JPH06204017A - Resin bond type magnet - Google Patents

Resin bond type magnet

Info

Publication number
JPH06204017A
JPH06204017A JP4348863A JP34886392A JPH06204017A JP H06204017 A JPH06204017 A JP H06204017A JP 4348863 A JP4348863 A JP 4348863A JP 34886392 A JP34886392 A JP 34886392A JP H06204017 A JPH06204017 A JP H06204017A
Authority
JP
Japan
Prior art keywords
resin
kneading
type magnet
bond type
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4348863A
Other languages
Japanese (ja)
Inventor
Mitsuru Takei
充 武居
Eiji Hayashi
英二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4348863A priority Critical patent/JPH06204017A/en
Publication of JPH06204017A publication Critical patent/JPH06204017A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a resin bond type magnet of high cost performance by effectively kneading magnetic powder and resin which constitute a resin bond type magnet and by providing granular powder which can be filled into a molding die stably and surely. CONSTITUTION:Thermosetting resin containing two or more kinds of setting agents of different setting velocities are used as a binder of resin bond type magnet. Thereby, although resin is in the state of low viscosity and high kneading efficiency during kneading, a part of fast setting velocity thereof sets as time goes by passing through kneading and granule manufacturing processes, and strength of granule is raised and charge property to a die can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は樹脂結合型磁石に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-bonded magnet.

【0002】[0002]

【従来の技術】現在、生産されている圧縮成形によるの
樹脂結合型磁石は、結合剤として一般的にエポキシ樹脂
が使われる。エポキシ樹脂を結合剤として使用する為に
は樹脂を硬化させる硬化剤が必要となるが、これにはア
ミン系硬化剤、ポリアミド系硬化剤、酸及び酸無水物系
硬化剤、イミダゾール系硬化剤等がある。これらの硬化
剤は樹脂の硬化速度のコントロール、硬化物の機械的強
度、電気特性、耐熱性、耐薬品性等の特徴により使い分
けられており、結合剤として使用する際にはベースとな
るエポキシ樹脂に通常1種類の硬化剤が使われるのが一
般的である。
2. Description of the Related Art At present, resin-bonded magnets produced by compression molding are generally made of epoxy resin as a binder. In order to use an epoxy resin as a binder, a curing agent that cures the resin is required, which includes amine curing agents, polyamide curing agents, acid and acid anhydride curing agents, imidazole curing agents, etc. There is. These curing agents are used properly according to the characteristics such as the control of the curing speed of the resin, the mechanical strength of the cured product, the electrical properties, the heat resistance, and the chemical resistance. When used as a binder, the epoxy resin used as the base Generally, one type of curing agent is generally used.

【0003】エポキシ樹脂は室温で液体状の物、固体の
物、またはその中間的の物等があるが圧縮成形磁石を製
造する際の結合剤として使用する場合、磁石の磁気特性
面から判断する限り液状の樹脂を使うことが最善と考え
られる。これは樹脂を含む磁性粉末を成形金型に入れ成
形する際に樹脂が潤滑剤のの作用をするため成形体の密
度が高く成る為である。
Epoxy resin may be liquid at room temperature, solid, or an intermediate thereof, but when it is used as a binder in the production of compression molded magnets, it is judged from the magnetic properties of the magnet. As far as possible, it is considered best to use liquid resin. This is because the resin acts as a lubricant when the magnetic powder containing the resin is put into the molding die and molded, so that the density of the molded body becomes high.

【0004】液状エポキシ樹脂を使用する場合、磁性粉
末とエポキシ樹脂をロールミル、ニーダー等のシェアー
のかかる装置で長時間混練する。得られた樹脂添加後の
粉末は粉末同士の凝集、樹脂によるべとつきがあり混練
直後の粉末をそのまま成形型に充填し成形することは出
来ないことから、混練後さらに顆粒にする作業を行い成
形金型に充填出来るようにすることが必要となる。
When the liquid epoxy resin is used, the magnetic powder and the epoxy resin are kneaded for a long time in a shearing device such as a roll mill or a kneader. The obtained powder after addition of resin has agglomeration between powders and stickiness due to resin, and it is not possible to fill the powder immediately after kneading into the molding die as it is and mold it. It is necessary to be able to fill the mold.

