JPS6324607A - Rare earth bonded magnet - Google Patents

Rare earth bonded magnet

Info

Publication number
JPS6324607A
JPS6324607A JP61166619A JP16661986A JPS6324607A JP S6324607 A JPS6324607 A JP S6324607A JP 61166619 A JP61166619 A JP 61166619A JP 16661986 A JP16661986 A JP 16661986A JP S6324607 A JPS6324607 A JP S6324607A
Authority
JP
Japan
Prior art keywords
resin
rare earth
magnet
fine powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61166619A
Other languages
Japanese (ja)
Other versions
JP2568511B2 (en
Inventor
Takuo Takeshita
武下 拓夫
Hiroyuki Baba
馬場 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61166619A priority Critical patent/JP2568511B2/en
Publication of JPS6324607A publication Critical patent/JPS6324607A/en
Application granted granted Critical
Publication of JP2568511B2 publication Critical patent/JP2568511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet excellent in heat resistance and oxidation resistance by using a resin of thermosetting polyimide system or a mixed resin containing it by 30wt.% or more as the binder when bonding a fine rare earth alloy powder by means of an organic binder to make a magnet, and blending these resins by 1-5wt.% to the fine powder. CONSTITUTION:A coarse rare earth alloy powder such as SmCo containing 33.8% of Sm for instance obtained by the reduction diffusion process is prepared as the raw material powder and is ground by a ball mill into a fine powder having a particle diameter of about 7mum. On the other hand, as a resin of the thermosetting polyimide system, bismaleimide-triazine resin is used which is liquid at normal temperatures, and it is blended in the proportion of 3% to 97% of the fine powder, added with appropriate acetoned, and they are mixed in the mill into a slurry. Thereafter, the acetone is vaporized and removed from the slurry, which is simultaneously granulated, compression molded in a magnetic field of 15kOe and at a pressure of 5ton/cm<2>, and preserved at 220 deg.C for 10 hours setting the resin to make a magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐熱性および耐酸化性のすぐれた希土類ボ
ンド磁石に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rare earth bonded magnet with excellent heat resistance and oxidation resistance.

〔従来の技術〕[Conventional technology]

一般に、ボンド磁石は、焼結磁石に比べ、磁気特性では
劣るにもかかわらず、物理的強度にすぐれ、かつ形状の
自由度が高いなどの理由から、近年その利用範囲を急速
に広げつつある。
In general, although bonded magnets are inferior in magnetic properties to sintered magnets, their range of use has been rapidly expanding in recent years due to their excellent physical strength and high degree of freedom in shape.

また、ボンド磁石には、圧縮成形タイプ、射出成形タイ
プ、および押出成形タイプがあるが、中でも圧縮成形タ
イプのものは、磁性粉末を高充填できるため、比較的高
い磁気特性が得られることから注目されている。
In addition, there are compression molding types, injection molding types, and extrusion molding types of bonded magnets, but the compression molding type is attracting attention because it can be filled with a high amount of magnetic powder and has relatively high magnetic properties. has been done.

さらに、この圧縮成形タイプのボンド磁石は、有機バイ
ンダとして、金属との接着性にすぐれたエポキシ樹脂を
用い、磁性粉末と液状のエポキシ樹脂とを均一に混合し
た後、磁場成形するか、あるいは磁性粉末を磁場成形し
てから液状エポキシ樹脂を含浸させ、ついで前記エポキ
シ樹脂を加熱硬化するかの方法によって製造されている
Furthermore, this compression molding type bonded magnet uses an epoxy resin with excellent adhesion to metal as an organic binder, and after uniformly mixing magnetic powder and liquid epoxy resin, it is molded in a magnetic field or It is manufactured by a method of magnetically molding powder, impregnating it with liquid epoxy resin, and then heating and curing the epoxy resin.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、有機バインダとしてエポキシ樹脂を用いて製造
した希土類Rンド磁石においては、(a)  上記エポ
キシ樹脂は、希土類合金微粉末に対するぬれ性、および
ガスシールド性が十分でないために、希土類合金微粉末
自体が非常に酸化され易いものであることと合まって、
磁石の使用条件によっては酸化が発生し、磁気特性が損
なわれるようになることから、前記希土類合金微粉末に
対して前工程として耐酸化被膜処理を施すことが必要で
あること。
However, in rare earth R-shaped magnets manufactured using epoxy resin as an organic binder, (a) the epoxy resin has insufficient wettability and gas shielding properties for the rare earth alloy fine powder; Coupled with the fact that it is very easily oxidized,
Depending on the usage conditions of the magnet, oxidation occurs and the magnetic properties are impaired, so it is necessary to apply an oxidation-resistant coating treatment to the rare earth alloy fine powder as a pre-process.

