JP2767982B2 - Manufacturing method of rare earth iron based resin magnet structure - Google Patents

Manufacturing method of rare earth iron based resin magnet structure

Info

Publication number
JP2767982B2
JP2767982B2 JP2153697A JP15369790A JP2767982B2 JP 2767982 B2 JP2767982 B2 JP 2767982B2 JP 2153697 A JP2153697 A JP 2153697A JP 15369790 A JP15369790 A JP 15369790A JP 2767982 B2 JP2767982 B2 JP 2767982B2
Authority
JP
Japan
Prior art keywords
weight
parts
epoxy resin
rare earth
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2153697A
Other languages
Japanese (ja)
Other versions
JPH0444302A (en
Inventor
彰彦 渡辺
文敏 山下
正美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2153697A priority Critical patent/JP2767982B2/en
Publication of JPH0444302A publication Critical patent/JPH0444302A/en
Application granted granted Critical
Publication of JP2767982B2 publication Critical patent/JP2767982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は支持部材の外周に永久磁石を形成し、モータ
の磁石に使用されるようなバルク状永久磁石構造体の製
造方法に関し、更に詳しくは希土類鉄系合金の超急冷粉
を樹脂によりバルク状に固定化すると同時に支持部材と
ともに一体化した希土類鉄系樹脂磁石構造体を得る製造
方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a permanent magnet structure having a permanent magnet formed on an outer periphery of a support member and used as a magnet of a motor, and more particularly to a rare earth element. The present invention relates to a method for manufacturing a rare earth iron-based resin magnet structure in which a super-quenched powder of an iron-based alloy is fixed in a bulk state with a resin and is integrated with a supporting member.

従来の技術 第1図にモータに使用されるロータ磁石の従来の製造
工程の一例をブロック図で示す。図は希土類鉄系樹脂磁
石を積層電磁鋼板支持部材に直接一体成形したロータ磁
石の構造工程図(特願昭63−46232号)であり、図にお
いて工程Aは磁性粉と樹脂成分とを混合し、コンパウン
ド化する工程、工程Bは一体成形、工程Cは樹脂硬化、
工程Dは軸挿入、工程Eは着磁である。
2. Description of the Related Art FIG. 1 is a block diagram showing an example of a conventional manufacturing process of a rotor magnet used for a motor. The figure is a structural process diagram of a rotor magnet in which a rare earth iron-based resin magnet is directly integrated with a laminated electromagnetic steel sheet support member (Japanese Patent Application No. 63-46232). In the figure, process A is a process in which a magnetic powder and a resin component are mixed. , Compounding process, process B is integral molding, process C is resin curing,
Step D is shaft insertion, and step E is magnetization.

次に図要点である工程Aおよび工程Bを更に詳しく説
明する。
Next, the steps A and B, which are the main points in the figure, will be described in more detail.

先ず工程Aは室温で固体のエポキシ樹脂で希土類鉄系
合金の超急冷粉と液体エポキシ樹脂内包カプセルとを顆
粒状の中間体とし、この中間体に粉末のエポキシ樹脂硬
化剤と滑剤とを混合してコンパウンドとするものであ
る。
First, in step A, an ultra-quenched powder of a rare-earth iron-based alloy and a liquid epoxy resin-encapsulated capsule made of a solid epoxy resin at room temperature are used as a granular intermediate, and a powder epoxy resin hardener and a lubricant are mixed with the intermediate. The compound.

また、工程Bは上記工程Aで得たコンパウンドを室温
で圧縮する粉末成形法を基本とするものであるが、コン
パウンドを金型キャビティー内で圧縮する際に積層電磁
鋼板と一体的なグリーン体とするところに特徴がある。
The step B is based on a powder molding method in which the compound obtained in the step A is compressed at room temperature. However, when the compound is compressed in the mold cavity, a green body integrated with the laminated electromagnetic steel sheet is formed. There is a feature in the place.

