JPH0294411A - Manufacture of plastic magnet - Google Patents

Manufacture of plastic magnet

Info

Publication number
JPH0294411A
JPH0294411A JP24698988A JP24698988A JPH0294411A JP H0294411 A JPH0294411 A JP H0294411A JP 24698988 A JP24698988 A JP 24698988A JP 24698988 A JP24698988 A JP 24698988A JP H0294411 A JPH0294411 A JP H0294411A
Authority
JP
Japan
Prior art keywords
powder
magnetic
mixed
nylon
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24698988A
Other languages
Japanese (ja)
Inventor
Koreaki Sato
佐藤 惟陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP24698988A priority Critical patent/JPH0294411A/en
Publication of JPH0294411A publication Critical patent/JPH0294411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase tensile strength, bending strength, hardness, residual magnetic flux density, coerceive force and maximum energy product by a method wherein, when magnetic powder previously coated with a surface modifying agent, resin and solvent are mixed and blended to form a plastic magnet, the magnet is formed by injection molding after the blended material is made powder. CONSTITUTION:The surface of Ba ferrite magnetic powder 1 whose grain diameter is about 1-5mum is covered with material containing surface modifying agent of 0.5-1.3wt.%, and coated by heating. This powder 1, and inbricant composed of nylon 2 of 6-11.8wt.%, and zinc stearate of 0.3-1wt.% are mixed by a high speed mixer. Desired powder 3 is obtained by blending them with a dual-axis extruder in the state of heating at 200-300 deg.C. Nylon of 2-3.9wt.% is again added to the power, which is mixed by the dual-axis extruder and heated and blended at 200-300 deg.C. Next the powder is subjected to injection-molding in a magnetic field. Thereby, the fluidity of the powder is improved, and the irregularity of characteristics is reduced.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明はプラスチック磁石の製造に関するものである。[Detailed description of the invention] A0 Purpose of the invention [Industrial application field] The present invention relates to the manufacture of plastic magnets.

〔従来の技術〕[Conventional technology]

近年、プラスチック磁石はエレクトロニクスの発展に伴
い家電、OA機器、FA機器の産業機器ラムコバルト系
プラスチック磁石は通常各種の磁性粉とバインダーであ
る樹脂と滑剤を十分に混合し、その後200〜300℃
で加熱軟化させ混練し常温で硬化粉砕して顆粒状の粉体
と・し、その粉体を加熱磁界中で押し出し成形、又は射
出成形して製造していた。
In recent years, with the development of electronics, plastic magnets have been used in industrial equipment such as home appliances, OA equipment, and FA equipment. Lamb cobalt-based plastic magnets are usually made by thoroughly mixing various magnetic powders, binder resin, and lubricant, and then heating them at 200 to 300°C.
The powder was softened by heating, kneaded, hardened and pulverized at room temperature to form a granular powder, and the powder was then extruded or injection molded in a heated magnetic field.

磁性粉は細いほど流動性が悪くなると考えられていたが
、むしろ射出成形する際流動性もよ(密度や硬度があが
り、機械的特性がよくなることもわかっている。
It was thought that the finer the magnetic powder, the worse its fluidity, but it is now known that it actually has better fluidity during injection molding (increases density and hardness, and improves mechanical properties).

フェライト系プラスチック磁石の磁性粉は1〜5μmm
の細い粒径とし、又サマリウムコバルト系プラスチック
磁石の磁性粉はSm + CO5O5ラプラスチック磁
石3〜10μmmの粒子径にして、5ffi2GO+7
糸プラスチック磁石では3〜100μmmの粒子径にし
て射出成形する。一般に細い方がよく、細い方が粗い方
とさして流動性も変わらず、従って密度があがるので、
機械的特性である曲げ強度kg/co+2、引っ張り強
度kg/cm2、硬度(ロックウェルR)、密度など高
くなり加工性においても劣化するほどではない。
The magnetic powder of ferrite plastic magnets is 1 to 5 μmm.
The magnetic powder of the samarium cobalt plastic magnet has a particle diameter of 3 to 10 μmm, and the particle size of the samarium cobalt plastic magnet is 5ffi2GO+7.
Thread plastic magnets are injection molded to a particle size of 3 to 100 μmm. In general, the thinner the better, and the fluidity is not much different with the thinner one than with the coarser one, so the density increases.
The mechanical properties such as bending strength kg/co+2, tensile strength kg/cm2, hardness (Rockwell R), and density are increased, but the workability is not so high as to deteriorate.

従来の工程は磁性粉に樹脂を添加して表面被覆し、磁性
粉をコーテングした粉体にナイロン系の樹脂と滑剤を加
え、高速ミキサーで混合する。その後、フェライト系及
びサマリウムコバルト系プラスチック磁石では200〜
300℃で加熱混練する。
The conventional process involves adding resin to magnetic powder to coat the surface, adding nylon resin and lubricant to the magnetic powder-coated powder, and mixing with a high-speed mixer. After that, ferrite type and samarium cobalt type plastic magnets have a
Heat and knead at 300°C.