(b)  エポキシ樹脂が耐えられる温度はせいぜい1
50℃程度であり、したがって希土類合金微粉末がこれ
以上の温度に耐えられても、磁石としては、その使用温
度範囲が狭く、かつ低いものとならざるを得ないこと。
(b) The temperature that epoxy resin can withstand is at most 1
The temperature is about 50°C, and therefore even if the rare earth alloy fine powder can withstand temperatures higher than this, the operating temperature range as a magnet is narrow and low.

以上(a)およびの)に示される問題点がある。There are problems shown in (a) and (2) above.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者は、上述のような観点から、耐酸化性
および耐熱性のすぐれた希土類ゼンド磁石を得べく、特
に有機バインダについて研究を行なった結果、有機バイ
ンダとして、エポキシ樹脂に代って、熱硬化型ポリイミ
ド系樹脂を用いると、この熱硬化型ポリイミド系樹脂は
、エポキシ樹脂に比して、長期耐熱性温度が50°C以
上も高いことから、それだけ磁石の耐熱性が向上するよ
うになり、さらに機械的強度、ぬれ性、およびガスシー
ルド性にもすぐれているので、バインダの配合割合を相
対的に減らすことができるようになることから、磁性粉
末の高密度化が可能となシ、高い磁気特性が得られるよ
うになるばかシでなく、磁性粉末に対する耐酸化被膜処
理を必要としないで、すぐれた耐酸化性を得ることがで
きるようになるという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the inventor of the present invention conducted research on organic binders in particular in order to obtain rare earth Zend magnets with excellent oxidation resistance and heat resistance. If thermosetting polyimide resin is used, the long-term heat resistance temperature of thermosetting polyimide resin is 50°C or more higher than that of epoxy resin, so the heat resistance of the magnet will be improved accordingly. In addition, it has excellent mechanical strength, wettability, and gas shielding properties, making it possible to relatively reduce the blending ratio of binder, making it possible to increase the density of magnetic powder. Furthermore, we have found that it is possible to obtain excellent oxidation resistance without the need for oxidation-resistant coating treatment on the magnetic powder, rather than simply obtaining high magnetic properties.

この発明は、上記知見にもとづいてなされたものであっ
て、希土類合金微粉末を有機バインダで結合してなる希
土類ゼンド磁石において、前記有機バインダとして、熱
硬化型ポリイミド系樹脂、または熱硬化型ポリイミド系
樹脂を30重量%以上含有する混合樹脂を用い、かつこ
れらの樹脂を前記希土類合金微粉末に対して1〜5重量
%の割合で配合することによって耐熱性および耐酸化性
を向上せしめた希土類ダンド磁石に特徴を有するもので
ある。
The present invention has been made based on the above knowledge, and provides a rare earth Zend magnet formed by bonding rare earth alloy fine powder with an organic binder, in which the organic binder is a thermosetting polyimide resin or a thermosetting polyimide resin. A rare earth material with improved heat resistance and oxidation resistance by using a mixed resin containing 30% by weight or more of a system resin and blending these resins at a ratio of 1 to 5% by weight with respect to the rare earth alloy fine powder. This is a characteristic of Dando magnets.

なお、この発明の磁石において、有機バインダとじて混
合樹脂を用いる場合には、熱硬化型ポリイミド系樹脂を
30重量%(以下チは重量%を示す〕以上含有したもの
を用いるが、これは熱硬化型ポリイミド系樹脂の含有量
が30%未満では、磁石に所望のすぐれた耐熱性および
耐酸化性を確保することができないからであり、またこ
の場合熱硬化型ポリイミド系樹脂以外の樹脂としては、
硬化の際に水やアルコールを発生しない付加重合り゛イ
ゾの樹脂を用いるのが望ましく、一般的には、例えば従
来有機バインダとして用いられているエポキシ樹脂の7
0%以上を熱硬化型ポリイミド系樹脂で置換した状態で
用いられるものである。
In addition, in the case of using a mixed resin as an organic binder in the magnet of the present invention, one containing 30% by weight or more of a thermosetting polyimide resin is used. This is because if the content of the curable polyimide resin is less than 30%, it is not possible to ensure the desired excellent heat resistance and oxidation resistance in the magnet, and in this case, as the resin other than the thermosetting polyimide resin, ,
It is desirable to use an addition polymerization resin that does not generate water or alcohol during curing.
It is used in a state in which 0% or more of the resin is replaced with thermosetting polyimide resin.

また、この発明の磁石において、有機バインダの配合割
合を1〜5%と限定したのは、その割合が1%未満では
、十分な機械的強度を確保することができないばかりで
なく、磁石成形時の抱き込み空気によって磁性′粉末の
酸化が著しく促進されるようFなり、一方その割合が5
%に越えると、磁性粉末の充填塵が低下するようになり
、磁気特性の低下を招くようになるという理由にもとづ
くものである。
Furthermore, in the magnet of the present invention, the blending ratio of the organic binder is limited to 1 to 5% because if the ratio is less than 1%, not only will sufficient mechanical strength not be ensured, but also when the magnet is molded. The oxidation of the magnetic powder is significantly promoted by the entrained air of F, while the ratio of
This is based on the reason that if the amount exceeds 10%, the amount of dust packed in the magnetic powder will decrease, leading to a decrease in magnetic properties.

さらに、この発明の磁石は、ゴールミルやアトライタミ
ルなどで所定の粒度に調製した希土類合金微粉末を、熱
硬化型ポリイミド系樹脂、またはこれを含有する混合樹
脂と所定の割合に均一に混合し、この場合、例えばアセ
トンのような低沸点溶媒に前記樹脂を溶解し、これを前
記希土類合金微粉末と混合してスラリーとし、このスラ
リーから前記溶媒を蒸発除去する混合手段を用いると、
前記樹−脂の粘度に関係なく比較的容易に均一混合を行
なうことができ、ついで磁場中圧縮底形した後、前記樹
脂を加熱硬化する方法や、前記希土類合金微粉末を磁場
中圧縮成形し、ついでこれに前記樹脂を、望ましくは前
記樹脂の粘匪ヲ低下させる目的で加温した状態で、真空
含浸し、最終的に前記樹脂を加熱硬化する方法などによ
って製造することができ、また、上記の磁場中圧縮成形
は、成形圧カニ 2〜8 tonA、印加磁場二10.
KOe以上の条件で行なうのが望ましい。
Furthermore, the magnet of the present invention is produced by uniformly mixing rare earth alloy fine powder prepared to a predetermined particle size with a gold mill, an attritor mill, etc. with a thermosetting polyimide resin or a mixed resin containing the same at a predetermined ratio. In this case, for example, if the resin is dissolved in a low boiling point solvent such as acetone, this is mixed with the rare earth alloy fine powder to form a slurry, and the mixing means is used to evaporate and remove the solvent from this slurry.
Uniform mixing can be carried out relatively easily regardless of the viscosity of the resin, and there is a method in which the resin is compressed into a bottom shape in a magnetic field and then heated and hardened, or the rare earth alloy fine powder is compression molded in a magnetic field. Then, the resin is vacuum-impregnated, preferably in a heated state for the purpose of reducing the viscosity of the resin, and finally the resin is heated and cured. The above compression molding in a magnetic field was performed at a molding pressure of 2 to 8 tonA and an applied magnetic field of 210.
It is desirable to carry out the test under conditions of KOe or higher.

〔実施例〕〔Example〕

つぎに、この発明の磁石を実施例により具体的に説明す
る。
Next, the magnet of the present invention will be specifically explained using examples.

実施例 1 原料粉末として、還元拡散法によって製造されたSmC
o5 (Sm : 33.8%)からなる組成をもった
希土類合金粗粉末を用意し、この原料粉末ヲキールミル
にて粉砕して平均粒径ニアμmの希土類合金微粉末とし
、−万態硬化型ポリイミド系樹脂として常温で液体のビ
スマレイミドトリアジン樹脂を用意し、この樹脂を前記
希土類合金微粉末:97%に対して、3%の割合で配合
し、適宜のアセトンを加えてヂールミルにて混合して均
一なスラリーとした後、このスラリーからアセトンを蒸
発除去すると同時に造粒し、これを用いて15 KOe
の磁場中、5 ton/crlの圧力で圧縮成形し、つ
いで得られた成形体を温度:220℃に10時間保持の
条件で加熱して、前記樹脂を硬化することによって本発
明磁石1を製造した。
Example 1 SmC produced by reduction diffusion method as raw material powder
A rare earth alloy coarse powder having a composition consisting of o5 (Sm: 33.8%) is prepared, and this raw material powder is pulverized in a Wokir mill to obtain a rare earth alloy fine powder with an average particle size of near μm. Prepare a bismaleimide triazine resin that is liquid at room temperature as a system resin, blend this resin at a ratio of 3% to the rare earth alloy fine powder: 97%, add appropriate acetone, and mix in a dil mill. After making a uniform slurry, acetone is evaporated and removed from this slurry and granulated at the same time, and this is used to make 15 KOe
Magnet 1 of the present invention is produced by compression molding in a magnetic field of 5 tons/crl, and then heating the obtained molded body at a temperature of 220° C. for 10 hours to harden the resin. did.

また、比較の目的で、有機バインダとして、上記3%の
ビスマレイミドトリアジン樹脂に代って、3.5%のフ
ェノールゼラツク型エポキシ樹脂を用い、温度:150
℃に2時間保持の条件で加熱硬化する以外は同一の条件
で従来磁石1を製造した。
For comparison purposes, 3.5% phenol gelatin epoxy resin was used as an organic binder in place of the 3% bismaleimide triazine resin, and the temperature was 150.
Conventional magnet 1 was manufactured under the same conditions except that it was heated and hardened under the conditions of holding at ℃ for 2 hours.

実施例 2 高周波溶解炉で溶解、鋳造して製造した、Sm(C0,
607Cuo、752Feo、3oo Zrb、oxs
)7.9からなる組成をもった希土類合金インゴットを
、M気流中で温度:1200℃に2時間保持して溶体化
した後、室温まで冷却し、引続いて高純度Ar雰囲気中
にて800℃/hrの昇温速度で750℃に昇温しで1
時間保持し、5 ’C/minの冷却速度で400°C
以下まで冷却する熱処理を5回繰り返して磁気硬化した
後、非酸化性雰囲気中でスタンプミルを用いて粗粉砕し
、さらにゼールミルにて微粉砕して平均粒径:30μm
を有する希土類合金微粉末とし、ついでこの希土類合金
微粉末に3%の樟脳を添加して混合し、この結果の混合
粉末から15 KOeの磁場中、5 ton/adの圧
力で成形体を圧縮成形し、この成形体を、減圧下で温度
:200℃に2時間加熱して樟脳を除去した後、これに
熱硬化型ポリイミド系樹脂としてのビスマレイミドトリ
アジン樹脂を、80℃の温度で真空含浸し、引続いて温
度:220℃に10時間加熱して前記樹脂を硬化させる
ことにより、前記磁性粉末:98%、前記樹脂:2%か
らなる本発明磁石2を製造した。
Example 2 Sm (C0,
607Cuo, 752Feo, 3oo Zrb, oxs
) A rare earth alloy ingot having a composition of The temperature was raised to 750℃ at a temperature increase rate of ℃/hr.
Hold for 400°C at a cooling rate of 5'C/min.
After magnetically hardening by repeating the heat treatment of cooling to below 5 times, it is coarsely pulverized using a stamp mill in a non-oxidizing atmosphere, and then finely pulverized using a Zeel mill to have an average particle size of 30 μm.
Next, 3% camphor was added to and mixed with the rare earth alloy fine powder, and a compact was compression molded from the resulting mixed powder at a pressure of 5 ton/ad in a magnetic field of 15 KOe. Then, this molded body was heated under reduced pressure at a temperature of 200°C for 2 hours to remove camphor, and then a bismaleimide triazine resin as a thermosetting polyimide resin was vacuum impregnated at a temperature of 80°C. Then, the resin was cured by heating at a temperature of 220° C. for 10 hours to produce a magnet 2 of the present invention consisting of 98% of the magnetic powder and 2% of the resin.

また、比較の目的で、有機バインダとして、上記ビスマ
レイミドトリアジン樹脂に代って、フェノールゼラツク
型エポキシ樹脂を用い、温度:150℃に2時間保持の
条件で加熱硬化する以外は同一の条件で従来磁石2を製
造した。
For the purpose of comparison, a phenol gelatin epoxy resin was used as an organic binder instead of the bismaleimide triazine resin, and the same conditions were used except that it was heated and cured at a temperature of 150°C for 2 hours. Conventionally, magnet 2 was manufactured.

実施例 3 希土類合金微粉末として、真空アーク溶解によって溶製
したN’d”13.5 Dy1.5 Fe7’1013
s、oからなる組成を有する希土類合金インビットを、
非酸化性雰囲気中でスタンプミルを用いて粗粉砕し、7
ついでゼールミルにて微粉砕して平均粒径:4μmとし
た希土類合金微粉末音用い、かつ熱硬化型ポリイミド系
樹脂としてのビスマレイミドトリアジン樹脂の配合割合
を5%とする以外は、実施例1におけると同一の条件で
本発明磁石3を製造した。
Example 3 N'd"13.5 Dy1.5 Fe7'1013 produced by vacuum arc melting as rare earth alloy fine powder
A rare earth alloy Invit having a composition consisting of s and o,
Coarsely pulverize using a stamp mill in a non-oxidizing atmosphere, and
The same procedure as in Example 1 was then used, except that rare earth alloy fine powder was used and the blending ratio of bismaleimide triazine resin as the thermosetting polyimide resin was 5% by pulverization in a Seel mill to obtain an average particle size of 4 μm. Magnet 3 of the present invention was manufactured under the same conditions as described above.

また、比較の目的で、同じく有機バインダとして、6%
のフェノールノダラツク型エポキシ樹脂を用いる以外は
、同一の条件で従来磁石3を製造した。
Also, for comparison purposes, 6%
Conventional magnet 3 was manufactured under the same conditions except that the phenolic nodalac type epoxy resin was used.

つぎに、この結果得られた本発明磁石1〜3および従来
磁石1〜3から、それぞれ10mmX10mmX10+
+aの寸法をもった試験片を切9出し、この試験片を用
いて磁気特性を測定したところ、第1表に示される結果
を示した。
Next, from the magnets 1 to 3 of the present invention and the conventional magnets 1 to 3 obtained as a result, 10 mm x 10 mm x 10 +
A test piece having a dimension of +a was cut out and the magnetic properties were measured using this test piece, and the results shown in Table 1 were obtained.

また、これらの試験片を用い、本発明磁石1゜2および
従来磁石1,2については、磁束の温度変化を測定し、
さらに本発明磁石3および従来磁石3については、温度
:40°C165%RH平衡の大気中における磁束の経
時変化を測定した。これらの結果を第1〜3図にそれぞ
れ示した。
In addition, using these test pieces, temperature changes in magnetic flux were measured for the magnet 1゜2 of the present invention and conventional magnets 1 and 2.
Furthermore, regarding the magnet 3 of the present invention and the conventional magnet 3, changes in magnetic flux over time in the atmosphere at a temperature of 40° C. and 165% RH equilibrium were measured. These results are shown in Figures 1 to 3, respectively.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明磁石1〜3において
は、これに用いられる熱硬化型ポリイミド系樹脂が従来
磁石1〜3で用いられているエポキシ樹脂に比して機械
的強度およびぬれ性にすぐれているので、有機バインダ
の配合割合を相対的に低くすることができることから、
希土類合金微粉末の高密度化が可能となり、この結果従
来磁石1〜3に比してすぐれた磁気特性をもつようにな
ることが明らかである。
From the results shown in Table 1, the thermosetting polyimide resin used in magnets 1 to 3 of the present invention has a higher mechanical strength and wettability than the epoxy resin used in conventional magnets 1 to 3. Because of its excellent properties, the blending ratio of organic binder can be kept relatively low.
It is clear that it is possible to increase the density of the rare earth alloy fine powder, and as a result, it has superior magnetic properties compared to conventional magnets 1 to 3.

また、第1〜3図に示されるように、熱硬化型ポリイミ
ド系樹脂は、エポキシ樹脂に比してガスシールド性にす
ぐれ、かつ高い長期耐熱性温度を有するので、前記熱硬
化型ポリイミド系樹脂を用いた本発明磁石1〜3は、エ
ポキシ樹脂を用いた従来磁石1〜3に比してすぐれた耐
熱性へおよび耐酸化性を示すことが明らかである。
Furthermore, as shown in Figures 1 to 3, thermosetting polyimide resins have better gas shielding properties and higher long-term heat resistance than epoxy resins. It is clear that magnets 1 to 3 of the present invention using epoxy resin exhibit superior heat resistance and oxidation resistance compared to conventional magnets 1 to 3 using epoxy resin.

上述のように、この発明の希土類ゼンド磁石は、機械的
強度、ぬれ性、およびガスシールド性にすぐれ、かつ高
い長期耐熱性温度を有する熱硬化型ポリイミド系樹脂の
配合によって、すぐれた磁気特性、耐熱性、および耐酸
化性を具備するものである。
As mentioned above, the rare earth Zend magnet of the present invention has excellent mechanical strength, wettability, and gas shielding properties, and has excellent magnetic properties due to the combination of thermosetting polyimide resin that has a high long-term heat resistance temperature. It has heat resistance and oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は、磁束の温度変化を示す関係図、第3図は
磁束の経時変化を示す関係図である。
1 and 2 are relationship diagrams showing changes in magnetic flux with temperature, and FIG. 3 is a relationship diagram showing changes in magnetic flux over time.

Claims (1)

【特許請求の範囲】[Claims]  希土類合金微粉末を有機バインダで結合してなる希土
類ボンド磁石において、前記有機バインダとして、熱硬
化型ポリイミド系樹脂、または熱硬化型ポリイミド系樹
脂を30重量%以上含有する混合樹脂を用い、かつこれ
らの樹脂を前記希土類合金微粉末に対して1〜5重量%
の割合で配合してなる耐熱性および耐酸化性のすぐれた
希土類ボンド磁石。
A rare earth bonded magnet formed by bonding rare earth alloy fine powder with an organic binder, in which a thermosetting polyimide resin or a mixed resin containing 30% by weight or more of a thermosetting polyimide resin is used as the organic binder, and 1 to 5% by weight of the resin based on the rare earth alloy fine powder
A rare earth bonded magnet with excellent heat resistance and oxidation resistance.
JP61166619A 1986-07-17 1986-07-17 High strength with excellent heat and oxidation resistance Expired - Lifetime JP2568511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166619A JP2568511B2 (en) 1986-07-17 1986-07-17 High strength with excellent heat and oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166619A JP2568511B2 (en) 1986-07-17 1986-07-17 High strength with excellent heat and oxidation resistance

Publications (2)

Publication Number Publication Date
JPS6324607A true JPS6324607A (en) 1988-02-02
JP2568511B2 JP2568511B2 (en) 1997-01-08

Family

ID=15834656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166619A Expired - Lifetime JP2568511B2 (en) 1986-07-17 1986-07-17 High strength with excellent heat and oxidation resistance

Country Status (1)

Country Link
JP (1) JP2568511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033205A (en) * 1989-05-30 1991-01-09 Seiko Epson Corp Manufacture of resin coupling type magnet
US5393445A (en) * 1991-12-26 1995-02-28 Daido Tokushuko Kabushiki Kaisha Rare-earth bonded magnet, material and method for manufacturing the same
CN106024234A (en) * 2016-07-26 2016-10-12 徐靖才 Preparation method of light rare earth complex modified sintered samarium-cobalt magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118606A (en) * 1981-01-16 1982-07-23 Seiko Epson Corp Combined type rare-earth magnet
JPS5830107A (en) * 1981-08-17 1983-02-22 Seiko Epson Corp Manufacture of permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118606A (en) * 1981-01-16 1982-07-23 Seiko Epson Corp Combined type rare-earth magnet
JPS5830107A (en) * 1981-08-17 1983-02-22 Seiko Epson Corp Manufacture of permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033205A (en) * 1989-05-30 1991-01-09 Seiko Epson Corp Manufacture of resin coupling type magnet
US5393445A (en) * 1991-12-26 1995-02-28 Daido Tokushuko Kabushiki Kaisha Rare-earth bonded magnet, material and method for manufacturing the same
CN106024234A (en) * 2016-07-26 2016-10-12 徐靖才 Preparation method of light rare earth complex modified sintered samarium-cobalt magnet
CN106024234B (en) * 2016-07-26 2017-10-17 中国计量大学 A kind of light rare earth complex is modified the preparation method of sintered samarium cobalt magnet

Also Published As

Publication number Publication date
JP2568511B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JPH03501190A (en) Epoxy resin bonded rare earth-iron magnet and its manufacturing method
KR950024221A (en) Manufacturing method of rare earth, iron, boron-based sintered magnet or bond magnet
JPH0551656B2 (en)
JPS6324607A (en) Rare earth bonded magnet
JPH04241402A (en) Permanent magnet
JPS62177158A (en) Permanent magnet material and its production
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS62177150A (en) Permanent magnet material and its production
JP3060785B2 (en) Compounding raw materials for manufacturing rare earth bonded magnets
JPS63306603A (en) Material composition of permanent magnet
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH0450725B2 (en)
JPS59191306A (en) Manufacture of temperature sensitive element
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPS63160212A (en) Manufacture of rare earth element-iron-boron magnet
JPS5966103A (en) Preparation of macromolecular compound rare-earth magnet
JPS5863104A (en) Manufacture of fine particle permanent magnet
JPS5966102A (en) Preparation of macromolecular compound rare-earth magnet
JPH05190313A (en) Production of anisotropic smfecn sintered magnet
JPS63308904A (en) Manufacture of bond magnet
JPS5918606A (en) Sintered powder type rare earth magnet
JPH02116103A (en) Manufacture of resin-bonded permanent magnet
JPS5848602A (en) Production of magnet of intermetallic compound

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term