発明が解決しようとする課題 しかし、室温で固体のエポキシ樹脂に含まれる低分子
化合物成分は顆粒状コパウンドのブロッキングの原因と
なり、その結果、工程Aでの顆粒状中間体を製造する段
階、或いはまた工程Bでの粉末成形性を著しく低下させ
る欠点があった。一方、室温で固体のエポキシ樹脂に含
まれる高分子化合物成分は工程Bで得られる支持部材と
一体化したグリーン体の寸法精度や一体化強度を低下さ
せる欠点があった。
However, the low molecular weight compound component contained in the epoxy resin which is solid at room temperature causes blocking of the granular compound, and as a result, the step of producing the granular intermediate in the step A, or There was a drawback that the powder moldability in step B was significantly reduced. On the other hand, the polymer compound component contained in the epoxy resin which is solid at room temperature has a drawback that the dimensional accuracy and the integration strength of the green body integrated with the support member obtained in the step B are reduced.

本発明は上記欠点に対して安定した粉末成形性を維持
し、安定した寸法精度と一体化強度を持つ希土類鉄系樹
脂磁石構造体の製造方法を提供することを目的とするも
のである。
An object of the present invention is to provide a method for producing a rare earth iron-based resin magnet structure having stable dimensional accuracy and integrated strength while maintaining stable powder moldability against the above-mentioned drawbacks.

課題を解決するための手段 本発明はエポキシ当量600〜700の室温で固体のビスフ
ェノールAジグリシジルエーテル2〜5重量部、希土類
系合金の超急冷粉93〜96重量部、エポキシ当量が300以
下の液体エポキシ樹脂を内包したカプセル1〜2重量部
とを顆粒状の中間体とし、前記中間体100重量部に適量
の粉末エポキシ樹脂硬化剤と滑剤0.2〜0.5重量部とを混
合してコンパウンド化する工程と、コンパウンドを支持
部材と一体的に成形しグリーン体とする工程と、グリー
ン体の樹脂成分の加熱硬化によりグリーン体と支持部材
とを一体的に鋼体化する工程とを要点とするものであ
る。
Means for Solving the Problems The present invention provides a bisphenol A diglycidyl ether having an epoxy equivalent of 600 to 700 at room temperature, 2 to 5 parts by weight, a super-quenched powder of a rare earth alloy of 93 to 96 parts by weight, and an epoxy equivalent of 300 or less. 1 to 2 parts by weight of a capsule containing a liquid epoxy resin is used as a granular intermediate, and 100 parts by weight of the intermediate is mixed with an appropriate amount of a powdered epoxy resin curing agent and 0.2 to 0.5 parts by weight of a lubricant to be compounded. The main points are a process, a process of forming the compound integrally with the support member to form a green body, and a process of integrally heating and curing the resin component of the green body into a steel body. It is.

作用 以下、本発明を更に詳しく説明する。Operation Hereinafter, the present invention will be described in more detail.

先ず、本発明で言うエポキシ当量600〜700の室温で固
体のビスフェノールAジグリシジルエーテル2〜5重量
部を使用する理由は、分子鎖中にアルコール性水酸基を
有するため金属との親和性が良く、支持部材との一体化
強度や寸法精度の水準を高め、安定させることができる
ことと、広い温度範囲にわたってコンパウンドとしての
粉末成形性を確保できることである。また、2重量部未
満では、一体化強度の水準を保つのが困難であること
と、コンパウンドが顆粒状にならず作業性を低下させる
ばかりか希土類鉄系合金の超急冷粉が樹脂で覆われてな
い部分が発生し、この部分から発錆するからである。ま
た、5重量部を越えると、相対的に希土類鉄系合金の超
急冷粉の含有量が減り、磁気特性の確保が難しくなるか
らである。
First, the reason for using 2 to 5 parts by weight of bisphenol A diglycidyl ether which is a solid at room temperature and having an epoxy equivalent of 600 to 700 in the present invention is that it has an alcoholic hydroxyl group in its molecular chain, so that it has good affinity with metals. That is, the level of integration strength and dimensional accuracy with the support member can be increased and stabilized, and the powder moldability as a compound can be ensured over a wide temperature range. If the amount is less than 2 parts by weight, it is difficult to maintain the level of the integrated strength, and the compound is not granulated to lower the workability, but the super-quenched powder of the rare-earth iron-based alloy is covered with the resin. This is because unformed portions are generated and rust is generated from these portions. On the other hand, if the content exceeds 5 parts by weight, the content of the ultra-quenched powder of the rare-earth iron-based alloy relatively decreases, and it becomes difficult to secure magnetic properties.

