は、全て
実施例4と同様に処理した場合、得られた磁石の保磁力
は4.8KOeであった。
Example 5 The coercive force of the obtained magnet was 4.8 KOe when the same treatment as in Example 4 was carried out except that the treatment temperature at the time of heating the molded body was 900 ° C.

【0024】尚、得られた合金粉の組成は、Ndが3
3.0重量%であり、Feが65.5重量%であり、B
が1.3重量%であり、Oが0.2重量%であって、こ
の合金粉を構成する結晶は1.6μmの平均結晶粒度を
示す事が認められた。
The composition of the obtained alloy powder has Nd of 3
3.0 wt%, Fe 65.5 wt%, B
Was 1.3% by weight and O was 0.2% by weight, and it was confirmed that the crystals constituting this alloy powder had an average grain size of 1.6 μm.

【0025】実施例6 成型体加熱時の処理温度を700℃とした以外は、全て
実施例4と同様に処理した場合、得られた磁石の保磁力
は3.6KOeであった。
Example 6 The coercive force of the obtained magnet was 3.6 KOe when treated in the same manner as in Example 4 except that the treatment temperature at the time of heating the molded body was 700 ° C.

【0026】尚、得られた合金粉の組成は、Ndが3
2.9重量%であり、Feが65.4重量%であり、B
が1.3重量%であり、Oが0.4重量%であって、こ
の合金粉を構成する結晶は1.3μmの平均結晶粒度を
示す事が認められた。
The composition of the obtained alloy powder has Nd of 3
2.9% by weight, Fe 65.4% by weight, B
Was 1.3% by weight and O was 0.4% by weight, and it was confirmed that the crystals constituting this alloy powder had an average grain size of 1.3 μm.

【0027】比較例1 Fe−B合金箔の平均結晶粒度を7.5μmとした以外
は、全て実施例1と同様に処理した場合、得られた磁石
の保磁力は僅かに1.8KOeでしかなかったものの、
得られた原料粉の組成は、Ndが33.0重量%であ
り、Feが65.5重量%であり、Bが1.3重量%で
あり、Oが0.2重量%であって、この合金粉を構成す
る結晶は8.1μmの平均結晶粒度を示す事が認められ
た。
Comparative Example 1 When the same treatment as in Example 1 was carried out except that the average grain size of the Fe-B alloy foil was 7.5 μm, the coercive force of the obtained magnet was only 1.8 KOe. Although there was not,
The composition of the obtained raw material powder was such that Nd was 33.0% by weight, Fe was 65.5% by weight, B was 1.3% by weight, and O was 0.2% by weight. It was found that the crystals constituting this alloy powder had an average grain size of 8.1 μm.

【0028】比較例2 Fe箔の平均結晶粒度を6.5μmとした以外は、全て
実施例4と同様に処理した場合、得られた磁石の保磁力
は僅かに2.0KOeでしかなかったものの、得られた
合金粉の組成は、Ndが32.8重量%であり、Feが
65.7重量%であり、Bが1.2重量%であり、Oが
0.3重量%であって、この合金粉を構成する結晶は
7.3μmの平均結晶粒度を示す事が認められた。
Comparative Example 2 When the same treatment as in Example 4 was carried out except that the average grain size of the Fe foil was 6.5 μm, the coercive force of the obtained magnet was only 2.0 KOe. The composition of the obtained alloy powder was such that Nd was 32.8% by weight, Fe was 65.7% by weight, B was 1.2% by weight, and O was 0.3% by weight. It was confirmed that the crystals constituting this alloy powder had an average grain size of 7.3 μm.

【0029】以上の結果を表1に示す。The above results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】なお結晶粒度の測定はGALAI社製の画
像解析アナライザー(形式CIS−1)を用いた。
The crystal grain size was measured using an image analysis analyzer (type CIS-1) manufactured by GALAI.

【0032】以上のごとく、本発明による時は、磁石合
金の製造に際しての合金粉を構成する結晶の何れもが樹
脂磁石の性能を向上させる為に必要な5.0μm以下の
平均結晶粒度を示す事が認められ、しかも、この原料粉
を用いて製造された樹脂磁石の保磁力を大幅に向上させ
る事が可能となった。
As described above, according to the present invention, all of the crystals constituting the alloy powder in the production of the magnet alloy have the average grain size of 5.0 μm or less necessary for improving the performance of the resin magnet. This has been confirmed, and it has become possible to significantly improve the coercive force of the resin magnet manufactured using this raw material powder.

【0033】[0033]

【発明の効果】本発明によるときは、磁石合金の製造に
際しての原料粉を構成する結晶の何れもが5.0μm以
下の微細平均結晶粒度を示す事が認められ、この合金粉
を用いて磁石を製造した場合に、磁気特性の配向度を大
幅に向上させる事が可能となった為、精度の高い材料
を、経済的に、しかも、安定した状態で供給する事が可
能になり、かかる事態の出現を望んでいた、斯業界に寄
与するところ大なるものがある。
According to the present invention, it is recognized that all of the crystals constituting the raw material powder at the time of producing a magnet alloy have a fine average grain size of 5.0 μm or less. When it was manufactured, it was possible to significantly improve the degree of orientation of the magnetic properties, so it became possible to supply highly accurate materials economically and in a stable state. There was a great contribution to the industry that was hoped for.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄または鉄と硼素を主成分とし、平均結晶
粒度が5μm以下である極細線または極薄板の表面に、
希土類金属と硼素の混合物及び希土類ー硼素合金の何れ
かもしくはこれらの混合物を接触させた状態のまま、6
00℃〜1100℃の温度下で加熱し、生成した合金を
粉砕して粉末とする事を特徴とする拡散法を利用した希
土類金属を含む合金粉末の製造方法。
1. A surface of an ultrafine wire or an ultrathin plate containing iron or iron and boron as main components and having an average crystal grain size of 5 μm or less,
A mixture of a rare earth metal and boron, a rare earth-boron alloy, or a mixture thereof is left in contact with the mixture, 6
A method for producing an alloy powder containing a rare earth metal using a diffusion method, which comprises: heating at a temperature of 00 ° C to 1100 ° C; and pulverizing the produced alloy into a powder.
JP2562191A 1991-01-24 1991-01-24 Production of alloy powder containing rare-earth metal by diffusion method Pending JPH05263110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2562191A JPH05263110A (en) 1991-01-24 1991-01-24 Production of alloy powder containing rare-earth metal by diffusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2562191A JPH05263110A (en) 1991-01-24 1991-01-24 Production of alloy powder containing rare-earth metal by diffusion method

Publications (1)

Publication Number Publication Date
JPH05263110A true JPH05263110A (en) 1993-10-12

Family

ID=12170954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2562191A Pending JPH05263110A (en) 1991-01-24 1991-01-24 Production of alloy powder containing rare-earth metal by diffusion method

Country Status (1)

Country Link
JP (1) JPH05263110A (en)

Similar Documents

Publication Publication Date Title
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH05263110A (en) Production of alloy powder containing rare-earth metal by diffusion method
JPH045739B2 (en)
JPS6052556A (en) Permanent magnet and its production
JPH04247813A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JP2725004B2 (en) Manufacturing method of permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS6230846A (en) Production of permanent magnet material
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS6077961A (en) Permanent magnet material and its manufacture
JPH04221005A (en) Production of rare-earth metal-containing alloy powder by reductive diffusion
JP2992808B2 (en) permanent magnet
JPS627831A (en) Manufacture of permanent magnet material
JPH04224608A (en) Manufacture of alloy powder containing rare earth metal using reduction diffusing method
JPH04247812A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JPH04134806A (en) Manufacture of permanent magnet
JPS624807A (en) Production of alloy powder for rare earth magnet
JPS624806A (en) Production of alloy powder for rare earth magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH06151219A (en) Manufacture of permanent magnet
JPS6230847A (en) Production of permanent magnet material
JPH02252222A (en) Manufacture of permanent magnet
JPS6386404A (en) Manufacture of rare earth magnet
JPH04247811A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JPH023208A (en) Permanent magnet