【0005】しかし、ここで問題になるのが顆粒の強度
である。強度が弱いと金型への充填作業の際に顆粒が壊
れてしまい思うように充填出来ない。つまり顆粒につい
てもある程度の強度が必要となる。この場合、顆粒の強
度を与えているのはエポキシ樹脂の粘性であり、粘度が
高ければ強度が上がり壊れにくい顆粒を得る事が出来る
が、粘度が低いと充分な強度の顆粒が得られず金型への
充填の際に顆粒が壊れてしまう。従って、液状エポキシ
樹脂と言ってもある程度高粘度のエポキシ樹脂を使用す
る必要がある。しかし、高粘度のエポキシ樹脂と磁性粉
末を混練し、成形の際に充分な潤滑作用が得られ様に磁
性粉末全体に均一に分散させることは非常に困難な作業
である。
However, the problem here is the strength of the granules. If the strength is weak, the granules will be broken during the filling work into the mold and the filling cannot be done as expected. In other words, the granules need some strength. In this case, it is the viscosity of the epoxy resin that gives the strength of the granules. If the viscosity is high, the strength increases and it is possible to obtain granules that are not easily broken. Granules break when filling the mold. Therefore, even if it is called a liquid epoxy resin, it is necessary to use an epoxy resin having a somewhat high viscosity. However, it is a very difficult work to knead a high-viscosity epoxy resin and magnetic powder and to uniformly disperse them throughout the magnetic powder so that a sufficient lubricating action can be obtained during molding.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題を解決するものであり、その目的は樹脂結合型希土
類磁石の結合剤として2種類以上の硬化剤を含むエポキ
シ樹脂樹脂を使用することにより成形効率が高く且つ高
密度な樹脂結合型磁石を与えることにある。
SUMMARY OF THE INVENTION The present invention is intended to solve such a problem, and its object is to use an epoxy resin resin containing two or more kinds of curing agents as a binder for a resin-bonded rare earth magnet. This is to provide a resin-bonded magnet with high molding efficiency and high density.

【0007】[0007]

【課題を解決するための手段】本発明は、樹脂結合型希
土類磁石の結合剤として2種類以上の硬化剤を含むエポ
キシ樹脂樹脂を使用することを特徴とする。
The present invention is characterized in that an epoxy resin resin containing two or more kinds of curing agents is used as a binder for a resin-bonded rare earth magnet.

【0008】硬化剤としてアミン系硬化剤を使用した場
合の硬化反応は次の様になる。
The curing reaction when an amine-based curing agent is used as the curing agent is as follows.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【化2】 [Chemical 2]

【0011】[0011]

【化3】 [Chemical 3]

【0012】ここで、反応速度的には化1の反応が最も
速くエチレンジアミン、1,3ジアミノプロパン、1,
4ジアミノブタン、ヘキサメチレンジアミン等の脂肪族
第一アミンの場合は室温で硬化する。一方、硬化剤とし
てドデセニル無水コハク酸、(DDSA)、メチルテト
ラヒドロ無水フタル酸(MeーTHPA)、メチルヘキ
サヒドロ無水フタル酸(Me−HHPA)、無水フタル
酸(PA)等の酸無水物を使用する場合には室温では硬
化しない為に100℃以上の温度に加熱する必要があ
る。
In terms of reaction rate, the reaction of Chemical formula 1 is the fastest, and ethylenediamine, 1,3 diaminopropane, 1,
In the case of an aliphatic primary amine such as 4-diaminobutane or hexamethylenediamine, it cures at room temperature. On the other hand, acid anhydrides such as dodecenyl succinic anhydride, (DDSA), methyltetrahydrophthalic anhydride (Me-THPA), methylhexahydrophthalic anhydride (Me-HHPA), and phthalic anhydride (PA) are used as curing agents. In that case, since it does not cure at room temperature, it must be heated to a temperature of 100 ° C. or higher.