本発明で言う希土類的系合金の超急冷粉とは、例えば
希土類鉄系合金をメルトスピニング法で超急冷すること
によりR2−TM14B相(RはNd,Rr,TMはFe,Co)と非晶質相
とを共有する準安定状態の永久磁石材料のことである。
この材料は磁気的に等方性であり、バルク成形時に磁気
異方化の必要がないことや、一般に7.5kG以上の残留滋
束密度を有するので樹脂によりバルク状に成形しても比
較的高い磁気特性を確保できるからである。また、希土
類鉄系合金の超急冷粉を93〜96重量部に特定した理由
は、96重量部を越えると希土類鉄系樹脂磁石構造体とし
ての一体化強度,寸法精度が低下するからであり、一
方、93重量部未満では一体化強度や寸法精度の水準がほ
ぼ一定であるにも拘らず、磁気特性が低下するからであ
る。
The ultra-quenched powder of a rare-earth alloy referred to in the present invention is, for example, an R 2 -TM 14 B phase (R is Nd, Rr, TM is Fe, Co) by ultra-quenching a rare-earth iron-based alloy by a melt spinning method. And a metastable state of a permanent magnet material sharing an amorphous phase.
This material is magnetically isotropic, does not require magnetic anisotropy during bulk molding, and generally has a residual flux density of 7.5 kG or more, so it is relatively high even if it is molded into a bulk with resin This is because magnetic properties can be secured. The reason why the ultra-quenched powder of the rare-earth iron-based alloy is specified as 93 to 96 parts by weight is that if it exceeds 96 parts by weight, the integrated strength and dimensional accuracy of the rare-earth-iron-based resin magnet structure decrease. On the other hand, if the amount is less than 93 parts by weight, the magnetic properties are deteriorated though the level of the integration strength and the dimensional accuracy are almost constant.

次に本発明で言うマイクロカプセルとは、液体エポキ
シ樹脂を内包物質としたものである。例えばホルマリン
縮合系樹脂をセルとした単核球状カプセルが好ましい。
単核球状カプセルとすることでコンパウンドでの均質な
分散性を確保し、セルの架橋密度の調整でセルの熱軟化
を防ぎ、その耐薬品性を高めることで液体エポキシ樹脂
の内包量を70〜85重量%にまで高めることができる。内
包液体エポキシ樹脂のエポキシ当量を300以下に特性し
た理由は300を越えると希土類鉄系樹脂磁石構造体とし
ての一体化強度,寸法精度などの水準が保てないからで
ある。また、1〜2重量に特定した理由は、1重量部未
満では希土類鉄系樹脂磁石構造体としての一体化強度や
寸法精度などが低下し、2重量部を越えると成形の際に
流出する液体エポキシ樹脂が原因でグリーン体のハンド
リング性が低下するからである。なおマイクロカプセル
の一体成形における役割は、先ずコンパウンドの粉末流
動性や重合不活性による貯蔵安定性の確保にある。次に
キャビティー内に充填したコンパウンドを圧縮した時に
生じるマイクロカプセルの物理的破損に起因する内包液
体エポキシ樹脂の流出である。また、セルの破損により
粘調な液体成分が流出することにより圧縮応力の緩和と
支持部材への粘着力の発言である。
Next, the microcapsules referred to in the present invention are those in which a liquid epoxy resin is contained. For example, a mononuclear spherical capsule using a formalin condensation resin as a cell is preferable.
The mononuclear spherical capsule ensures uniform dispersibility in the compound, prevents thermal softening of the cell by adjusting the crosslink density of the cell, and increases the chemical resistance to increase the encapsulation amount of the liquid epoxy resin to 70- Up to 85% by weight. The reason why the epoxy equivalent of the encapsulated liquid epoxy resin is set to 300 or less is that if it exceeds 300, the level of integration strength and dimensional accuracy as a rare earth iron based resin magnet structure cannot be maintained. Also, the reason why the weight is specified to be 1 to 2 parts by weight is that if it is less than 1 part by weight, the integration strength and dimensional accuracy as a rare earth iron-based resin magnet structure decrease, and if it exceeds 2 parts by weight, the liquid that flows out during molding This is because the handleability of the green body is reduced due to the epoxy resin. The role in the integral molding of the microcapsules is first to ensure the powder fluidity of the compound and the storage stability due to polymerization inertness. Next is the outflow of the encapsulated liquid epoxy resin due to physical breakage of the microcapsules that occurs when the compound filled in the cavity is compressed. Also, it is a statement that the viscous liquid component flows out due to the breakage of the cell, thereby alleviating the compressive stress and adhering to the support member.

次に本発明で言う粉末エポキシ樹脂硬化剤とは潜在硬
化性を有するジシアンジアミド、およびその誘導体、各
種カルボン酸ジヒドラジド,アミンおよびその誘導体、
などの群より選ばれる1種または2種以上である、それ
等の粉末エポキシ樹脂硬化剤は室温で固体のエポキシ樹
脂とマイクロカプセルに内包した液体エポキシ樹脂の双
方に対して加熱硬化するに必要な量だけ適宜使用するも
のである。
Next, the powdered epoxy resin curing agent referred to in the present invention is dicyandiamide having latent curability and derivatives thereof, various carboxylic acid dihydrazides, amines and derivatives thereof,
One or more powdered epoxy resin hardeners selected from the group such as those described above are required to heat-cur at room temperature both the solid epoxy resin and the liquid epoxy resin encapsulated in microcapsules. The amount is appropriately used.

次に本発明で言う滑剤とは、例えば脂肪酸金属石鹸類
など一般に粉末成形材料に使用される滑剤を使用するこ
とができる。しかし、その融点は少なくとも使用する粉
末エポキシ樹脂硬化剤による硬化温度よりも高い融点で
あることが望ましい。硬化温度よりも高い融点とする理
由は、滑剤の液化,気化によりグリーン体と支持部材と
の界面やグリーン体中に滑剤の濃度の高い層が形成さ
れ、それによる一体化強度や寸法精度の悪化を防ぐため
である。また、0.2〜0.5重量部に特定した理由は、0.5
重量部を越えると滑剤がグリーン体加熱硬化時に濃度の
高い層を形成し一体化強度の低下を招くからであり、0.
2重量部未満では粉末成形性を高める硬化がほとんど得
られないからである。
Next, as the lubricant in the present invention, a lubricant generally used for powder molding materials such as fatty acid metal soaps can be used. However, its melting point is desirably at least higher than the curing temperature of the powdered epoxy resin curing agent used. The reason for setting the melting point higher than the curing temperature is that the liquefaction and vaporization of the lubricant forms a layer with a high concentration of the lubricant at the interface between the green body and the support member and in the green body, thereby deteriorating the integration strength and dimensional accuracy. It is to prevent. In addition, the reason specified in 0.2 to 0.5 parts by weight is 0.5
When the amount exceeds the weight part, the lubricant forms a high-concentration layer at the time of heat curing of the green body and causes a decrease in integration strength.
If the amount is less than 2 parts by weight, hardening for improving powder moldability can hardly be obtained.

実施例 以下、に本発明を実施例により説明する。Examples Hereinafter, the present invention will be described with reference to Examples.

先ず本発明の実施例で使用した支持部材は板厚0.5mm
の電磁鋼板を外径48mm,内径8mmに打ち抜き、22枚積層し
た積層電磁鋼板であり、その外周面に肉厚1.10mmの環状
樹脂磁石を一体的に成形した薄肉環状樹脂磁石構造体を
例示するが、本発明はこれに限定されるものではない。
First, the supporting member used in the embodiment of the present invention has a thickness of 0.5 mm.
This is an example of a thin-walled annular resin magnet structure that is a laminated electromagnetic steel sheet obtained by punching out an electromagnetic steel sheet of 48 mm in outer diameter and 8 mm in inner diameter and laminating 22 sheets, and integrally forming an annular resin magnet having a thickness of 1.10 mm on the outer peripheral surface thereof. However, the present invention is not limited to this.

次に本発明例と比較例の成分配合は下記重量部を基準
とした。
Next, the components of the present invention and comparative examples were based on the following parts by weight.

室温で固体のエポキシ樹脂 4.0 希土類鉄系合金の超急冷粉 93.7 液体エポキシ樹脂内包マイクロカプセル 1.3 粉末エポキシ樹脂硬化剤 0.52 滑剤 0.4 ただし、本発明では室温で固体のエポキシ樹脂はエポ
キシ当量が600〜700のビスフェノールAジグリシジルエ
ーテルであり、マイクロカプセルに内包されている液体
エポキシ樹脂はエポキシ当量が300以下であることが必
要である。
Epoxy resin solid at room temperature 4.0 Ultra quenched powder of rare-earth iron-based alloy 93.7 Microcapsules containing liquid epoxy resin 1.3 Powder epoxy resin hardener 0.52 Lubricant 0.4 However, in the present invention, the epoxy equivalent of room temperature solid epoxy resin has an epoxy equivalent of 600 to 700. The liquid epoxy resin which is bisphenol A diglycidyl ether and is encapsulated in microcapsules needs to have an epoxy equivalent of 300 or less.

次に本発明例と比較例の希土類鉄系樹脂磁石構造体の
製造工程は第1図工程Aにおいて下記(a),(b)を
基準とした。
Next, the steps of manufacturing the rare earth iron-based resin magnet structures of the present invention example and the comparative example were based on the following (a) and (b) in step A of FIG.

(a) 室温で固体のエポキシ樹脂、希土類鉄系合金の
超急冷粉、マイクロカプセルを粒子径53〜500μmの顆
粒状の中間体とする工程。
(A) A step of using a rapidly quenched powder of an epoxy resin, a rare earth iron-based alloy, and microcapsules, which are solid at room temperature, as a granular intermediate having a particle diameter of 53 to 500 μm.

(b) 顆粒状の中間体に平均粒子径10μmの潜在性ア
ミン系粉末エポキシ樹脂硬化剤と平均粒子径6μmの滑
剤(ステアリン酸カルシウム)とを混合してコンパウン
ド化する工程。
(B) A step of mixing the granular intermediate with a latent amine-based epoxy resin curing agent having an average particle diameter of 10 μm and a lubricant (calcium stearate) having an average particle diameter of 6 μm to form a compound.

次に、第1図工程Bでは下記(c)を基準とした。 Next, in the step B of FIG. 1, the following (c) was used as a reference.

(c) コンパウンドを圧密化しつつ、予め室温で固体
のエポキシ樹脂の軟化温度以上に加熱した支持部材と一
体的なグリーン体を直接成形する工程。
(C) a step of directly molding a green body integral with the support member which has been previously heated at room temperature or higher to the softening temperature of the solid epoxy resin while consolidating the compound.

次に、第1図工程Cは下記(d)を基準とした。 Next, FIG. 1 step C was based on the following (d).

(d) グリーン体のエポキシ樹脂成分の加熱硬化によ
りグリーン体と支持部材とを一体的に剛体化する工程。
(D) a step of integrally hardening the green body and the support member by heating and curing the green body epoxy resin component;

なお、上記工程によって得られた希土類鉄系樹脂磁石
構造体の一体化強度は支持部材である積層電磁鋼板を固
定し、樹脂磁石の一方の端面に均等にクロスヘッド速度
10mm/minで荷重を加えたときの剪断破壊荷重とし、寸法
精度は希土類鉄系樹脂磁石構造体の外径寸法の変化率
(膨張)を金型基準で求めた。
In addition, the integrated strength of the rare earth iron-based resin magnet structure obtained by the above process is determined by fixing the laminated electromagnetic steel sheet as a support member and uniformly setting the crosshead speed on one end face of the resin magnet.
As the shear fracture load when a load was applied at a rate of 10 mm / min, the dimensional accuracy was obtained by changing the rate of expansion (expansion) of the outer diameter of the rare-earth iron-based resin magnet structure on the basis of a mold.

(エポキシ当量600〜700のビスフェノールAジグリシジ
ルエーテルの効果) ビスフェノールAジグリシジルエーテルでエポキシ当
量を異にする4種を用いて希土類鉄系樹脂磁石構造体と
した。
(Effect of Bisphenol A Diglycidyl Ether having Epoxy Equivalent of 600 to 700) A rare earth iron-based resin magnet structure was prepared using four kinds of bisphenol A diglycidyl ether having different epoxy equivalents.

第2図はビスフェノールAジグリシジルエーテルのエ
ポキシ当量に対する寸法精度と一体化強度を示す特性図
であり、第3図はビスフェノールAジグリシジルエーテ
ルのエポキシ当量に対する10℃を基準としそれより室温
の45℃でコンパウンドの粉末流動性の安定度を示す特性
図である。(粉末流動度はJIS又は2502による)第2図
および第3図から明らかなように、エポキシ当量が600
〜700の範囲で寸法精度と一体化強度が優れ、しかもコ
ンパウンドの粉末成形性も優れたものとなる。すなわ
ち、エポキシ当量が600未満の範囲では、樹脂成分に含
まれる低分子化合物成分が原因でブロッキングを引き起
し、第1図においての工程Aでの顆粒状中間体を得る段
階での歩留りや、工程Bでの粉末成形性を低下させるば
かりか、一体化強度や寸法精度の水準も不安定となる。
また、700を越える範囲のエポキシ当量では高分子化合
物成分の影響によって寸法精度や一体化強度を低下させ
るのである。
FIG. 2 is a characteristic diagram showing dimensional accuracy and integration strength of bisphenol A diglycidyl ether with respect to the epoxy equivalent, and FIG. 3 is based on 10 ° C. with respect to the epoxy equivalent of bisphenol A diglycidyl ether with 45 ° C. at room temperature. 3 is a characteristic diagram showing stability of powder flowability of the compound. (Powder fluidity is based on JIS or 2502) As is clear from FIGS. 2 and 3, the epoxy equivalent is 600
Within the range of ~ 700, the dimensional accuracy and the integration strength are excellent, and the compound powder formability is also excellent. That is, when the epoxy equivalent is less than 600, blocking occurs due to the low molecular weight compound component contained in the resin component, and the yield at the stage of obtaining the granular intermediate in the step A in FIG. Not only does the powder moldability in step B decrease, but also the level of integration strength and dimensional accuracy become unstable.
On the other hand, when the epoxy equivalent exceeds 700, the dimensional accuracy and the integration strength are reduced due to the influence of the polymer compound component.

(マイクロカプセルに内包されている液体エポキシ樹脂
のエポキシ当量が300以下の効果) 第4図は室温で固体のエポキシ樹脂としてエポキシ当
量600〜700のビスフェノールAジグリシジルエーテルを
使用した場合のマイクロカプセルに内包した液体エポキ
シ樹脂のエポキシ当量に対する希土類鉄系樹脂磁石構造
体の一体化強度を示した特性図である。
(Effect of epoxy equivalent of liquid epoxy resin encapsulated in microcapsule being 300 or less) FIG. 4 shows a microcapsule using bisphenol A diglycidyl ether having an epoxy equivalent of 600 to 700 as a solid epoxy resin at room temperature. FIG. 4 is a characteristic diagram showing the integration strength of a rare earth iron-based resin magnet structure with respect to the epoxy equivalent of a contained liquid epoxy resin.

図から明らかなように、マイクロカプセルに内包すべ
き液体エポキシ樹脂はエポキシ当量が300以下でない
と、一体化強度の水準が維持できない。(滑剤が0.2〜
0.5重量部の効果) 滑剤の存在は第1図の工程Bでの成形動作を円滑に連
続して繰り返すことに効果的であり、またキャビティー
内での圧力の伝達にも効果的てある。
As is clear from the figure, the liquid epoxy resin to be encapsulated in the microcapsules cannot maintain the level of integrated strength unless the epoxy equivalent is 300 or less. (Lubricant 0.2 ~
The effect of 0.5 parts by weight) The presence of the lubricant is effective in smoothly and continuously repeating the molding operation in the step B in FIG. 1, and is also effective in transmitting pressure in the cavity.

第5図は滑剤の含有量に対する、寸法精度と一体化強
度を示す特性図であり、第6図は20℃における滑剤の含
有量に対するコンパウンドのJIS又2502に基づく流動度
を測定し、含有量0.1重量部を基準とした比を示す特性
図である。
FIG. 5 is a characteristic diagram showing the dimensional accuracy and the integrated strength with respect to the lubricant content, and FIG. 6 is a graph showing the flow rate based on JIS or 2502 of the compound with respect to the lubricant content at 20 ° C. It is a characteristic view which shows the ratio based on 0.1 weight part.

滑剤が0.2重量部未満では寸法精度と流動度が低下
し、0.5重量部を越えると滑剤の濃度の高い部分やそれ
自信の層をつくるため一体化強度が低下する。
If the amount of the lubricant is less than 0.2 parts by weight, the dimensional accuracy and the fluidity decrease, and if the amount exceeds 0.5 parts by weight, a portion having a high concentration of the lubricant or a layer of the lubricant itself is formed, so that the integral strength decreases.

発明の効果 本発明の希土類鉄系樹脂磁石構造体の製造方法によれ
ば、コンパウンドの生産性の向上と粉末成形性の安定化
を図ることができ、特に樹脂組成成分とその量を特定す
ることでコンパウンドの生産性とその粉末成形性を向上
でき、さらに寸法精度や一体化強度を向上した希土類鉄
系樹脂磁石構造体を得ることができ、その工業的価値は
大きい。
Effects of the Invention According to the method for producing a rare earth iron-based resin magnet structure of the present invention, it is possible to improve the productivity of the compound and stabilize the powder moldability, and particularly to specify the resin composition component and its amount. As a result, the productivity of the compound and the powder moldability thereof can be improved, and a rare earth iron-based resin magnet structure having improved dimensional accuracy and integrated strength can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかるロータ磁石の製造のブロック
図、第2図は室温で固体のエポキシ樹脂のエポキシ当量
に対する寸法精度と一体化強度を示す特性図、第3図は
室温で固体のエポキシ樹脂のエポキシ当量に対するコン
パウンドの流動度の温度に対する安定性を示す特性図、
第4図はマイクロカプセルに内包されている液体エポキ
シ樹脂のエポキシ当量に対する一体化強度を示す特性
図、第5図は滑剤の含有量に対する一体化強度と寸法精
度を示す特性図、第6図は滑剤の含有量に対する流動度
を示す特性図である。
FIG. 1 is a block diagram of the manufacture of a rotor magnet according to the present invention, FIG. 2 is a characteristic diagram showing dimensional accuracy and integrated strength with respect to an epoxy equivalent of an epoxy resin solid at room temperature, and FIG. Characteristic diagram showing the stability of the fluidity of the compound to the temperature with respect to the epoxy equivalent of the resin,
FIG. 4 is a characteristic diagram showing the integration strength with respect to the epoxy equivalent of the liquid epoxy resin contained in the microcapsule, FIG. 5 is a characteristic diagram showing the integration strength and dimensional accuracy with respect to the lubricant content, and FIG. FIG. 4 is a characteristic diagram showing a fluidity with respect to a lubricant content.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エポキシ当量600〜700の室温で固体のビス
フェノールAジグリシジルエーテル2〜5重量部、希土
類系合金の超急冷粉93〜96重量部、液体エポキシ樹脂内
包カプセル1〜2重量部とを顆粒状の中間体とし、この
中間体100重量部に適量の粉末エポキシ樹脂硬化剤とス
テアリン酸カルシウム0.2〜0.5重量部とを混合してコン
パウンド化する工程と、コンパウンドを支持部材と一体
的に成形しグリーン体とする工程と、グリーン体の樹脂
成分の加熱硬化によりグリーン体と支持部材とを一体的
に剛体化する工程とからなる希土類鉄系磁石構造体の製
造方法。
(1) 2 to 5 parts by weight of bisphenol A diglycidyl ether solid at room temperature having an epoxy equivalent of 600 to 700, 93 to 96 parts by weight of a super-quenched powder of a rare earth alloy, and 1 to 2 parts by weight of a capsule containing a liquid epoxy resin. Into a granular intermediate, mixing 100 parts by weight of this intermediate with an appropriate amount of a powdered epoxy resin curing agent and 0.2 to 0.5 parts by weight of calcium stearate to form a compound, and molding the compound integrally with a support member A method for producing a rare earth iron-based magnet structure, comprising: a step of forming a green body; and a step of integrally hardening the green body and the support member by heat-curing a resin component of the green body.
【請求項2】カプセルの内包する液体エポキシ樹脂はエ
ポキシ当量が300以下である請求項1記載の希土類鉄系
樹脂磁石構造体の製造方法。
2. The method according to claim 1, wherein the liquid epoxy resin encapsulated in the capsule has an epoxy equivalent of 300 or less.
JP2153697A 1990-06-12 1990-06-12 Manufacturing method of rare earth iron based resin magnet structure Expired - Fee Related JP2767982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153697A JP2767982B2 (en) 1990-06-12 1990-06-12 Manufacturing method of rare earth iron based resin magnet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153697A JP2767982B2 (en) 1990-06-12 1990-06-12 Manufacturing method of rare earth iron based resin magnet structure

Publications (2)

Publication Number Publication Date
JPH0444302A JPH0444302A (en) 1992-02-14
JP2767982B2 true JP2767982B2 (en) 1998-06-25

Family

ID=15568149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153697A Expired - Fee Related JP2767982B2 (en) 1990-06-12 1990-06-12 Manufacturing method of rare earth iron based resin magnet structure

Country Status (1)

Country Link
JP (1) JP2767982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180293557A1 (en) * 2017-04-05 2018-10-11 Samsung Sds Co., Ltd. Method of charging electronic currency automatically based on blockchain and system thereof

Also Published As

Publication number Publication date
JPH0444302A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
JP4525678B2 (en) Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same
EP0540504B1 (en) Method for making a resin bonded magnet article
EP1695359B1 (en) Coating formulation and application of organic passivation layer onto iron-based rare earth powders
JP2780422B2 (en) Method for manufacturing resin magnet structure
JPS63194312A (en) Manufacture of resin magnet
JP2767982B2 (en) Manufacturing method of rare earth iron based resin magnet structure
US6007757A (en) Method of producing an anisotropic bonded magnet
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP6393737B2 (en) Rare earth bonded magnet
JP4505902B2 (en) Rare earth bonded magnet
JP4116690B2 (en) Rare earth bonded magnet composition and rare earth bonded magnet
KR920002258B1 (en) Resin-bonded magnet and making method thereof
JP2615781B2 (en) Method for manufacturing resin magnet structure
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP2017130650A (en) Rare earth bond magnet
US10629342B2 (en) Rare earth bonded magnet
JPH01220417A (en) Manufacture of resin magnet
JP2988151B2 (en) Composition for bonded magnet and method for producing the same
JP6370758B2 (en) Rare earth bonded magnet and method for producing rare earth bonded magnet
JP2022146469A (en) Granulated powder, compound, mold and bond magnet
JPS62264602A (en) Ferromagnetic resin composite
JPH0722225A (en) Production of resin magnet structure
JPH04349603A (en) Composite magnet powder for manufacturing bonded magnet
JPH04349602A (en) Solid resin binder-coated composite magnet powder for manufacture of bonded magnet
JPH06204017A (en) Resin bond type magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees