JPS6136683B2 - - Google Patents

Info

Publication number
JPS6136683B2
JPS6136683B2 JP54151257A JP15125779A JPS6136683B2 JP S6136683 B2 JPS6136683 B2 JP S6136683B2 JP 54151257 A JP54151257 A JP 54151257A JP 15125779 A JP15125779 A JP 15125779A JP S6136683 B2 JPS6136683 B2 JP S6136683B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
organic resin
rare earth
compound
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54151257A
Other languages
Japanese (ja)
Other versions
JPS5675544A (en
Inventor
Mitsutaka Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP15125779A priority Critical patent/JPS5675544A/en
Publication of JPS5675544A publication Critical patent/JPS5675544A/en
Publication of JPS6136683B2 publication Critical patent/JPS6136683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類金属とCoからなる金属間化合
物の粉末と有機物樹脂からなる結合剤とからなる
希土類金属間化合物磁石に関する。 一般に、希土類金属とCoからなる金属間化合
物磁石は、焼結法や鋳造法によつて所定の形状に
成形されていたが、このようにして得られた磁石
は、強度が著しく低く、脆いという性質を有する
ため、機械加工を施すと割れや欠けが発生して製
品として使用できなくなつてしまうという欠点を
有していた。 この欠点を解決するため、金属間化合物の粉末
と有機物樹脂とを混合し、この有機物樹脂を結合
剤として金属間化合物の粉末どうしを結合させる
ことにより、機械的強度を向上させた樹脂結合型
の金属間化合物磁石が考えられているが、この磁
石の場合は、有機物樹脂の量を多くすると、機械
的強度は向上するが、磁気性能が著しく低下して
しまい、実用範囲が限られてしまうという欠点を
有していた。 本発明は、これらの欠点を解決するためになさ
れたもので、有機物樹詩の量を少なくしても実用
上充分な機械的強度を有する樹脂結合型の希土類
金属間化合物磁石を提供することを目的とするも
のである。 従来、精密小型機器用に開発された磁石は、磁
気性能の低下を最少限に押えるため、有機物樹脂
の含有量を2wt%前後に押えている。本発明者
は、この程度の含有量では、本来金属間化合物と
有機物樹脂とのぬれ性が非常に悪いため、金属間
化合物の粉末と有機物樹脂との密着性が悪く、ま
た均一にならないため、部分的に粉末間の結合力
の著しく低い部分ができ、そのために強機械的強
度が期待したほどの値にならないのではないかと
推測し、このぬれ性を改善することによつて結合
力を高めることができるものと考え、本発明に至
つたものである。 すなわち本発明の希土類金属間化合物磁石は、
Sm.Y.Ce.ミツシユメタルなどの希土類金属とCo
からなる金属間化合物と有機物樹脂からなる結合
剤と、一般式が (R)n-oM(X)o (但し、Rは非加水分解基、Mは金属、Xは加
水分解基を表わし、mはMの原子価、nは1以上
でかつmより小さい整数を示す。) で表わされる少なくとも1個の非加水分解基を
有する有機金属化合物とからなることを特徴とす
る。 この有機金属化合物は、金属間化合物と有機物
樹脂の双方とぬれ性がよく、したがつてこの有機
金属化合物を仲介として、金属間化合物と有機物
樹脂とのねれ性が改善される。すなわち、上記一
般式における加水分解基は、熱分解して金属間化
合物と化学結合し、また非加水分解基は、有機物
樹脂と有機結合もしくは樹脂の鎖が物理的におら
みあい、結果的に金属間化合物と有機物樹脂との
密着性が向上し、必然的に強械的強度が向上する
ものである。また、有機物樹脂の量が従来と同じ
であれば、機械的強度は大きくなるから、従来と
同じ強度で良ければ、樹脂の量は少なくても良い
から、その分磁気性能を向上させることができ
る。 なお、本発明に使用する有機金属化合物は、非
加水分解基を少なくとも1個有することが必須の
要件である。なぜなら、加水分解基のみ有する有
機金属化合物では、加水分解基が分解して無機化
合物となつてしまうため、有機物樹脂とのぬれ性
は従来と何ら変わらなくなつてしまうためであ
る。 以下、実施例に基づき、本発明を詳細に説明す
る。 実施例 1 重量比でSmが33.5%、Coが66.5%のSmCo5
属間化合物を、粒度5〜10μの微粉末にした後、
エタノールを溶媒とする表1に示すような有機金
属化合物の5%溶液を微粉末中に含浸させた、こ
の時の微粉末と溶液との比は体積比で1:0.5と
した。しかる後、この微粉末を150℃に加熱し、
エタノールを揮発させた後、可撓性エポキシ樹脂
を1.2wt%混合分散し、その後磁場中で圧縮成形
した。成形体の形状は直径20mm、の円板状とし
た。 また、比較例として有機金属化合物との混合工
程を省略し、他の製造条件を同一にした磁石も製
造した。 表1に製造条件を表2に諸特性を示す。
The present invention relates to a rare earth intermetallic compound magnet made of intermetallic compound powder made of a rare earth metal and Co, and a binder made of an organic resin. Generally, intermetallic compound magnets made of rare earth metals and Co are formed into a predetermined shape by sintering or casting, but the magnets obtained in this way have extremely low strength and are brittle. Due to its properties, it has the disadvantage that if it is machined, it will crack or chip, making it unusable as a product. In order to solve this drawback, we have developed a resin-bonded type that improves mechanical strength by mixing intermetallic compound powder and organic resin and using this organic resin as a binder to bond the intermetallic compound powders together. Intermetallic compound magnets are being considered, but in the case of these magnets, increasing the amount of organic resin improves the mechanical strength, but the magnetic performance drops significantly, limiting the range of practical use. It had drawbacks. The present invention was made to solve these drawbacks, and aims to provide a resin-bonded rare earth intermetallic compound magnet that has sufficient mechanical strength for practical use even with a reduced amount of organic dendritic material. This is the purpose. Conventionally, magnets developed for small precision devices have kept the organic resin content to around 2wt% in order to minimize deterioration in magnetic performance. The present inventor believes that at this level of content, the wettability between the intermetallic compound and the organic resin is originally very poor, so the adhesion between the intermetallic compound powder and the organic resin is poor, and it is not uniform. We speculate that there are areas where the bonding strength between the powders is extremely low, which is why the strong mechanical strength does not reach the expected value, and we can increase the bonding strength by improving this wettability. This is what led to the present invention. That is, the rare earth intermetallic compound magnet of the present invention is
Rare earth metals such as Sm.Y.Ce. Mitsushi metal and Co
A binder consisting of an intermetallic compound consisting of (the valence of M, n is an integer greater than or equal to 1 and less than m). This organometallic compound has good wettability with both the intermetallic compound and the organic resin, and therefore, the wettability between the intermetallic compound and the organic resin is improved through this organometallic compound. That is, the hydrolyzable group in the above general formula is thermally decomposed and chemically bonds with the intermetallic compound, and the non-hydrolyzable group is the organic resin and the organic bond or the resin chain is physically intertwined, resulting in metal formation. This improves the adhesion between the intermediate compound and the organic resin, which inevitably improves the mechanical strength. In addition, if the amount of organic resin is the same as before, the mechanical strength will be greater, so if the same strength as before is sufficient, the amount of resin may be smaller, so the magnetic performance can be improved accordingly. . Note that it is essential that the organometallic compound used in the present invention has at least one non-hydrolyzable group. This is because in the case of an organometallic compound having only a hydrolyzable group, the hydrolyzable group decomposes and becomes an inorganic compound, so that the wettability with an organic resin is no different from that of the conventional compound. Hereinafter, the present invention will be explained in detail based on Examples. Example 1 After grinding a SmCo 5 intermetallic compound containing 33.5% Sm and 66.5% Co by weight into a fine powder with a particle size of 5 to 10μ,
A 5% solution of an organometallic compound as shown in Table 1 using ethanol as a solvent was impregnated into the fine powder, and the ratio of the fine powder to the solution was 1:0.5 by volume. After that, this fine powder is heated to 150℃,
After volatilizing the ethanol, 1.2 wt% of flexible epoxy resin was mixed and dispersed, and then compression molded in a magnetic field. The shape of the compact was a disc with a diameter of 20 mm. In addition, as a comparative example, a magnet was also produced in which the mixing step with the organometallic compound was omitted and the other production conditions were the same. Table 1 shows the manufacturing conditions, and Table 2 shows the various characteristics.

【表】【table】

【表】 なお、抗折力試験は、2.5φ×10mmの棒状に
成形した試料を用いて行なつた。 表2に示されているように、本発明による磁石
は機械的強度が向上していることがわかる。 実施例 2 実施例1と同様の微粉末を用い、表3に示す製
造条件で、有機物樹脂の量を変化させて、諸特性
を比較した。諸特性を表4に示す。
[Table] The transverse rupture strength test was conducted using a sample formed into a rod shape of 2.5φ x 10mm. As shown in Table 2, it can be seen that the magnet according to the present invention has improved mechanical strength. Example 2 Using the same fine powder as in Example 1, various properties were compared under the manufacturing conditions shown in Table 3, with varying amounts of organic resin. Various properties are shown in Table 4.

【表】【table】

【表】 表4に示されているように、本発明によれば、
半分以下の樹脂量でも同一の強度が得られてお
り、その分磁気性能が向上している。 以上、実施例は希土類金属間化合物−Co磁石
の代表組成であるSnCo5について述べたが、例え
ば他の希土類金属間化合物−Co17、希土類金属間
化合物−Co3などの結晶磁気異方性の大きい希土
類金属とCoあるいはCoの一部を他の金属で置換
した金属間化合物についても同様有効である。ま
た、有機金属化合物はチタン、シリコン、クロム
などどの様な有機金属化合物でもよく、あるいは
一種もしくは二種類以上混合使用してもよい。さ
らに、有機物樹脂は可撓性エポキシに限定しなく
てもよく、塩化ビニール、ゴム等でもよい。 さらには、希土類金属間化合物に限らず、樹脂
タイプ磁石に本発明を応用することも可能であ
る。
[Table] As shown in Table 4, according to the present invention,
The same strength is obtained even with less than half the amount of resin, and the magnetic performance is improved accordingly. In the above examples, SnCo 5 , which is a typical composition of rare earth intermetallic compound-Co magnets , has been described. The same effect can be applied to large rare earth metals and Co, or intermetallic compounds in which a portion of Co is replaced with another metal. Further, the organometallic compound may be any organometallic compound such as titanium, silicon, or chromium, or may be used alone or in combination of two or more kinds. Furthermore, the organic resin need not be limited to flexible epoxy, but may also be vinyl chloride, rubber, or the like. Furthermore, the present invention can be applied not only to rare earth intermetallic compounds but also to resin type magnets.

Claims (1)

【特許請求の範囲】 1 Sm.Y.Ce.ミツシユメタルなどの希土類金属
とCoからなる金属間化合物と、有機物樹脂から
なる結合剤と、一般式が (R)n-oM(X)o (但し、Rは非加水分解基、Mは金属、Xは加
水分解基を表わし、mはMの原子価、nは1以上
でかつmより小さい整数を示す。) で表わされる少なくとも1個の非加水分解基を
有する有機金属化合物とからなることを特徴とす
る希土類金属間化合物磁石。
[Claims] 1 An intermetallic compound consisting of a rare earth metal such as Sm.Y.Ce. Mitsushi metal and Co, a binder consisting of an organic resin, and a general formula of (R) no M(X) o (However, R is a non-hydrolyzable group, M is a metal, X is a hydrolyzable group, m is the valence of M, and n is an integer greater than or equal to 1 and less than m. A rare earth intermetallic compound magnet characterized by comprising an organometallic compound having a group.
JP15125779A 1979-11-20 1979-11-20 Rare earth metal intermetallic compound magnet Granted JPS5675544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15125779A JPS5675544A (en) 1979-11-20 1979-11-20 Rare earth metal intermetallic compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15125779A JPS5675544A (en) 1979-11-20 1979-11-20 Rare earth metal intermetallic compound magnet

Publications (2)

Publication Number Publication Date
JPS5675544A JPS5675544A (en) 1981-06-22
JPS6136683B2 true JPS6136683B2 (en) 1986-08-20

Family

ID=15514703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15125779A Granted JPS5675544A (en) 1979-11-20 1979-11-20 Rare earth metal intermetallic compound magnet

Country Status (1)

Country Link
JP (1) JPS5675544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200484U (en) * 1987-06-16 1988-12-23

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658092B2 (en) * 1987-11-20 1997-09-30 エヌオーケー株式会社 Rubber magnet manufacturing method
JPH02123703A (en) * 1988-11-02 1990-05-11 Tokin Corp Inorganic-polymer bonded magnet and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929046A (en) * 1972-07-11 1974-03-15
JPS49134517A (en) * 1972-11-03 1974-12-25
JPS5228696A (en) * 1975-08-29 1977-03-03 Toshiba Corp Resin-ferrite composition
JPS5332331A (en) * 1976-09-06 1978-03-27 Hitachi Ltd Controlling for electrical power converting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929046A (en) * 1972-07-11 1974-03-15
JPS49134517A (en) * 1972-11-03 1974-12-25
JPS5228696A (en) * 1975-08-29 1977-03-03 Toshiba Corp Resin-ferrite composition
JPS5332331A (en) * 1976-09-06 1978-03-27 Hitachi Ltd Controlling for electrical power converting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200484U (en) * 1987-06-16 1988-12-23

Also Published As

Publication number Publication date
JPS5675544A (en) 1981-06-22

Similar Documents

Publication Publication Date Title
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
JPS6136683B2 (en)
JPS61124038A (en) Deflection yoke for electromagnetic deflection type cathode ray tube and manufacture thereof
JPS61184804A (en) Manufacture of bond magnet
JP2000306753A5 (en)
US3432279A (en) Molded magnetic powdered metal
JP4505902B2 (en) Rare earth bonded magnet
JPH07179983A (en) Sintered soft-magnetic material having high electric resistance value and its production
JPS5816002A (en) Production of resin bound permament magnet
JP3060785B2 (en) Compounding raw materials for manufacturing rare earth bonded magnets
JPS6242982B2 (en)
JP3312255B2 (en) Manufacturing method of bonded magnet
JP3475897B2 (en) Manufacturing method of resin-bonded magnet
JPS63306603A (en) Material composition of permanent magnet
JPH10321452A (en) Heat resistant bonded magnet and manufacturing method thereof
JPH0416922B2 (en)
JPH07331392A (en) Material for rare earth-iron-nitrogen compound bond magnet, magnet using the material and production of the magnet
JPH08250311A (en) Resin-bonded isotropic nd-fe-b bonded magnet
JPH02254701A (en) Rare-earth magnet and manufacture thereof
JPH07135104A (en) Manufacture of polymer-rare earth composite magnet
JPS63147302A (en) Composite material for permanent magnet and its manufacture
JPH06349613A (en) Resin-bonded rare-earth magnet
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPS5931205B2 (en) permanent magnet
JPH06318511A (en) High rust-proof rare earth metal bond magnet