その後、混練物を粉砕して磁界中で射出成形していた。Thereafter, the kneaded material was crushed and injection molded in a magnetic field.

この工程を単純に書くと、(磁性粉のコーテング)→(
粉体十樹脂十滑剤を混合)→(混線)→(粉砕)→(磁
界中射出成形)の工程を経てプラスチック磁石の製品を
製造していた。
To write this process simply, (magnetic powder coating) → (
Plastic magnet products were manufactured through the following steps: (mixing powder, resin, and lubricant) → (mixing) → (crushing) → (injection molding in a magnetic field).

従来の製造方法による実施例を述べるが、Ba及びSr
フェライト系プラスチック磁石とSm r Coa系及
びSm2Co+7糸プラスチツク磁石の製造方法をすべ
て述べると大変であるので、Sm2Co+。系プラスチ
ック磁石の製造法を述べる。従来のSm2GO+7糸プ
ラスチツク磁石の製造方法によると、−例として磁性粉
10kgに対して表面改質剤としてイソプロビルトリイ
ソステアロイルチタネード30gを混合して磁性粉のま
わりにコーテングする。その後コーテングした粉体にナ
イロン系樹脂としてナイロン−12を600g、滑剤と
してステアリン酸亜鉛60gとを混合し、更に200〜
300℃で加熱混練した後、常温硬化して、これを粉砕
機で粉砕し射出成形用、及び押し出し成形用の粉体とし
て使用し、その粉体を15MKOeの磁界中で射出成形
していた。
An example using a conventional manufacturing method will be described.
It would be difficult to describe all the manufacturing methods for ferrite plastic magnets, Sm r Coa system, and Sm2Co+7 thread plastic magnets, so we will focus on Sm2Co+. The manufacturing method of plastic magnets is described below. According to the conventional manufacturing method of Sm2GO+7 thread plastic magnets, for example, 10 kg of magnetic powder is mixed with 30 g of isoprobyl triisostearoyl titanate as a surface modifier and coated around the magnetic powder. After that, 600 g of nylon-12 as a nylon resin and 60 g of zinc stearate as a lubricant were mixed into the coated powder, and then
After heating and kneading at 300° C., the mixture was cured at room temperature, pulverized with a pulverizer, and used as a powder for injection molding and extrusion molding, and the powder was injection molded in a magnetic field of 15 MKOe.

これらの製法はBaフェライト糸及びSrフェライト系
プラスチック磁石及びSm、Co5第5糸プラスチツク
磁ついても同様なことが言え、一般的に総括して言えば
磁性粉に表面改質剤をコーテングして、その後その粉体
にナイロン糸樹脂及び滑剤を混合し、200〜300℃
で混練した後、常温硬化し粉砕して、その粉砕した粉体
を磁界中で射出成形していた。
These manufacturing methods can be applied to Ba ferrite threads, Sr ferrite plastic magnets, and Sm, Co5 fifth thread plastic magnets.Generally speaking, magnetic powder is coated with a surface modifier, After that, the powder was mixed with nylon thread resin and a lubricant, and heated to 200 to 300℃.
After kneading, the powder was cured at room temperature and pulverized, and the pulverized powder was injection molded in a magnetic field.

表2に従来の各工程の表面改質剤とナイロン糸樹脂と滑
剤の配合量を重量%で示す。
Table 2 shows the compounding amounts of the surface modifier, nylon thread resin, and lubricant in each conventional process in weight percent.

以下余白 〔発明が解決しようとする課題〕 従来の射出成形によるプラスチック磁石の製造方法では
、高い磁気特性を持ったプラスチック磁石を製造しよう
とすると、粉体の含有量を増して密度をあげてゆくこと
が望ましいが、粉体の含有量を増大すればするほど流動
性が悪く成形が困難となり、当然のことながら曲げ強度
や引っ張り強度の機械的特性も劣化するという欠点があ
った。
Blank space below [Problem to be solved by the invention] In the conventional manufacturing method of plastic magnets using injection molding, when trying to manufacture plastic magnets with high magnetic properties, the content of powder is increased to increase the density. However, as the content of the powder increases, the fluidity deteriorates and molding becomes difficult, and as a matter of course, the mechanical properties such as bending strength and tensile strength also deteriorate.

この理由は表面改質剤である樹脂をコーテングした粉体
にナイロン系の樹脂と滑剤をまぶして混練した後、その
混練物を粉砕し、粉体を製造して、この粉体で射出成形
をしたプラスチック磁石や粉体の粒子を顕微鏡にて観察
し、粉体のつまった状態を調査した結果第2図にみられ
るようにコーテングした粉体にナイロン系の樹脂と滑剤
を混合して200〜300℃で軟化加熱し、冷却硬化さ
せて混練物を粉砕すると、粉砕した粉体3は角ばって鋭
角の多い粒子になり粉体から樹脂2が脱落し、本発明の
粉体よりつまりが悪く、つまりにばらつきが大きくなる
という欠点があった。
The reason for this is that powder coated with resin, which is a surface modifier, is sprinkled with nylon resin and lubricant, then kneaded, and then the kneaded material is crushed to produce powder, which is then used for injection molding. We observed the plastic magnets and powder particles under a microscope and investigated the state of powder clogging.As shown in Figure 2, we mixed the coated powder with nylon resin and a lubricant. When the kneaded material is pulverized by softening and heating at 300°C and cooling and hardening, the pulverized powder 3 becomes angular particles with many sharp angles, the resin 2 falls off from the powder, and the clogging is worse than that of the powder of the present invention. , that is, there was a drawback that the variation became large.

又第3図で示すように、磁性粉1がきつ(高密度につま
った個所と樹脂に対して磁性粉1がまばらな個所が観察
された。密度が全体としては同じであっても、磁性粉が
密につまった処と粗く疎につまった処が発生することは
同じ視野に対して樹脂の充填が多い処と磁性粉の充填が
多い粉体となり、射出成形されるときに流動性が悪くな
って、充填が不十分で密度が部分的に一定でなく、結果
として磁気特性を悪くするという欠点があった。
In addition, as shown in Figure 3, areas where the magnetic powder 1 was tightly packed (high density) and areas where the magnetic powder 1 was sparse with respect to the resin were observed.Even if the overall density is the same, the magnetic The occurrence of places where the powder is densely packed and places where the powder is coarsely and sparsely packed means that there are places where the powder is filled with a lot of resin and places where the powder is packed with a lot of magnetic powder, and the fluidity during injection molding is affected. The problem was that the filling was insufficient and the density was not constant in some areas, resulting in poor magnetic properties.

磁気特性の向上のために磁性粉を多くし密度を高くした
いが磁性粉をコーテングした粉体の含有量が多くなると
、炉中で加熱されて軟化したものとなって金型に射出さ
れるから、粉体が多くなるほど流れが悪くなって、充填
不足や内部欠陥は逃れられず、磁気特性をたかぬる磁界
中処理である粉体の配向性、即ち磁気異方性も極端に劣
化する。
In order to improve the magnetic properties, we want to increase the density by increasing the amount of magnetic powder, but if the content of powder coated with magnetic powder increases, it will be heated in the furnace and softened before being injected into the mold. The more powder there is, the worse the flow becomes, making it impossible to avoid insufficient filling and internal defects, and the orientation of the powder, that is, the magnetic anisotropy, which is treated in a magnetic field that impairs magnetic properties, is also extremely degraded.

このため量産性をかんがみ、粒度を決め、ナイロン系の
樹脂や滑剤の配合量も、もっともよい処をみつけ射出成
形の圧力も一定に押え、この状態でプラスチック磁石を
製造してコーテングした射出成形用の粉体が均一につま
り、しかも過密になったり、疎密になったりすることが
ないよう密度のばらつかない磁気配合性が良く、従って
磁気特性及び機械的特性の良いプラスチック磁石の製造
方法を提供することを目的とする。
For this reason, considering mass production, we determined the particle size, found the best blend of nylon resin and lubricant, and kept the injection molding pressure constant.In this state, we manufactured plastic magnets and coated them for injection molding. Provided is a method for producing a plastic magnet that has good magnetic compounding properties with uniform density so that the powder is uniformly clogged, and does not become overcrowded or sparsely packed, and therefore has good magnetic and mechanical properties. The purpose is to

口0発明の構成 〔課題を解決するための手段〕 上記の目的を達成するために、磁性粉のまわりを同じ厚
さでナイロン系の樹脂が十分にコーテングすると、粉体
の流れが疎密されることなく、しかも−様に充填されて
密度もあがると考えられるので、このような射出成形用
の粉体の改善に努めた結果、従来のコニ程である(磁性
粉のコーテング)→(粉体十樹脂十滑剤を混合)→(混
線)→(粉砕)→(磁界中射出成形)の工程を次の工程
にすれば良いことがわかった。
Structure of the Invention [Means for Solving the Problems] In order to achieve the above object, if a nylon resin is sufficiently coated around the magnetic powder with the same thickness, the flow of the powder becomes denser and denser. As a result of our efforts to improve the powder for injection molding, we found that the powder is as compact as the conventional one (magnetic powder coating) → (powder It was found that the following steps could be used as the next step: (mixing of 10 resins and 10 lubricants) → (mixing) → (crushing) → (injection molding in a magnetic field).

(磁性粉のコーテング)→(粉体十樹脂十滑剤を混合、
ただし樹脂十滑剤の配合比をある比率に減らして混合)
+(混練)十(粉砕)+(粉体十樹脂十滑剤を混合)十
(混練)+(粉砕)十(磁界中射出成形)の工程に改善
し、目的の粉体が得られることが確認された。
(magnetic powder coating) → (mix powder ten resin ten lubricant,
However, the blending ratio of resin lubricant is reduced to a certain ratio and mixed)
It has been confirmed that the desired powder can be obtained by improving the process of + (kneading) 10 (grinding) + (mixing powder 10 resin 10 lubricant) 10 (kneading) + (grinding) 10 (injection molding in a magnetic field) It was done.

即ち本発明は、表面改質剤であらかじめコーテング処理
した磁石粉と樹脂、及び滑剤とを混合、混練するプラス
チック磁石において、磁性粉とを混合、混練したプラス
チックの磁石の混練物を粉砕し、粉末状とした工程、及
び前記混練物を粉砕した粉砕物と樹脂とを混合、混練す
る工程を経て射出成形することを特徴とするプラスチッ
ク磁石の製造方法である。
That is, the present invention provides a plastic magnet in which magnet powder coated in advance with a surface modifier, a resin, and a lubricant are mixed and kneaded. This method of manufacturing a plastic magnet is characterized in that injection molding is performed through a step of forming the kneaded material into a shape, and a step of mixing and kneading the pulverized material obtained by pulverizing the kneaded material with a resin.

〔作用〕[Effect]

従来の製造工程である(コーテング)→(混合)→(混
線)→(粉砕)→(磁界中射出成形)を(コーテング)
→(混合)→(混線)→(粉砕)→(混合)→(粉砕)
→(磁界中射出成形)とすることにより、従来の工程で
粉砕された粉体はナイロン系の樹脂の脱落が多くみられ
たが、この粉体に更にもう一度ナイロン糸の樹脂でコー
テングして粉砕すると、ナイロン系の樹脂の粘着力を増
して磁性粉の脱落が殆どなく、球形をしてコーテングの
脱落が見られない。これは明らかに1回目のナイロン系
樹脂と磁性粉の結合が2回目のコーテングを繰り返すこ
とにより、なじみもよくなり強く結合する働きがあり、
それ°が磁性粉のまわりをよくナイロン系の樹脂がしみ
こんで、より球体となることにより、流動性のよい、し
かもつまりにばらつきのない粉体を製造し、磁気特性や
機械的特性の向上につながって、さきの目的を達成する
ことが出来る。
The conventional manufacturing process (coating) → (mixing) → (mixing) → (pulverization) → (injection molding in a magnetic field) is now (coating)
→ (Mixing) → (Mixing) → (Crushing) → (Mixing) → (Crushing)
→ (injection molding in a magnetic field), the powder crushed in the conventional process had a lot of nylon resin falling off, but this powder was coated with nylon thread resin again and crushed. As a result, the adhesion of the nylon-based resin is increased, and almost no magnetic powder falls off, resulting in a spherical shape with no coating visible. This is clearly due to the fact that the first bond between the nylon resin and the magnetic powder is repeated in the second coating, which makes the bond better and stronger.
The nylon resin penetrates around the magnetic powder, making it more spherical, producing powder with good fluidity and no clogging, which improves magnetic and mechanical properties. By connecting, you can achieve your goal.

〔実施例〕 実施例1 表1中のBaフェライトプラスチック磁石について述べ
る。Baフェライトの磁性粉の粒子は1〜5μmm程度
である。従来のBaフェライト系プラスチック磁石では
、残留磁束密度: 2500〜2700G、保磁カニ 
1300〜16000e、最大エネルギー積:13〜1
6MGOe、密度:3.4〜3.6、流動性MFR: 
0.8〜1.5g710分(MRFはmeltflow
rateの釈であり、プラスチック磁石の流動性を表わ
し、270℃で10kg/cm2の加速を加えたとき1
0分で何g軟化した粉体が流れだすかを表わし、単位は
8710分で示す。)、硬度=85〜130ロックウェ
ルR1引っ張り強度=600〜700kg/cm2、曲
げ強度: 800〜1200kg/cm2であった。
[Example] Example 1 The Ba ferrite plastic magnet in Table 1 will be described. The particles of the magnetic powder of Ba ferrite are about 1 to 5 μmm. Conventional Ba ferrite plastic magnets have a residual magnetic flux density of 2500 to 2700G,
1300-16000e, maximum energy product: 13-1
6MGOe, density: 3.4-3.6, fluidity MFR:
0.8-1.5g 710 minutes (MRF is meltflow
It is an interpretation of rate, and represents the fluidity of a plastic magnet, and when an acceleration of 10 kg/cm2 is applied at 270°C, 1
It indicates how many grams of softened powder flows out in 0 minutes, and the unit is 8710 minutes. ), hardness = 85-130, Rockwell R1 tensile strength = 600-700 kg/cm2, and bending strength: 800-1200 kg/cm2.

表3に示すようにBaフェライトの磁性粉10kgに対
して表面改質剤として重量%で0.5〜1.3%を添加
して加熱混合して表面被覆し、コーテングした粉体とし
た後、この粉体にナイロン系樹脂として、ナイロン6を
重量%で6〜11.8%、滑剤としてステアリン酸亜鉛
を重量%で0.3〜1%を加えて、高速ミキサーで混合
する。その後200〜300%で加熱して二軸押出機で
混練する。このようにしてつくった混練物は常温に冷却
硬化し粉砕機で粉砕して粉体とする。この粉体で射出成
形をしていたが本発明ではこの粉体に、更にナイロン系
の樹脂としてナイロン6を重量%で2〜3.9%を混合
して再度二軸押出機で混合した。その後250〜300
%で加熱混練した。こうして得られた混練物を粉砕し、
粉体としこの粉体を用いて磁界中でもって射出成形して
表1に示すように下記のような特性が得られた。
As shown in Table 3, 0.5 to 1.3% by weight of a surface modifier was added to 10 kg of Ba ferrite magnetic powder, and the surface was coated by heating and mixing to form a coated powder. To this powder, 6 to 11.8% by weight of nylon 6 as a nylon resin and 0.3 to 1% by weight of zinc stearate as a lubricant are added and mixed using a high speed mixer. Thereafter, the mixture is heated at 200-300% and kneaded using a twin-screw extruder. The kneaded material thus prepared is cooled to room temperature and hardened, and then ground in a grinder to form a powder. Injection molding was performed using this powder, but in the present invention, 2 to 3.9% by weight of nylon 6 as a nylon resin was further mixed with this powder and mixed again in a twin screw extruder. After that 250-300
% and kneaded with heat. The kneaded material thus obtained is crushed,
This powder was injection molded in a magnetic field, and the following properties as shown in Table 1 were obtained.

即ち、残留磁束密度: 2800〜3000 G、保磁
カニ1500〜18000e、最大エネルギー積: 1
.5〜1.8MGOe、密度:3.6〜3.8、流動性
MER:l〜2 g/10分、硬度:100〜150ロ
ックウェルR1引っ張り強度:650〜750kg/c
m2、曲げ強度: 900〜1300kg/cm2であ
った。
That is, residual magnetic flux density: 2800-3000 G, coercion crab 1500-18000e, maximum energy product: 1
.. 5-1.8 MGOe, density: 3.6-3.8, fluidity MER: l-2 g/10 min, hardness: 100-150 Rockwell R1 tensile strength: 650-750 kg/c
m2, bending strength: 900 to 1300 kg/cm2.

このように磁気特性と機械的特性が向上しているのがわ
かる。この環1口よ第1図に示したように顕微鏡で観察
すると磁性粉1のまわりを樹JJFj 2が均一にコー
テングして、しかも磁性粉が均一につまり密度のばらつ
きも極めて少なく、−様につまった粉体3によって構成
されて、従来のものより磁気特性及び機械的特性も向上
したものとわかった。
It can be seen that the magnetic properties and mechanical properties are improved in this way. As shown in Figure 1, when one ring is observed under a microscope, the magnetic powder 1 is uniformly coated with wood JJFj 2, and the magnetic powder is evenly packed, with very little variation in density. It was found that the magnetic properties and mechanical properties were improved compared to the conventional ones because the particles were composed of packed powder 3.

実施例2 表1中のSrフェライトプラスチック磁石について述べ
る。Srフェライトの磁性粉の粒子は1〜5μmm程度
である。従来のSrフェライトプラスチック磁石では、
残留磁束密度: 2500〜2700 G、保磁カニ 
2000〜23000e、最大エネルギー積:1.6〜
1、9MGOe、密度:3,4〜3.6、MRF : 
0.8〜1.5g/10分、硬度:85〜130ロック
ウェルR1引っ張り強度=600〜700kg/am”
、曲げ強度: 800〜1200kg/cm2、であっ
た。
Example 2 The Sr ferrite plastic magnet in Table 1 will be described. The particle size of the magnetic powder of Sr ferrite is about 1 to 5 μmm. In conventional Sr ferrite plastic magnets,
Residual magnetic flux density: 2500-2700 G, coercive crab
2000~23000e, maximum energy product: 1.6~
1,9MGOe, density: 3,4-3.6, MRF:
0.8-1.5g/10 minutes, hardness: 85-130 Rockwell R1 tensile strength = 600-700kg/am"
, bending strength: 800 to 1200 kg/cm2.

表3に示すようにSrフェライトの磁性粉10kgに対
して表面改質剤として重量%で0.5〜1.3%を添加
して、加熱混合して表面被覆しコーテングした粉体とし
た後、この粉体にナイロン系樹脂としてナイロン6を重
量%で6〜11.8%、滑剤として重量%でステアリン
酸亜鉛0.3〜1%を高速ミキサーで混合する。その後
200〜300℃で加熱して二軸押出機で混練する。こ
のようにしてつくった混練物は常温に冷却硬化よせて粉
砕機で粉砕して粉体とする。この粉体で射出成形をして
いたが、本発明ではこの粉体に更にナイロン系樹脂とし
てナイロン6を重量%で2〜3.9%を混合して、再度
二軸押出機で混合した。その後200〜300%で加熱
混練した。
As shown in Table 3, 0.5 to 1.3% by weight of a surface modifier was added to 10 kg of Sr ferrite magnetic powder, and the mixture was heated and mixed to form a surface coated powder. 6 to 11.8% by weight of nylon 6 as a nylon resin and 0.3 to 1% by weight of zinc stearate as a lubricant are mixed into this powder using a high-speed mixer. Thereafter, the mixture is heated at 200 to 300°C and kneaded using a twin-screw extruder. The kneaded material thus prepared is cooled to room temperature and hardened, and then ground in a grinder to form a powder. Injection molding was performed using this powder, but in the present invention, 2 to 3.9% by weight of nylon 6 as a nylon resin was further mixed with this powder, and the mixture was again mixed using a twin-screw extruder. Thereafter, the mixture was heated and kneaded at 200 to 300%.

こうして得られた混練物を粉砕してその粉体を用いて磁
界中でもって射出成形して、下記のような樹脂が得られ
た。
The thus obtained kneaded material was pulverized and the resulting powder was held in a magnetic field and injection molded to obtain the following resin.

即ち、表1に示すように残留磁束密度: 2800〜3
000 G、保磁カニ2200〜25000e、最大エ
ネルギー積: 1.8〜2.1MGOe、密度:3.6
〜3.8、流動性MER:1〜2g/10分、硬度=1
00〜150ロックウェルR1引っ張り強度: 650
〜750kg/cm2、曲げ強度900〜1300kg
/cm2であった。
That is, as shown in Table 1, residual magnetic flux density: 2800-3
000 G, coercion crab 2200-25000e, maximum energy product: 1.8-2.1MGOe, density: 3.6
~3.8, fluidity MER: 1-2 g/10 min, hardness = 1
00-150 Rockwell R1 tensile strength: 650
~750kg/cm2, bending strength 900~1300kg
/cm2.

このように磁気特性及び機械的特性共に向上しているこ
とがわかる。
It can thus be seen that both the magnetic properties and mechanical properties are improved.

実施例3 表1に示したように5IIllCO5糸プラスチック磁
石の従来の磁気特性と機械的特性を述べると、磁気特性
としては残留磁束密度: 5500〜5800G、保磁
カニ 5000〜52000 e、最大エネルギー積ニ
ア〜9MGOeであり、機械的特性としては引っ張り強
度:250〜350kg/cm’、曲げ強度: 300
〜500kg/cm2、硬度:90〜100ロツクウエ
ルRであり、更に密度=5.2〜5.5、MFEニア〜
9g/10分であった。
Example 3 As shown in Table 1, the conventional magnetic properties and mechanical properties of the 5IIllCO5 thread plastic magnet are described.The magnetic properties include residual magnetic flux density: 5500 to 5800G, coercion crab 5000 to 52000e, and maximum energy product. Near to 9MGOe, mechanical properties include tensile strength: 250-350kg/cm', bending strength: 300
~500kg/cm2, hardness: 90-100 Rockwell R, density = 5.2-5.5, MFE near ~
It was 9g/10 minutes.

本発明である製造法によって、表3に示したようにSm
 + CO5の磁性粉10kgに対して表面改質剤とし
て重量%で0.3〜1.2%を添加して、加熱混合し表
面被覆し、Sm + Co5の磁性粉をコーテングした
粉体とした後、この粉体にナイロン系の樹脂ナイロン−
12を重量%で3.4〜6.4%、滑剤としてステアリ
ン酸亜鉛を重量%で0.3〜1′%)を加えて高速ミキ
サーで混合する。その後200〜300℃で加熱して二
軸押出機で混練する。このようにしてつくった混練物は
常温に冷却して硬化させ、粉体機で粉砕して粉体とする
。この粉砕に更にナイロン系樹脂ナイロン−12を重量
%で1.1〜2.1%を加えて混合し、再度二軸押出機
で混合し、その後200〜300℃で加熱混練した。
By the manufacturing method of the present invention, as shown in Table 3, Sm
+ 0.3 to 1.2% by weight of a surface modifier was added to 10 kg of CO5 magnetic powder, and the surface was coated by heating and mixing to obtain a powder coated with Sm + Co5 magnetic powder. After that, this powder is coated with nylon-based resin nylon.
12 (3.4 to 6.4% by weight) and zinc stearate as a lubricant (0.3 to 1'% by weight) are added and mixed using a high speed mixer. Thereafter, the mixture is heated at 200 to 300°C and kneaded using a twin-screw extruder. The kneaded material thus prepared is cooled to room temperature to harden, and then ground into powder using a powder mill. To this pulverization, 1.1 to 2.1% by weight of nylon resin Nylon-12 was further added and mixed, mixed again in a twin screw extruder, and then heated and kneaded at 200 to 300°C.

こうして得られた混練物を粉砕し、その粉体を用いて磁
界中: 15KOe中で射出成形した。その結果、表1
に示すように下記のような特性が得られた。
The kneaded material thus obtained was pulverized, and the powder was injection molded in a magnetic field of 15 KOe. As a result, Table 1
As shown in Figure 2, the following characteristics were obtained.

即ち、表1に示すように残留磁束密度: 6500〜6
800G、保磁力=5800〜60000e、最大エネ
ルギー積:8〜10MGOe、引っ張り強度: 300
〜400kg、曲げ強度=600〜800kg/cIf
i2、密度:5.5〜5.8、流動性MFR:8〜10
g/10分、硬度100〜110ロツクウエルRであっ
た。
That is, as shown in Table 1, residual magnetic flux density: 6500-6
800G, coercive force = 5800-60000e, maximum energy product: 8-10MGOe, tensile strength: 300
~400kg, bending strength = 600~800kg/cIf
i2, density: 5.5-5.8, fluidity MFR: 8-10
g/10 minutes, and hardness was 100-110 Rockwell R.

実施例4 表1に示したようにSm2Co+7系プラスチツク磁石
の従来の磁気特性と機械的特性を述べると、磁気特性と
しては残留磁束密度: 5700〜6200 G、保磁
カニ 3800〜45000e、最大エネルギー積:8
〜10MGOeであり、機械的特性としては引っ張り強
度:250〜350 kg/cm2、曲げ強度: 30
0〜500kg/cm2、硬度:50〜60ロツクウエ
ルRであり、更に密度:5.2〜5.5、MFEニア〜
9g/10分であった。
Example 4 As shown in Table 1, the conventional magnetic properties and mechanical properties of Sm2Co+7 plastic magnets are described.The magnetic properties include residual magnetic flux density: 5700 to 6200 G, coercivity crab 3800 to 45000e, and maximum energy product. :8
~10MGOe, and mechanical properties include tensile strength: 250-350 kg/cm2, bending strength: 30
0 to 500 kg/cm2, hardness: 50 to 60 Rockwell R, and density: 5.2 to 5.5, MFE near to
It was 9g/10 minutes.

本発明である製造法によって、表3に示したようにSm
2GO+□の磁性粉10kgに対して表面改質剤として
重量%で0.3〜1,2%を添加して、加熱混合し表面
被覆し、Sm2Co、□の磁性粉をコーテングした粉体
とした後、この粉体にナイロン系の樹脂ナイロン−12
を重量%で3.4〜6.4%、滑剤としてステアリン酸
亜鉛を重量%で0.3〜1%を加えて高速ミキサーで混
合する。その後200〜300°Cで加熱して二軸押出
機で混練する。このようにしてつくった混練物は常温に
冷却して硬化し、粉体機で粉砕して粉体とする。この粉
砕に更にナイロン系樹脂ナイロン−12を重量%で1.
1〜2.1%を加えて混合し、再度二軸押出機で混合し
、その後200〜300℃で加熱混練した。
By the manufacturing method of the present invention, as shown in Table 3, Sm
0.3 to 1.2% by weight was added as a surface modifier to 10 kg of 2GO + □ magnetic powder, and the mixture was heated and mixed to coat the surface, resulting in a powder coated with Sm2Co, □ magnetic powder. After that, this powder is coated with nylon-based resin nylon-12.
3.4 to 6.4% by weight and 0.3 to 1% by weight of zinc stearate as a lubricant are added and mixed with a high speed mixer. Thereafter, the mixture is heated at 200 to 300°C and kneaded using a twin screw extruder. The kneaded material thus prepared is cooled to room temperature to harden, and is ground into powder using a powder mill. In addition to this pulverization, nylon-based resin nylon-12 was added in a weight percent of 1.
1 to 2.1% was added and mixed, mixed again using a twin screw extruder, and then heated and kneaded at 200 to 300°C.

こうして得られた混練物を粉砕し、その粉体を用いて磁
界中: 15KOe中で射出成形した。その結果、表1
に示すように下記のような特性が得られた。
The kneaded material thus obtained was pulverized, and the powder was injection molded in a magnetic field of 15 KOe. As a result, Table 1
As shown in Figure 2, the following characteristics were obtained.

即ち、表1に示すように残留磁束密度: 6700〜7
300G、保磁カニ 4400〜53000 e、最大
エネルギー積: 10〜12MGOe、引っ張り強度:
 300〜400kg、曲げ強度:600〜800kg
/cm2、密度:5.5〜6.0、流動性MFR:8〜
10g/10分、硬度60〜70ロツクウエル■くであ
った。
That is, as shown in Table 1, residual magnetic flux density: 6700-7
300G, coercion crab 4400~53000e, maximum energy product: 10~12MGOe, tensile strength:
300-400kg, bending strength: 600-800kg
/cm2, density: 5.5-6.0, fluidity MFR: 8-
10 g/10 minutes, hardness was 60-70 rockwells.

このように磁気特性、機械的特性ともに向上しているこ
とがわかる。
It can thus be seen that both the magnetic properties and mechanical properties are improved.

以下余白 ハ0発明の効果 〔発明の効果〕 上記のように(コーテング)→(混合)→(混練)→(
粉砕)→(混合)→(y砕)→(磁界中射出成形)とす
ることにより機械的特性である引っ張り強度、曲げ強度
、硬度が向上し磁気特徴である残留磁束密度、保持力、
最大エネルギー積とも向上する。密度や流動性であるM
FRが向上していることもわかる。
The following margin is 0 Effects of the invention [Effects of the invention] As mentioned above, (coating) → (mixing) → (kneading) → (
The mechanical properties such as tensile strength, bending strength, and hardness are improved by pulverization → (mixing) → (y-crushing) → (injection molding in a magnetic field), and the magnetic characteristics such as residual magnetic flux density, coercive force,
The maximum energy product also improves. M which is density and fluidity
It can also be seen that the FR has improved.

これによりさきの目的を達成することが出来た。With this, I was able to achieve my previous goal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造方法による粉体が均一につまり
球形をしている粒子の配列を顕微鏡でみた図。 第2図は、従来の製造法による粉体が角ばり、密度が悪
く、コーテングが脱落している粒子の並びを顕微鏡でみ
た図。 第3図は、従来の製造法による粉体が密な個所と疎密な
個所があることを示した図。 1・・・磁性粉、2・・・ナイロン系の樹脂、訃・・粉
体。 第7 第2 第3図
FIG. 1 is a microscopic view showing the uniform arrangement of spherical particles produced by the manufacturing method of the present invention. Figure 2 is a microscopic view of the arrangement of particles produced by conventional manufacturing methods, with angular shapes, poor density, and coatings that have fallen off. FIG. 3 is a diagram showing that there are areas where the powder is dense and areas where the powder is sparsely dense due to the conventional manufacturing method. 1...Magnetic powder, 2...Nylon resin, and...Powder. 7th 2nd Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1.表面改質剤であらかじめコーテング処理した磁性粉
と樹脂、及び滑剤とを混合、混練するプラスチック磁石
において、磁性粉とを混合、混練したプラスチックの磁
石の混練物を粉砕し、粉末状とした工程、及び前記混練
物を粉砕した粉砕物と樹脂とを混合、混練する工程を経
て射出成形することを特徴とするプラスチック磁石の製
造方法。
1. In a plastic magnet in which magnetic powder coated in advance with a surface modifier, a resin, and a lubricant are mixed and kneaded, a step of pulverizing the kneaded product of the plastic magnet mixed and kneaded with the magnetic powder to form a powder; and a method for producing a plastic magnet, comprising injection molding through a step of mixing and kneading a pulverized product obtained by pulverizing the kneaded product with a resin.
JP24698988A 1988-09-29 1988-09-29 Manufacture of plastic magnet Pending JPH0294411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24698988A JPH0294411A (en) 1988-09-29 1988-09-29 Manufacture of plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24698988A JPH0294411A (en) 1988-09-29 1988-09-29 Manufacture of plastic magnet

Publications (1)

Publication Number Publication Date
JPH0294411A true JPH0294411A (en) 1990-04-05

Family

ID=17156718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24698988A Pending JPH0294411A (en) 1988-09-29 1988-09-29 Manufacture of plastic magnet

Country Status (1)

Country Link
JP (1) JPH0294411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464670A (en) * 1990-04-13 1995-11-07 Seiko Epson Corporation Resin bound magnet and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464670A (en) * 1990-04-13 1995-11-07 Seiko Epson Corporation Resin bound magnet and its production process

Similar Documents

Publication Publication Date Title
US5258155A (en) Injection-molding of metal or ceramic powders
JP3189956B2 (en) Rare earth bonded magnet composition, rare earth bonded magnet, and method for producing rare earth bonded magnet
JP2004241417A (en) Plastic magnet precursor, its manufacturing method, and plastic magnet
JPH0294411A (en) Manufacture of plastic magnet
JPS59135705A (en) Resin magnet material
CN107530928B (en) Injection molding method for thermosetting resin composition
JPH0528884B2 (en)
JPS6286803A (en) Manufacture of compound magnet
JPH08111335A (en) Production of molded ferrite
JPS6279259A (en) Exterior part composition for watch
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH03218606A (en) Composition for synthetic resin magnet
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH06172803A (en) Injection-molding ferrous alloy powder
JP7324445B2 (en) Waste iron-based metal powder, waste plastic compact and method for producing the same
JPS6111208A (en) Manufacture of composite flywheel
JPS58158903A (en) Combined magnetic material
JP2008153406A (en) Rare earth bond magnet and its manufacturing method
JPH04218628A (en) Sintered compact of noble metal and its production
JPS5980902A (en) Manufacture of bond magnet
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
CN112679820A (en) Polyvinyl injection molding magnetic composite material for inductor and preparation method thereof
JPH0212801A (en) Compound for bonding magnet and its manufacture
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JPH01111305A (en) Plastic magnet composition