JPH033205A - Manufacture of resin coupling type magnet - Google Patents

Manufacture of resin coupling type magnet

Info

Publication number
JPH033205A
JPH033205A JP1136805A JP13680589A JPH033205A JP H033205 A JPH033205 A JP H033205A JP 1136805 A JP1136805 A JP 1136805A JP 13680589 A JP13680589 A JP 13680589A JP H033205 A JPH033205 A JP H033205A
Authority
JP
Japan
Prior art keywords
resin
powder
granulation
temperature
granulation powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136805A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Kunihiko Hori
堀 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1136805A priority Critical patent/JPH033205A/en
Publication of JPH033205A publication Critical patent/JPH033205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To soften the surface of a granulation powder without any specific shape for forming a shape closer to a sphere and to obtain a granulation powder which can be easily filled into a mold by performing the granulation process after mixture and kneading between a magnetic powder and a resin between curing temperatures of the resin. CONSTITUTION:An alloy with a composition of Sm(Co0.672Fe0.22Cu0.08Zr0.028)0.35 is dissolved and forged under argon gas environment using a high-frequency dissolution furnace, is subjected to solution treatment at an optimum temperature of 1000-1250 deg.C, is subjected to aging at 400-900 deg.C, is crashed to 10-30mum, and is mixed and kneaded with an epoxy resin. It is rounded on a disc which is allowed to vibrate at 40-60 deg.C, thus creating a spherical granulation powder. In this manner, a spherical granulation powder can be obtained, thus enabling supply and filling of material for performing formation at the next process to be made easily and a high products with a small amount of filling depth to be formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、樹脂結合型磁石の製造方法のうちの造粒工程
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a granulation step in a method for manufacturing a resin-bonded magnet.

[従来の技術] 従来、樹脂結合型磁石、特に圧縮成形型磁石の製造工程
においては、次工程の成形工程で金型中に磁性粉末が給
材・充填されやすいように、たとえば顆粒状などになる
ように押出法や粉砕法で造粒していた。
[Prior Art] Conventionally, in the manufacturing process of resin-bonded magnets, especially compression-molded magnets, magnetic powder is formed into granules, etc., so that it can be easily fed and filled into the mold in the next molding process. It was granulated using extrusion or pulverization methods.

[発明が解決しようとする課題] しかし、室温で上記の方法により造粒したものは、球状
ではなく不定形となるため、金型中に磁性粉末を給材・
充填することが困難であるという課題を有する。
[Problem to be solved by the invention] However, the granules granulated by the above method at room temperature are not spherical but have an irregular shape.
The problem is that it is difficult to fill.

本発明は、これらの課題を解決するものであり、その目
的とするところは、成形工程において金型中に給材・充
填しゃすい造粒粉末が作成できる樹脂結合型磁石の製造
方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a method for manufacturing a resin-bonded magnet that can create granulated powder that can be easily fed and filled into a mold during a molding process. It's there.

[課題を解決するための手段] 本発明の樹脂結合型磁石の製造方法は、そのうちの造粒
工程を、樹脂の軟化温度と硬化温度の間の温度で行なう
ことを特徴とする。
[Means for Solving the Problems] The method for manufacturing a resin-bonded magnet of the present invention is characterized in that the granulation step is performed at a temperature between the softening temperature and the curing temperature of the resin.

本発明は、磁性粉末と樹脂との混合・混線の後の造粒工
程を、樹脂の硬化温度と硬化温度の間の温度で行なうこ
とにより、不定形の造粒粉末の表面を軟化させ、突起部
をなだらかにさせることによって、球状に近い形状にす
ることができるのである。
The present invention softens the surface of the irregularly shaped granulated powder by performing the granulation process after mixing and cross-fertilization of the magnetic powder and resin at a temperature between the curing temperature of the resin and the hardening temperature of the resin. By making the part gentle, it is possible to create a shape that is close to a spherical shape.

また、超音波などを併用することによって、より効率的
・高精度に球状に丸めることができる。
In addition, by using ultrasonic waves in combination, it is possible to roll the ball into a ball more efficiently and with high precision.

当然のことながら、樹脂の硬化温度以上で造粒を行なう
ことは、意味のないことである。
Naturally, it is meaningless to perform granulation at a temperature higher than the curing temperature of the resin.

[実施例] 以下、本発明について実施例に基づいて詳細に説明する
[Examples] Hereinafter, the present invention will be described in detail based on Examples.

(実施例−1) S m (C0,672F e 、22Cu、eaZ 
r 、112B) e、3sの組成を有する合金を、高
周波溶解炉を用いてアルゴンガス雰囲気下で溶解・鋳造
し、1000〜1250°Cの最適温度で溶体化処理し
、400〜900°Cで時効を施した後、10〜30μ
mに粉砕して、エポキシ樹脂と混合・混練した。
(Example-1) S m (C0,672F e , 22Cu, eaZ
r, 112B) e, 3s is melted and cast in an argon gas atmosphere using a high frequency melting furnace, solution treated at an optimum temperature of 1000-1250°C, and then melted at 400-900°C. After aging, 10~30μ
The mixture was ground to a size of 1.5 m and mixed and kneaded with an epoxy resin.

これを押出法で顆粒状の造粒粉末とした。これを比較例
とする。また、40〜60°Cで振動を加えた円盤上で
丸め、球状の造粒粉末を作成した。
This was made into granular powder by extrusion. This is taken as a comparative example. Further, the powder was rolled on a disk vibrated at 40 to 60°C to create a spherical granulated powder.

これを本発明とする。This is the present invention.

これらの造粒粉末を、直径11mm、  充填深さ20
mmの金型中に自然に給材・充填させ、70kg/mm
2の成形圧力で圧縮成形した。
These granulated powders were packed with a diameter of 11 mm and a filling depth of 20 mm.
70kg/mm by naturally feeding and filling the material into the mm mold.
Compression molding was performed at a molding pressure of 2.

比較例の重量が5.9g、  成形高さが8.5mmで
あったのに対し、本発明のは8.2g、11.8mmと
多くの磁性粉末が充填できていることが分かる。ちなみ
に、密度は約7 、3 g/cm2と比較例・本発明と
もにほぼ同じ値であり、上記の差が充填のしやすさの差
に依存していることは明らかであり、本発明が有効であ
ることが分かる。
It can be seen that the weight of the comparative example was 5.9 g and the molding height was 8.5 mm, while that of the present invention was 8.2 g and 11.8 mm, indicating that a large amount of magnetic powder could be filled. Incidentally, the density is about 7.3 g/cm2, which is almost the same value for both the comparative example and the present invention, and it is clear that the above difference depends on the difference in ease of filling, and the present invention is effective. It turns out that it is.

(実施例−2) Nd+5Fes2.tBa、3の組成となるように、高
周波溶解炉を用いアルゴンガス雰囲気中で溶解・鋳造し
、得られたインゴットを急冷薄帯製造装置を用い、アル
ゴンガス雰囲気中、直径20mm銅製ロールなどの条件
で急冷薄帯を作成し、300〜800℃の最適の温度で
熱処理を施した。この急冷薄片を実施例−1と同様の方
法を用いて本発明と比較例の造粒粉末を作成した。
(Example-2) Nd+5Fes2. The ingot was melted and cast in an argon gas atmosphere using a high frequency melting furnace so that the composition had a composition of tBa, 3, and the obtained ingot was melted using a quenched ribbon production device in an argon gas atmosphere using a copper roll with a diameter of 20 mm. A quenched ribbon was prepared and heat-treated at an optimal temperature of 300 to 800°C. Granulated powders of the present invention and comparative examples were prepared from the rapidly cooled flakes using the same method as in Example-1.

これらの造粒粉末も、実施例−1と同様に給材・充填の
試験を行なったが、比較例が5.3g、本発明が7.3
g給材することができた。つまり、本発明は、用いる磁
性粉末の種類に依存しないことが分かる。
These granulated powders were also subjected to material feeding and filling tests in the same manner as in Example-1.
We were able to supply g materials. In other words, it can be seen that the present invention does not depend on the type of magnetic powder used.

(実施例−3) 実施例−2で得られた熱処理前の急冷薄片を軽く壊し、
型の中に入れて、アルゴン雰囲気中で、700〜800
°Cの温度で短時間のうちに、20kg/mm2の圧力
で高温圧縮成形を施した。得られた圧密体は、密度がほ
ぼ100%であった。この圧密体を、再びアルゴン雰囲
気中、700〜800°Cの温度で、10 kg/mm
2の圧力で最初の圧縮方向と垂直な方向に高温圧縮成形
を施した。
(Example-3) The quenched flakes obtained in Example-2 before heat treatment were slightly broken,
Place it in a mold and heat it in an argon atmosphere for 700~800℃.
Hot compression molding was carried out at a temperature of °C for a short time and at a pressure of 20 kg/mm2. The compacted body obtained had a density of approximately 100%. This compacted body was heated again at a temperature of 700 to 800°C in an argon atmosphere at a concentration of 10 kg/mm.
Hot compression molding was performed at a pressure of 2 in a direction perpendicular to the initial compression direction.

(すなわち、ダイアップセットを施した。)得られたバ
ルクの磁石の磁気特性は、 1Hc=14.2 [kOeコ Br=12.3 [kG] (BH)max=37.9  [MGOeコであった。
(In other words, die-up setting was performed.) The magnetic properties of the obtained bulk magnet are as follows: 1Hc=14.2 [kOe Br=12.3 [kG] there were.

このバルクの磁石を粉砕し、ポリイミド系の樹脂と混合
、温間で混練した後粉砕して、それを実施例−1,2′
と同様に球状の造粒粉末とした。ポリイミド系の樹脂は
硬化温度が高いことから分かるように、造粒の温度もエ
ポキシ系に比べると高くなるが、軟化温度と硬化温度の
差が大きく、温度制御は容易である。
This bulk magnet was pulverized, mixed with polyimide resin, kneaded warm, and then pulverized.
A spherical granulated powder was prepared in the same manner as above. As can be seen from the fact that polyimide-based resins have a high curing temperature, the granulation temperature is also higher than that of epoxy-based resins, but the difference between softening temperature and curing temperature is large and temperature control is easy.

ここでも、実施例−1,2と同様に、外径16mm、 
 内径14mmのリング状の金型をもちいて、給材・充
填の試験を行なったが、比較例が2.7gに対し、本発
明は3.6g給材することができた。
Here, as in Examples 1 and 2, the outer diameter is 16 mm,
A material feeding/filling test was conducted using a ring-shaped mold with an inner diameter of 14 mm, and the present invention was able to feed 3.6 g of material, compared to 2.7 g in the comparative example.

すなわち、本発明は、用いる磁性粉末の種類だけでなく
、樹脂の種類や金型の種類にも依存しないことが分かる
That is, it can be seen that the present invention does not depend not only on the type of magnetic powder used, but also on the type of resin and the type of mold.

以上、実施例の中で述べてきたように、本発明は、 ・元になる磁石の種類 ・用いる樹脂の種類 ・造粒粉末の作成方法 には、なんら依存しないことは明らかである。As described above in the examples, the present invention ・Type of original magnet ・Type of resin used ・How to make granulated powder It is clear that there is no dependence on

[発明の効果] 以上述べたように、本発明によれば、樹脂結合型磁石の
製造方法のうち造粒工程を、樹脂の軟化温度と硬化温度
の間の温度で行なうことを特徴とすることにより、球状
の造粒粉末が得られるので、次工程の成形の際の金型へ
の給材・充填が容易になることから、小さな充填深さで
背の高い製品を成形できるだけでなく、リング状といっ
た小さな間隙にも容易に充填できるなど、工程の簡略化
[Effects of the Invention] As described above, according to the present invention, the granulation step in the method for manufacturing a resin-bonded magnet is performed at a temperature between the softening temperature and the curing temperature of the resin. Since spherical granulated powder can be obtained, it is easy to feed and fill the mold in the next molding process, which not only allows molding of tall products with a small filling depth, but also enables molding of rings. Simplify the process by easily filling small gaps such as shapes.

低コスト化の実現といった多大の効果を有するものであ
る。
This has many effects such as realizing cost reduction.

以  上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)樹脂結合型磁石の製造方法のうち、造粒工程を樹
脂の軟化温度と硬化温度の間の温度で行なうことを特徴
とする樹脂結合型磁石の製造方法。
(1) A method for manufacturing a resin-bonded magnet, characterized in that the granulation step is carried out at a temperature between the softening temperature and the curing temperature of the resin.
(2)上記造粒工程において超音波を併用する請求項1
記載の樹脂結合型磁石の製造方法。
(2) Claim 1 in which ultrasonic waves are used in combination in the granulation step.
The method for manufacturing the resin-bonded magnet described above.
JP1136805A 1989-05-30 1989-05-30 Manufacture of resin coupling type magnet Pending JPH033205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136805A JPH033205A (en) 1989-05-30 1989-05-30 Manufacture of resin coupling type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136805A JPH033205A (en) 1989-05-30 1989-05-30 Manufacture of resin coupling type magnet

Publications (1)

Publication Number Publication Date
JPH033205A true JPH033205A (en) 1991-01-09

Family

ID=15183926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136805A Pending JPH033205A (en) 1989-05-30 1989-05-30 Manufacture of resin coupling type magnet

Country Status (1)

Country Link
JP (1) JPH033205A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416698A (en) * 1978-07-24 1979-02-07 Seiko Epson Corp Preparing permanent magnet
JPS6324607A (en) * 1986-07-17 1988-02-02 Mitsubishi Metal Corp Rare earth bonded magnet
JPS63216318A (en) * 1987-03-05 1988-09-08 Seiko Epson Corp Manufacture of resin-combined type magnet composed of rare-earth metal and cobalt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416698A (en) * 1978-07-24 1979-02-07 Seiko Epson Corp Preparing permanent magnet
JPS6324607A (en) * 1986-07-17 1988-02-02 Mitsubishi Metal Corp Rare earth bonded magnet
JPS63216318A (en) * 1987-03-05 1988-09-08 Seiko Epson Corp Manufacture of resin-combined type magnet composed of rare-earth metal and cobalt

Similar Documents

Publication Publication Date Title
JP2002015621A5 (en)
KR102100759B1 (en) Manufacturing method of metal powder and metal powder
JPH033205A (en) Manufacture of resin coupling type magnet
JPH05343218A (en) Manufacture of anisotropic powder
JPH056323B2 (en)
JPS60194509A (en) Manufacture of resin-bonded type magnet
CN106098929A (en) The formula of a kind of high-performance bonding rare earth magnetostriction materials and preparation technology
JPS61225814A (en) Manufacture of permanent magnet
JPS59146944A (en) Manufacture of hard ferrite magnet powder
JPH0480901A (en) Bonded magnet and manufacture thereof
JPH03142906A (en) Manufacture of bond magnet
JP2001068315A (en) Atomizing method magnet powder, its manufacturing method and bond magnet using the same
JPH04115505A (en) Preparation of bond magnet
JPS6341004A (en) Anisotropic bonded magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPH05148517A (en) Production of rare earth-transition metal-nitrogen alloy powder
JPH06204017A (en) Resin bond type magnet
JPS62229804A (en) Manufacture of nd-fe-b alloy power for plastic magnet
JPH02251111A (en) Manufacture of resin bonded type rare earth magnet
RU1568361C (en) Process of manufacture of powder - filling agent for composite magnetically hard material
JPS6376305A (en) Magnetic powder for plastic magnet or rubber magnet and manufacture thereof
JPH05144622A (en) Manufacture of compound for bonded magnet
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH0294411A (en) Manufacture of plastic magnet
JPH03108301A (en) Manufacture of composite magnetic material