【0013】(エポキシ樹脂ハンドブック:日刊工業新
聞社)硬化剤として第一アミンを用いた場合、その反応
量は化1から分かる様にアミンの持つ活性水素の量で規
定される。そこで、エポキシ樹脂中の全エポキシ基に対
し少ない量の第一アミンを添加すると、室温で数時間放
置することにより硬化反応が起こる。しかし、これは部
分的な硬化反応のために未硬化分を含む樹脂が得られる
事になる、これは、一見樹脂の粘度が上がった状態とし
て捉えられる。次に、残ったエポキシ基を硬化させる為
に酸無水物を加える。しかし、これは室温では硬化せず
硬化させる為には加熱する必要があり、室温では高粘度
のエポキシ樹脂と同じ状態となる。つまり、硬化剤とし
て第一アミンと酸無水物を併用することにより、硬化剤
添加直後は低粘度状態で数時間後に増粘し、それ以降は
粘度変化しない樹脂が得られる事になる。
(Epoxy resin handbook: Nikkan Kogyo Shimbun) When a primary amine is used as a curing agent, the reaction amount thereof is defined by the amount of active hydrogen contained in the amine as shown in Chemical formula 1. Therefore, when a small amount of primary amine is added to all epoxy groups in the epoxy resin, a curing reaction occurs by leaving it at room temperature for several hours. However, this means that a resin containing an uncured component is obtained due to a partial curing reaction, which can be regarded as a state in which the viscosity of the resin is increased. Next, an acid anhydride is added to cure the remaining epoxy groups. However, this does not cure at room temperature and needs to be heated in order to cure it, and at room temperature it is in the same state as a high-viscosity epoxy resin. That is, by using a primary amine and an acid anhydride together as a curing agent, it is possible to obtain a resin that has a low viscosity immediately after the addition of the curing agent and has increased viscosity in a few hours, and has no viscosity change thereafter.

【0014】樹脂結合が磁石の結合剤として硬化速度の
異なる硬化剤を含む樹脂を持ちいる事により、磁性粉末
と樹脂の混練時には低粘度状態にあり混練性がよく、顆
粒状にした際には部分的な硬化反応によって高粘度状態
となり、顆粒の強度が強くなり金型への安定的な充填が
可能となる。
Since the resin bond has a resin containing a curing agent having a different curing rate as a binder for the magnet, the magnetic powder and the resin are in a low viscosity state when kneaded, and the kneading property is good, and when granulated. Due to the partial curing reaction, a high viscosity state is achieved, and the strength of the granules is strengthened, enabling stable filling in the mold.

【0015】以下に本発明について実施例をもとに詳細
に説明する。
The present invention will be described in detail below with reference to examples.

【0016】[0016]

【実施例】【Example】

(実施例1)Sm2Co17系の希土類磁石鋳造合金を
窒素雰囲気のジョークラッシャ及びピンミル、ボールミ
ルで粉砕し、目開き150μmのふるいで分級した。得
られた150μm以下の粉末(平均粒径40μm)にエ
ピコート827(油化シェルエポキシ(株)商品名)と
ジエチレントリアミン0.5phr,MeーTHPA8
0phrの混合液を2.5wt%添加した。 添加後、
ニーダーで1時間混練し、押出機、整流機で約0.5m
mの顆粒を得た。顆粒は製造直後、6H後、24H後、
72H後の圧縮破壊強度を測定した。結果を表1に示
す。値は破壊に要した荷重(g)。
(Example 1) A rare earth magnet cast alloy of Sm2Co17 type was crushed by a jaw crusher, a pin mill and a ball mill in a nitrogen atmosphere, and classified by a sieve having an opening of 150 µm. Epicoat 827 (trade name of Yuka Shell Epoxy Co., Ltd.) and diethylenetriamine 0.5 phr, Me-THPA8 were added to the obtained powder of 150 μm or less (average particle size 40 μm).
2.5 wt% of 0 phr of the mixed solution was added. After addition
Knead for 1 hour with a kneader, and use an extruder and rectifier for about 0.5 m
m granules were obtained. Granules immediately after production, after 6H, after 24H,
The compressive fracture strength after 72H was measured. The results are shown in Table 1. The value is the load required for breaking (g).

【0017】また、混練後24Hの顆粒粉末で金型寸法
外径16mm、内径14mm、充填深さ15mmの成形用金型
に対する充填性のばらつきを比較した。充填性は顆粒粉
末を直径40mmのリングに入れ、金型上を充填に2回
数往復させることで行い、5回毎の金型へ入った粉末重
量で判断した。尚、比較の為に従来法としてジエチレン
トリアミンを含まないエポキシ樹脂をも用いて顆粒状に
したものについても同様の実験を行った。
Further, after the kneading, the dispersion of the filling property was compared for the molding powder having the outer diameter of 16 mm, the inner diameter of 14 mm, and the filling depth of 15 mm with the granulated powder of 24H. The filling property was determined by putting the granular powder in a ring having a diameter of 40 mm, and reciprocating the filling process twice on the mold, and judging by the weight of the powder entering the mold every five times. For comparison, the same experiment was carried out as a conventional method using a granular method using an epoxy resin not containing diethylenetriamine.

【0018】結果を表2に示す。The results are shown in Table 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1から分かる様に、アミン系硬化剤を入
れる事により6時間後には顆粒の強度が入れない物に比
べ約1.6倍になった。また、表2より顆粒の強度が上
がったことにより充填性が安定したことが分かる。
As can be seen from Table 1, the addition of the amine-based curing agent increased the strength of the granules after about 6 hours to about 1.6 times that of the product without the granules. In addition, it can be seen from Table 2 that the packing property is stable due to the increased strength of the granules.

【0022】(実施例2)急冷薄帯法によるNdーFe
−B系の希土類磁石粉末(平均粒径95μm)を窒素雰
囲気のジョークラッシャ及びピンミル、ボールミルで粉
砕し、目開き150μmのふるいで分級した。得られた
150μm以下の粉末(平均粒径32μm)にエピコー
ト827(油化シェルエポキシ(株)商品名)とトリエ
チレンテトラミン0.4phr,ドデセニル無水コハク
酸130phrの混合液を2.0wt%添加した。 添
加後、ニーダーで1時間混練し、押出機、整流機で約
0.5mmの顆粒を得た。顆粒は製造直後、6H後、2
4H後,72H後の圧縮破壊強度を測定した。結果を表
3に示す。値は破壊に要した荷重(g)。
(Embodiment 2) Nd-Fe by the quenched ribbon method
B-type rare earth magnet powder (average particle size 95 μm) was crushed by a jaw crusher, a pin mill and a ball mill in a nitrogen atmosphere, and classified by a sieve having an opening of 150 μm. 2.0 wt% of a mixture of Epicoat 827 (trade name of Yuka Shell Epoxy Co., Ltd.), 0.4 phr of triethylenetetramine and 130 phr of dodecenyl succinic anhydride was added to the obtained powder of 150 μm or less (average particle diameter of 32 μm). . After the addition, the mixture was kneaded with a kneader for 1 hour, and granules of about 0.5 mm were obtained with an extruder and a rectifier. Granules immediately after production, after 6H, 2
The compressive fracture strength after 4H and 72H was measured. The results are shown in Table 3. The value is the load required for breaking (g).

【0023】また、混練後24Hの顆粒粉末で金型寸法
外径16mm,内径14mm、充填深さ15mmの成形用金型
に対する充填性のばらつきを比較した。充填性は顆粒粉
末を直径40mmのリングに入れ、金型上を充填に2回
数往復させることで行い、5回毎の金型へ入った粉末重
量で判断した。尚、比較の為に従来法としてトリエチル
テトラミンを含まないエポキシ樹脂をも用いて顆粒状に
したものについても同様の実験を行った。
Further, after the kneading, the dispersion of the filling property was compared with the molding powder having the outer diameter of 16 mm, the inner diameter of 14 mm and the filling depth of 15 mm with the granulated powder of 24H. The filling property was determined by putting the granular powder in a ring having a diameter of 40 mm, and reciprocating the filling process twice on the mold, and judging by the weight of the powder entering the mold every five times. For comparison, the same experiment was carried out for the conventional method in which the epoxy resin not containing triethyltetramine was also used to make a granule.

