JPH02219206A - Manufacture of bonded magnetic substance - Google Patents

Manufacture of bonded magnetic substance

Info

Publication number
JPH02219206A
JPH02219206A JP3924289A JP3924289A JPH02219206A JP H02219206 A JPH02219206 A JP H02219206A JP 3924289 A JP3924289 A JP 3924289A JP 3924289 A JP3924289 A JP 3924289A JP H02219206 A JPH02219206 A JP H02219206A
Authority
JP
Japan
Prior art keywords
resin
cured
thermosetting resin
compact
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3924289A
Other languages
Japanese (ja)
Inventor
Norio Kono
幸野 憲雄
Ryoji Muramatsu
村松 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3924289A priority Critical patent/JPH02219206A/en
Publication of JPH02219206A publication Critical patent/JPH02219206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve dimensional stability and corrosion resistance by compression molding a mixture principally composed of magnetic powder and a thermosetting resin, coating the surface of the compact thus obtained with a photosetting resin, curing the same by radiation of curing light and then curing the thermosetting resin. CONSTITUTION:Mixture principally composed of magnetic powder and a thermosetting resin is compression molded into a compact having a desired shape. Then, the surface of the compact is coated with a photosetting resin. After the photosetting resin is cured, the thermosetting resin is cured. In this manner, it is possible to distribute stress relaxation uniformly over the surface of the compact by constraint of the cured photosetting resin layer and to ensure high shape-retaining property of the compact. The magnetic powder, if it is of an alloy easy to corrode, can be protected against deterioration due to oxygen or water contained in the ambient atmosphere because it is shielded from the ambient atmosphere by the cured photosetting resin layer.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、磁性粉末と熱硬化性樹脂との混和物を圧縮成
形することによって得られるボンド磁性体の製造方法に
関し、特にボンド磁性体の寸法安定性の向上さらに腐食
による劣化が起こり易い磁性粉末を用いる際の劣化防止
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a bonded magnetic material obtained by compression molding a mixture of magnetic powder and a thermosetting resin, and particularly relates to a method for producing a bonded magnetic material obtained by compression molding a mixture of a magnetic powder and a thermosetting resin. This invention relates to improving dimensional stability and preventing deterioration when using magnetic powder that is prone to deterioration due to corrosion.

[従来の技術〕 従来、ボンド磁性体は次に挙げるような焼結型磁性体で
は得られない特徴を有するため、近年需要が著しく増加
している。
[Prior Art] Demand for bonded magnetic materials has increased significantly in recent years because they have the following characteristics that cannot be obtained with sintered magnetic materials.

1、複雑薄肉形状のものが容易に得られる。1. Complex thin shapes can be easily obtained.

2、ラジアル異方性の硬質磁性体が容易に得られる。2. A hard magnetic material with radial anisotropy can be easily obtained.

3、焼結型磁性体に比較して脆弱さか少ない。3. Less brittle than sintered magnetic materials.

上述したボンド磁性体の製造方法として、例えばエポキ
シ樹脂の様な熱硬化性樹脂を磁性粉末に対して2〜4重
量部を加えて混合した混和物を所要の金型に充填し圧縮
成形により成形体とした後、前記熱硬化性樹脂を加熱操
作等により硬化させる方法が有る。
As a method for manufacturing the above-mentioned bonded magnetic material, for example, a mixture of 2 to 4 parts by weight of thermosetting resin such as epoxy resin added to magnetic powder is filled into a required mold and molded by compression molding. There is a method of curing the thermosetting resin by heating or the like after forming the thermosetting resin into a body.

[発明が解決しようとする課題] しかしながら、上述した従来のボンド磁性体の製造方法
は、圧縮成形後の成形体は熱硬化性樹脂が未硬化である
ので、該成形体の機械的強度が小さい為に、圧縮成形後
の取扱い時に変形しやすく製品の寸法安定性が悪いとい
う欠陥があった。
[Problems to be Solved by the Invention] However, in the conventional bonded magnetic material manufacturing method described above, the thermosetting resin of the molded product after compression molding is uncured, so the mechanical strength of the molded product is low. Therefore, there was a problem that the product was easily deformed during handling after compression molding, and the dimensional stability of the product was poor.

さらに、磁性粉末としてネオジウム(Nd)。Furthermore, neodymium (Nd) is used as magnetic powder.

鉄(Fe)、ホウ素(B)1等のような腐食され易い合
金を用いた場合には、周囲の雰囲気から付着した酸素や
水分等により磁性粉末が侵され、熱硬化性樹脂を硬化後
も磁性粉末の劣化が進行し生成したボンド磁性体の表面
状態、さらには磁気特性の信頼性に欠けるという欠点が
あった。
When using alloys that are easily corroded, such as iron (Fe) and boron (B) 1, the magnetic powder is corroded by oxygen and moisture adhering to it from the surrounding atmosphere, causing the thermosetting resin to deteriorate even after curing. There was a drawback that the deterioration of the magnetic powder progressed and the surface condition of the bonded magnetic material produced, as well as the reliability of the magnetic properties, were lacking.

かかる問題点の解消の為に、本発明の技術課題は、ボン
ド磁性体の寸法安定性及び耐食性の向上が可能なボンド
磁性体の製造方法を提供することにある。
In order to solve these problems, it is an object of the present invention to provide a method for manufacturing a bonded magnetic material that can improve the dimensional stability and corrosion resistance of the bonded magnetic material.

[課題を解決するための手段] 本発明によれば、磁性粉末と熱硬化性樹脂とを主成分と
する混和物を圧縮成形により所要の形状の成形体とした
後、該成形体表面に光硬化性樹脂を塗布し、該光硬化性
樹脂に硬化用の光を照射して硬化させた後に該熱硬化性
樹脂を硬化させることを特徴とするボンド磁性体の製造
方法が得られる。
[Means for Solving the Problems] According to the present invention, after a mixture containing magnetic powder and a thermosetting resin as main components is formed into a molded body into a desired shape by compression molding, light is applied to the surface of the molded body. A method for manufacturing a bonded magnetic material is obtained, which comprises applying a curable resin, curing the photocurable resin by irradiating it with curing light, and then curing the thermosetting resin.

ボンド磁性体の製造方法において、磁性粉末と熱硬化性
樹脂の混和物を圧縮成形した後に、圧縮成形用金型から
抜いた成形体は一般に圧縮成形用金型の寸法より大きい
場合が多い。本現象は一般の金属粉末等の圧縮成形時に
見られるスプリングバックに伴う膨張と同種の現象であ
ると解される。
In a method for producing a bonded magnetic material, after compression molding a mixture of magnetic powder and thermosetting resin, the molded body removed from a compression mold is generally larger in size than the compression mold. This phenomenon is understood to be similar to the expansion associated with springback that is observed during compression molding of general metal powder.

すなわち、スプリングバックに伴う膨張は、圧縮成形の
際に成形体内に生じた圧縮応力が圧縮成形時の圧力から
成形体が開放されることにより、起こると考えられ、上
述した膨張は、成形体の加熱硬化が完了するまで続くと
推定できる。
In other words, the expansion associated with springback is thought to occur when the compressive stress generated inside the molded object during compression molding is released from the pressure during compression molding, and the expansion described above is caused by the compression stress generated inside the molded object during compression molding. It can be assumed that this will continue until heat curing is completed.

本発明者らは、上述した成形体の寸法の膨張に着目し、
本発明を成すに至ったものであり、圧縮成形により得ら
れた成形体の表面に光硬化性樹脂を塗布し硬化させるこ
とにより、上述した応力緩和を光硬化性樹脂硬化層の拘
束によって成形体表面に一様に分散させることにより成
形品の寸法安定性の向上を計ることができることを見い
出し、さらに取扱い時の変形に対しても光硬化性樹脂硬
化層によって高い保形性を持つことを見い出したもので
ある。
The present inventors focused on the expansion of the dimensions of the molded body mentioned above,
The present invention has been achieved by applying a photocurable resin to the surface of a molded body obtained by compression molding and curing it, so that the above-mentioned stress relaxation can be achieved by restraining the cured layer of the photocurable resin. We discovered that it is possible to improve the dimensional stability of molded products by uniformly dispersing it on the surface, and we also discovered that the photocurable resin cured layer has high shape retention even when it is deformed during handling. It is something that

また、磁性粉末が、−例を掲げればネオジウム・鉄・ホ
ウ素等のような腐食され易い合金を用いた場合において
も光硬化性樹脂硬化層によって磁性粉末が周囲雰囲気か
ら遮断される為に周囲雰囲気中に含まれる酸素や水分等
による磁性粉末の劣化を防止でき、ボンド磁性体の表面
状態や磁気特性の信頼性を保つことが出来ることも見い
出し本発明を完成したものである。
In addition, even when the magnetic powder is made of an alloy that is easily corroded, such as neodymium, iron, boron, etc., the magnetic powder is shielded from the surrounding atmosphere by the photocurable resin hardening layer. The present invention was completed based on the discovery that deterioration of the magnetic powder due to oxygen, moisture, etc. contained in the atmosphere can be prevented, and the reliability of the surface condition and magnetic properties of the bonded magnetic material can be maintained.

本発明において、磁性粉末は、Nd−Fe−B粉末はも
ちろん、他の磁性祠料の粉末、例えば、バリウムフェラ
イト、ストロンチウムフェライト、希土類コバルト等の
硬質磁性材料やマンガン亜鉛フェライト、パーマロイ等
の軟質磁性材料など粉末として得られる磁性材料であれ
ば基本的に特に制限は無い。
In the present invention, the magnetic powder includes not only Nd-Fe-B powder but also other magnetic abrasive powders, such as hard magnetic materials such as barium ferrite, strontium ferrite, and rare earth cobalt, and soft magnetic materials such as manganese zinc ferrite and permalloy. There are basically no particular limitations as long as the material is a magnetic material that can be obtained as a powder.

尚、磁性粉末の粒度は特に限定するものではないが、混
合、成形等の作業性、ボンド磁性体の外観等を考慮する
と200μm以下とすることが望ましい。
Although the particle size of the magnetic powder is not particularly limited, it is preferably 200 μm or less in consideration of workability such as mixing and molding, and the appearance of the bonded magnetic material.

また、熱硬化性樹脂は、エポキシ樹脂等が使用できるが
、これに限定されるものではなく、他に不飽和ポリエス
テル樹脂、フェノール樹脂等が使用可能であることはも
ちろんである。
Further, as the thermosetting resin, an epoxy resin or the like can be used, but it is not limited thereto, and it goes without saying that unsaturated polyester resins, phenol resins, etc. can also be used.

さらに、光硬化性樹脂も基本的に不飽和樹脂と光重合開
始剤を主成分とし、特定波長の光によって架橋硬化する
ものであれば適用可能であることはいうまでもない。
Furthermore, it goes without saying that photocurable resins are applicable as long as they basically contain an unsaturated resin and a photopolymerization initiator as main components and are crosslinked and cured by light of a specific wavelength.

[実施例] 次に、本発明を実施例を用いてさらに詳しく説明する。[Example] Next, the present invention will be explained in more detail using examples.

実施例1 純度95%以上のNd、電解鉄、フェロボロンを用意し
、アルゴン雰囲気中で高周波加熱により溶解して鋳込み
、31.1wt%N d −67,9wt%Fe1 、
 Owt%Bなる組成の合金インゴットを得た。次に前
記インゴットをアルゴン雰囲気中で高周波加熱により再
溶解した後、周速35m/secで回転する銅製のロー
ル表面に噴射し、平均厚さ30μmの合金薄帯を得、平
均粒径50μmまで粉砕し粉末とした。
Example 1 Nd, electrolytic iron, and ferroboron with a purity of 95% or more were prepared, melted and cast by high-frequency heating in an argon atmosphere, and 31.1 wt%N d -67.9 wt% Fe1,
An alloy ingot having a composition of Owt%B was obtained. Next, the ingot was remelted by high-frequency heating in an argon atmosphere, and then sprayed onto the surface of a copper roll rotating at a circumferential speed of 35 m/sec to obtain an alloy ribbon with an average thickness of 30 μm, which was ground to an average particle size of 50 μm. It was made into a powder.

ついで前記粉末とビスフェノールA系、エポキシ樹脂を
重量比で97/3となるように秤量し、混合、混練し混
和物を得た。
Next, the powder, bisphenol A system, and epoxy resin were weighed so that the weight ratio was 97/3, and the mixture was mixed and kneaded to obtain a mixture.

次に前記混和物を外径30mm、内径27+n+nなる
金型を用いて3Lon/c/の圧力で圧縮成形をし、5
0個のリング状成形体を得た。
Next, the mixture was compression molded using a mold with an outer diameter of 30 mm and an inner diameter of 27 + n + n at a pressure of 3 Lon/c/.
0 ring-shaped molded bodies were obtained.

ついで、前記リング状成形体の表面に紫外線硬化性アク
リル樹脂を塗布した後、低圧水銀ランプによる紫外線に
て前記紫外線硬化性アクリル樹脂を硬化させた後、前記
リング状成形体を100℃で120分間加熱し硬化を行
ないボンド磁石を得た。
Next, after applying an ultraviolet curable acrylic resin to the surface of the ring-shaped molded body, the ultraviolet curable acrylic resin was cured with ultraviolet rays from a low-pressure mercury lamp, and then the ring-shaped molded body was heated at 100° C. for 120 minutes. A bonded magnet was obtained by heating and curing.

これらの成形体の外径及び内径の寸法を測定し、測定値
より算出した平均値、範囲、標準偏差を第1表に示した
The outer diameter and inner diameter of these molded bodies were measured, and the average value, range, and standard deviation calculated from the measured values are shown in Table 1.

その後、上述した工程で得られたボンド磁石10個を切
断し断面を観察した所紫外線硬化性アクリル樹脂の硬化
層の厚さは平均で7μmであった。
Thereafter, 10 bonded magnets obtained in the above-mentioned process were cut and the cross section was observed, and the average thickness of the cured layer of the ultraviolet curable acrylic resin was 7 μm.

また残りのボンド磁石のうち10個を60℃95%RH
の高温高湿の環境下に保持した所500時間経過しても
ボンド磁石表面にサビ等の変化は見られなかった。
In addition, 10 of the remaining bonded magnets were heated at 60℃95%RH.
No changes such as rust were observed on the surface of the bonded magnet even after 500 hours when it was kept in a high temperature and high humidity environment.

比較例1 実施例1と同様に調整したNd−Fe−B粉末とエポキ
シ樹脂との混和物を実施例1と同様に外径30mm、内
径27mmなる金型を用いて3 ton/cシの圧力で
圧縮成形し50個のリング状成形体を得た。
Comparative Example 1 A mixture of Nd-Fe-B powder and epoxy resin prepared in the same manner as in Example 1 was heated at a pressure of 3 ton/c using a mold with an outer diameter of 30 mm and an inner diameter of 27 mm. Compression molding was performed to obtain 50 ring-shaped molded products.

ついで前記リング状成形体を100℃で120分間加熱
し硬化を行ないボンド磁石を得た。
Next, the ring-shaped molded body was heated at 100° C. for 120 minutes to cure it, thereby obtaining a bonded magnet.

これらの成形体の外径及び内径の寸法を測定し、測定値
より算出した平均値、範囲、標準偏差を第1表に示した
The outer diameter and inner diameter of these molded bodies were measured, and the average value, range, and standard deviation calculated from the measured values are shown in Table 1.

さらに前記ボンド磁石のうち10個を60℃95%RH
の高温高湿の環境下に保持した所、48時間経過時に1
0個全数の表面に目視で確認できるサビが見られた。
Furthermore, 10 of the bonded magnets were heated at 60°C, 95% RH.
1 after 48 hours when kept in a high temperature and high humidity environment.
Visually visible rust was found on the surfaces of all 0 pieces.

以下余白 実施例2 実施例1と同様に調整したNd−Fe−B粉末とエポキ
シ樹脂との混和物を外径20 mm、内径18 mmな
る金型を用いて3Lon/c+ITの圧力で圧縮成形を
し、50個のリング状成形体を得た。
Below is a margin Example 2 A mixture of Nd-Fe-B powder and epoxy resin prepared in the same manner as in Example 1 was compression molded at a pressure of 3Lon/c+IT using a mold with an outer diameter of 20 mm and an inner diameter of 18 mm. 50 ring-shaped molded bodies were obtained.

ついで、前記リング状成形体の表面に紫外線硬化性アク
リル樹脂を塗布した後、低圧水銀ランプによる紫外線に
て前記紫外線硬化性アクリル樹脂を硬化させた後、前記
リング状成形体を100 ’Cで120分間加熱し硬化
を行ないボンド磁石を得た。
Next, after applying an ultraviolet curable acrylic resin to the surface of the ring-shaped molded body, the ultraviolet curable acrylic resin was cured with ultraviolet rays from a low-pressure mercury lamp, and then the ring-shaped molded body was heated at 100'C for 120 minutes. The bonded magnet was cured by heating for a minute.

これらの成形体の外径及び内径の寸法を測定し、測定値
より算出した平均値、範囲、標準偏差を第2表に示した
The outer diameter and inner diameter of these molded bodies were measured, and the average value, range, and standard deviation calculated from the measured values are shown in Table 2.

その後、上述した工程で得られたボンド磁石10個を切
断し、断面を観察した所、紫外線硬化性アクリル樹脂の
硬化層の厚さは平均で6μmであった。
Thereafter, 10 bonded magnets obtained in the above-mentioned process were cut and the cross section was observed, and it was found that the average thickness of the cured layer of the ultraviolet curable acrylic resin was 6 μm.

また残りのボンド磁石のうち10個を60℃95%RH
の高温高湿の環境下に保持した所、5゜0時間経過して
もボンド磁石表面にサビ等の変化は見られなかった。
In addition, 10 of the remaining bonded magnets were heated at 60℃95%RH.
When the bonded magnet was kept in a high temperature and high humidity environment, no changes such as rust were observed on the surface of the bonded magnet even after 5°0 hours.

比較例2 実施例1と同様に調整したNd−Fe−B粉末とエポキ
シ樹脂との混和物を実施例2と同様に外径20龍、内径
18mmなる金型を用いて3ton/cdの圧力で圧縮
成形し50個のリング状成形体を得た。
Comparative Example 2 A mixture of Nd-Fe-B powder and epoxy resin prepared in the same manner as in Example 1 was heated at a pressure of 3 ton/cd using a mold with an outer diameter of 20 mm and an inner diameter of 18 mm in the same manner as in Example 2. Compression molding was performed to obtain 50 ring-shaped molded bodies.

ついで前記リング状成形体を100℃で120分間加熱
し硬化を行ないボンド磁石を得た。
Next, the ring-shaped molded body was heated at 100° C. for 120 minutes to cure it, thereby obtaining a bonded magnet.

これらの成形体の外径及び内径の寸法を測定し、測定値
より算出した平均値、範囲、標準偏差を第2表に示した
The outer diameter and inner diameter of these molded bodies were measured, and the average value, range, and standard deviation calculated from the measured values are shown in Table 2.

さらに前記ボンド磁石のうち10個を60°095%R
Hの高温高湿の環境下に保持した所、48時間経過時に
10個全数の表面に目視で確認できるサビが見られた。
Furthermore, 10 of the bonded magnets are 60°095%R.
When kept under the high temperature and high humidity environment of H, visible rust was observed on the surfaces of all 10 pieces after 48 hours.

以下余白 以上本発明の実施例を従来の方法との対比を交じえて詳
細に説明したが、上述した実施例に限定されず、本発明
の主旨を逸脱しない範囲において種々の変更が可能であ
る。
Although the embodiments of the present invention have been described in detail in the space provided below, including comparison with conventional methods, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present invention. .

[発明の効果〕 以上述べた様に本発明のボンド磁性体の製造方法は磁性
粉末と熱硬化性樹脂とを主成分とする混和物を圧縮成形
により所要の形状の成形体とした後、該成形体表面に光
硬化性樹脂を塗布し、ついで該光硬化性樹脂を硬化させ
た後に該熱硬化性樹脂を硬化させるので、成形体の応力
緩和を光硬化性樹脂硬化層の拘束により成形体表面に一
様に分散させ、かつ高い保形性を持たせることができる
ので、寸法安定性にすぐれたボンド磁石を提供できると
いう効果が有る。
[Effects of the Invention] As described above, the method for producing a bonded magnetic material of the present invention involves compression molding a mixture containing magnetic powder and a thermosetting resin as main components into a molded product having a desired shape, and then molding the mixture into a molded product having a desired shape. Since a photocurable resin is applied to the surface of the molded object, and then the thermosetting resin is cured after the photocurable resin is cured, the stress relaxation of the molded object is suppressed by the restraint of the photocurable resin cured layer. Since it can be uniformly dispersed on the surface and can have high shape retention, it has the effect of providing a bonded magnet with excellent dimensional stability.

さらに磁性粉末が腐食され易い合金の場合には、光硬化
性樹脂硬化層によって磁性粉末が周囲雰囲気から遮断さ
れる為に、周囲雰囲気中に含まれる酸素や水分等による
磁性粉末の劣化を防止できるので、ボンド磁性体の表面
状態や磁気特性の信頼性を保つことができるという効果
も有る。
Furthermore, in the case of alloys where the magnetic powder is easily corroded, the hardened layer of photocurable resin shields the magnetic powder from the surrounding atmosphere, which prevents deterioration of the magnetic powder due to oxygen, moisture, etc. contained in the surrounding atmosphere. Therefore, there is also the effect that the reliability of the surface condition and magnetic properties of the bonded magnetic material can be maintained.

したがって、本発明のボンド磁性体の製造方法は、ボン
ド磁性体の品質安定性向上に寄与するところは非常に大
きく工業上極めて有益である。
Therefore, the method for producing a bonded magnetic material of the present invention greatly contributes to improving the quality stability of the bonded magnetic material, and is extremely useful industrially.

Claims (1)

【特許請求の範囲】[Claims] 1.磁性粉末と熱硬化性樹脂とを主成分とする混和物を
圧縮成形により所要の形状の成形体とした後、該成形体
表面に光硬化性樹脂を塗布し、該光硬化性樹脂を硬化用
の光を照射して硬化させた後に該熱硬化性樹脂を硬化さ
せることを特徴とするボンド磁性体の製造方法。
1. After compression molding a mixture containing magnetic powder and thermosetting resin as main components into a molded body into a desired shape, a photocurable resin is applied to the surface of the molded body, and the photocurable resin is used for curing. A method for producing a bonded magnetic material, which comprises curing the thermosetting resin after curing it by irradiating it with light.
JP3924289A 1989-02-21 1989-02-21 Manufacture of bonded magnetic substance Pending JPH02219206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3924289A JPH02219206A (en) 1989-02-21 1989-02-21 Manufacture of bonded magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3924289A JPH02219206A (en) 1989-02-21 1989-02-21 Manufacture of bonded magnetic substance

Publications (1)

Publication Number Publication Date
JPH02219206A true JPH02219206A (en) 1990-08-31

Family

ID=12547662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3924289A Pending JPH02219206A (en) 1989-02-21 1989-02-21 Manufacture of bonded magnetic substance

Country Status (1)

Country Link
JP (1) JPH02219206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592776A (en) * 2011-01-17 2012-07-18 信浓绢糸株式会社 Magnet and method of manufacturing of the same
CN102763308A (en) * 2010-02-27 2012-10-31 Mbs工程有限公司 Improved magnet rotor assembly with increased physical strength
CN102969116A (en) * 2012-07-20 2013-03-13 横店集团东磁股份有限公司 UV (ultraviolet) solidified bonding magnet and preparation method thereof
JPWO2019004368A1 (en) * 2017-06-29 2020-03-26 信越化学工業株式会社 Method of forming coating on rare earth magnet surface and rare earth magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763308A (en) * 2010-02-27 2012-10-31 Mbs工程有限公司 Improved magnet rotor assembly with increased physical strength
CN102592776A (en) * 2011-01-17 2012-07-18 信浓绢糸株式会社 Magnet and method of manufacturing of the same
JP2012164964A (en) * 2011-01-17 2012-08-30 Shinano Kenshi Co Ltd Magnet and method for manufacturing the same
CN102969116A (en) * 2012-07-20 2013-03-13 横店集团东磁股份有限公司 UV (ultraviolet) solidified bonding magnet and preparation method thereof
JPWO2019004368A1 (en) * 2017-06-29 2020-03-26 信越化学工業株式会社 Method of forming coating on rare earth magnet surface and rare earth magnet

Similar Documents

Publication Publication Date Title
US4832891A (en) Method of making an epoxy bonded rare earth-iron magnet
KR950024221A (en) Manufacturing method of rare earth, iron, boron-based sintered magnet or bond magnet
JPH02219206A (en) Manufacture of bonded magnetic substance
JP2019096816A (en) Composite magnetic material and manufacturing method of core
KR101962020B1 (en) Soft magnetic metal powder and dust core
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JPS60223102A (en) Manufacture of magnetic powder
JPS60194509A (en) Manufacture of resin-bonded type magnet
JPH0480901A (en) Bonded magnet and manufacture thereof
JPH03295206A (en) Soft magnetic powder for magnetic shield, manufacture thereof and magnetic shield material
JP2000077221A (en) Granulated powder for rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH0464202A (en) Bonded magnet and manufacture thereof
JPS63160314A (en) Manufacture of permanent magnet
JPH03108301A (en) Manufacture of composite magnetic material
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPH01310522A (en) Manufacture of resin-bonded type permanent magnet
JPH0394402A (en) Manufacture of bonded magnet
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JPH05217778A (en) Production of fe-ni alloy dust core
JPH02123703A (en) Inorganic-polymer bonded magnet and manufacture thereof
JPH04284602A (en) Manufacture of rare earth-iron-boron-based bonded magnet excellent in dimensional accuracy
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPS61263208A (en) Manufacture of magnetic molded unit
JPS6324607A (en) Rare earth bonded magnet
JPH06302418A (en) Bond-type permanent magnet and its manufacture