【0024】結果を表4に示す。The results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表3から分かる様に、アミン系硬化剤を入
れる事により、6時間後には顆粒の強度が入れない物に
比べ約1.5倍になった。また、表4より顆粒の強度が
上がったことにより充填性が安定したことが分かる。
As can be seen from Table 3, by adding the amine-based curing agent, the strength of the granules after 6 hours was about 1.5 times that of the product without the granules. In addition, it can be seen from Table 4 that the packing property was stable due to the increased strength of the granules.

【0028】(実施例3)急冷薄帯法によるNdーFe
−B系の希土類磁石粉末(平均粒径95μm)を窒素雰
囲気のジョークラッシャ及びピンミル、ボールミルで粉
砕し、目開き150μmのふるいで分級した。得られた
150μm以下の粉末(平均粒径32μm)にエピコー
ト827(油化シェルエポキシ(株)商品名)とトリエ
チレンテトラミン0.4phr,ドデセニル無水コハク
酸130phrの混合液を2.0wt%添加した。添加
後、ニーダーで1時間混練し、押出機、整流機で約0.
5mmの顆粒を得た。顆粒は製造直後、6H後、24H
後、72H後の圧縮破壊強度を測定した。結果を表5に
示す。値は破壊に要した荷重(g)。
(Embodiment 3) Nd-Fe by the quenching ribbon method
B-type rare earth magnet powder (average particle size 95 μm) was crushed by a jaw crusher, a pin mill and a ball mill in a nitrogen atmosphere, and classified by a sieve having an opening of 150 μm. 2.0 wt% of a mixture of Epicoat 827 (trade name of Yuka Shell Epoxy Co., Ltd.), 0.4 phr of triethylenetetramine and 130 phr of dodecenyl succinic anhydride was added to the obtained powder of 150 μm or less (average particle diameter of 32 μm). . After the addition, the mixture was kneaded with a kneader for 1 hour, and then kneaded with an extruder and a rectifier to about 0.
5 mm granules were obtained. Granules immediately after production, 6H, 24H
Then, the compressive fracture strength after 72H was measured. The results are shown in Table 5. The value is the load required for breaking (g).

【0029】また、混練後24Hの顆粒粉末で外径16
mm、内径14mm、厚さ5mmの樹脂結合型磁石を成形し密
度を測定した。尚、比較の為に従来法としてベース樹脂
としてエピコート834(油化シェルエポキシ(株)商
品名)を用いて顆粒状にしたものについても同様の実験
を行った。
After kneading, the outer diameter of the granulated powder of 24H is 16
A resin-bonded magnet having an inner diameter of 14 mm, an inner diameter of 14 mm and a thickness of 5 mm was molded and the density was measured. For comparison, the same experiment was carried out for a conventional method in which granules were formed using Epicoat 834 (trade name of Yuka Shell Epoxy Co., Ltd.) as a base resin.

【0030】結果を表6に示す。The results are shown in Table 6.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】表5から分かる様に、アミン系硬化剤を入
れる事により6時間後には顆粒の強度が製造直後に比べ
約1.7倍になった。また、表6より混練時の樹脂粘度
の低い本発明の方が成形品密度が高くなることが分か
る。
As can be seen from Table 5, the strength of the granules became about 1.7 times after 6 hours by the addition of the amine-based curing agent as compared with immediately after the production. Further, it can be seen from Table 6 that the density of the molded product is higher in the present invention having a lower resin viscosity during kneading.

【0034】[0034]

【発明の効果】以上述べたように、本発明を用いること
により高密度化が可能で且つ充填性の優れた樹脂結合型
磁石の原料顆粒粉末が得られ、結果としてコストパフォ
ーマンスの高い樹脂結合型磁石を得ることが出来る。
INDUSTRIAL APPLICABILITY As described above, the use of the present invention makes it possible to obtain a raw material granule powder for a resin-bonded magnet which can be highly densified and has an excellent filling property, and as a result, a resin-bonded magnet having a high cost performance You can get a magnet.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂結合型磁石の製造において、結合剤
として硬化速度の異なる2種類以上の硬化剤を含む熱硬
化性樹脂を使用することを特徴とした樹脂結合型磁石。
1. A resin-bonded magnet, wherein a thermosetting resin containing two or more kinds of curing agents having different curing rates is used as a binder in the production of the resin-bonded magnet.
【請求項2】 磁石原料として希土類磁石合金を用いる
ことを特徴とした請求項1記載の樹脂結合型磁石。
2. The resin-bonded magnet according to claim 1, wherein a rare earth magnet alloy is used as a magnet raw material.
【請求項3】 希土類磁石合金として、希土類金属及び
鉄を主成分とした合金を用いることを特徴とした請求項
1記載の樹脂結合型磁石。
3. The resin-bonded magnet according to claim 1, wherein an alloy containing a rare earth metal and iron as a main component is used as the rare earth magnet alloy.
【請求項4】 希土類磁石合金として希土類金属及び
鉄、窒素を主成分とした合金を用いることを特徴とした
請求項1記載の樹脂結合型磁石。
4. The resin-bonded magnet according to claim 1, wherein the rare earth magnet alloy is an alloy containing a rare earth metal, iron and nitrogen as main components.
JP4348863A 1992-12-28 1992-12-28 Resin bond type magnet Pending JPH06204017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4348863A JPH06204017A (en) 1992-12-28 1992-12-28 Resin bond type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4348863A JPH06204017A (en) 1992-12-28 1992-12-28 Resin bond type magnet

Publications (1)

Publication Number Publication Date
JPH06204017A true JPH06204017A (en) 1994-07-22

Family

ID=18399899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4348863A Pending JPH06204017A (en) 1992-12-28 1992-12-28 Resin bond type magnet

Country Status (1)

Country Link
JP (1) JPH06204017A (en)

Similar Documents

Publication Publication Date Title
JP7502137B2 (en) Manufacturing method of bonded magnets and compounds for bonded magnets
JP2013522441A (en) Composition for producing magnetic or magnetized molded article, and method for producing the composition
JPH06204017A (en) Resin bond type magnet
JP2020072245A (en) Method of producing bonded magnet and compound for bonded magnet
JPH06107773A (en) Method of producing epoxy resin compound
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP3185458B2 (en) Composition for resin-bonded magnet, resin-bonded magnet and method for producing the same
JP2001068315A (en) Atomizing method magnet powder, its manufacturing method and bond magnet using the same
JP7252768B2 (en) Method for manufacturing rare earth bonded magnet
JP2767982B2 (en) Manufacturing method of rare earth iron based resin magnet structure
JPH05144622A (en) Manufacture of compound for bonded magnet
JPH0982511A (en) Resin bonded magnet and composition therefor
JPH01220417A (en) Manufacture of resin magnet
JP3475897B2 (en) Manufacturing method of resin-bonded magnet
JPH11135314A (en) Composition for resin-bonded magnet and manufacture of resin-bonded magnet
JP2022146469A (en) Granulated powder, compound, mold and bond magnet
JP3185457B2 (en) Composition for resin-bonded magnet, resin-bonded magnet and methods for producing them
JP3182961B2 (en) Composition for bonded magnet and method for producing the same
JPS6136683B2 (en)
JP2023137392A (en) Composition for bonded magnet, method for manufacturing the same, and bonded magnet
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH0555020A (en) Resin-bonded magnet
JPH04337602A (en) Resin combination type magnet
JPH06349615A (en) Composition for resin-bonded magnet, manufacture thereof and resin-bonding magnet using that
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet