JPS6315753B2 - - Google Patents

Info

Publication number
JPS6315753B2
JPS6315753B2 JP53078739A JP7873978A JPS6315753B2 JP S6315753 B2 JPS6315753 B2 JP S6315753B2 JP 53078739 A JP53078739 A JP 53078739A JP 7873978 A JP7873978 A JP 7873978A JP S6315753 B2 JPS6315753 B2 JP S6315753B2
Authority
JP
Japan
Prior art keywords
electrode
input signal
charge
transfer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53078739A
Other languages
Japanese (ja)
Other versions
JPS558007A (en
Inventor
Yutaka Hatano
Susumu Kayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7873978A priority Critical patent/JPS558007A/en
Publication of JPS558007A publication Critical patent/JPS558007A/en
Publication of JPS6315753B2 publication Critical patent/JPS6315753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate

Description

【発明の詳細な説明】 本発明は電荷転送装置に関する。[Detailed description of the invention] The present invention relates to a charge transfer device.

電荷転送素子例えばCCD(チヤージ・カツプル
ド・デバイス)はデイジタルメモリ、アナログメ
モリあるいはアナログ信号処理等に広範囲な用途
を有し、最近特に注目をされている。
Charge transfer devices, such as CCDs (charge coupled devices), have a wide range of uses in digital memories, analog memories, analog signal processing, etc., and have recently received particular attention.

この様な電荷転送素子において、電荷転送部1
に信号電荷を入力する一般的な従来の方法は次の
様な方法である。第1図に示す様に電荷の入力ソ
ースである拡散層2に印加する電位を初段のゲー
ト下の電荷の転送方向に方向性を与えるための表
面電位のバリア部より接地電位に近く、即ち電位
を低くして電荷を入力し、電荷を入力しない時は
入力ソースに印加する電位を高くしてバリア部の
表面電位より高くするという方法である。
In such a charge transfer element, charge transfer section 1
A general conventional method of inputting signal charges to the circuit is as follows. As shown in FIG. 1, the potential applied to the diffusion layer 2, which is the charge input source, is closer to the ground potential than the surface potential barrier section for giving directionality to the charge transfer direction under the first stage gate. In this method, charges are input by inputting a charge by lowering the input voltage, and when no charge is input, the potential applied to the input source is increased to be higher than the surface potential of the barrier portion.

さらに入力ソースの電位を変えることによる電
荷の入力法に対して、入力ソースの電位は変化さ
せることなく、入力ソースから入力信号φINの印
加されるセルへ電荷を供給し、連続する転送セル
へデイジタル入力信号に従つた信号電荷を入力す
る方法もある。
Furthermore, in contrast to the charge input method by changing the potential of the input source, the charge is supplied from the input source to the cell to which the input signal φ IN is applied, without changing the potential of the input source, and transferred to the successive transfer cells. There is also a method of inputting signal charges according to a digital input signal.

しかしながら従来の方法では信号電荷を安定に
作る事が難しいという問題があつた。
However, the conventional method has had a problem in that it is difficult to stably generate signal charges.

本発明は、入力信号電極の前段にゲート電極を
設け、安定に転送電荷を生成できる電荷転送装置
を提供するものである。即ち、半導体基板に設け
られたソース領域に続いて順次ゲート電極、信号
入力電極、転送電極を設け、各電極にバリア領域
と電荷蓄積領域を設け、入力信号電極に入力信号
を印加し、ソース領域に直流電圧を印加し、ゲー
ト電極にサンプリング電圧を印加するようにした
電荷転送装置を得るものである。
The present invention provides a charge transfer device that can stably generate transferred charges by providing a gate electrode in front of an input signal electrode. That is, a gate electrode, a signal input electrode, and a transfer electrode are sequentially provided following a source region provided on a semiconductor substrate, a barrier region and a charge storage region are provided for each electrode, an input signal is applied to the input signal electrode, and the source region A charge transfer device is obtained in which a DC voltage is applied to the gate electrode and a sampling voltage is applied to the gate electrode.

次に図面を参照して本発明装置の一実施例を説
明する。
Next, one embodiment of the apparatus of the present invention will be described with reference to the drawings.

まず入力信号がデイジタル信号である場合につ
いて説明する。
First, a case where the input signal is a digital signal will be explained.

即ち電荷転送素子においてソース領域の電位を
固定してゲート電極にくり返しパルスを印加して
前記ソース領域より電荷を汲み込み入力を印加す
る入力信号電極に電荷を過剰に供給せしめ前記入
力信号電極のゲート電極下の表面電位より決定さ
れる電荷より過剰な分をゲート電極下に引き戻
し、一定の電荷を入力信号として形成し、電荷転
送領域の連続する転送電極下へ入力信号が論理1
の時のみ電荷を入力するようにしたものである。
That is, in the charge transfer element, the potential of the source region is fixed and pulses are repeatedly applied to the gate electrode to draw charges from the source region and supply excessive charges to the input signal electrode to which input is applied. The amount of charge in excess of the charge determined by the surface potential under the electrode is pulled back to the bottom of the gate electrode, a constant charge is formed as an input signal, and the input signal is a logic 1 below the continuous transfer electrode in the charge transfer region.
The charge is input only when .

以下、第2図、第3図を参照して詳細に説明す
る。一導電型半導体基板としてのP型シリコン基
板11の基板内部表面に上記シリコン基板11と
逆導電性の例えばn型シリコン層からなるソース
領域12が形成されている。また前記シリコン基
板上には例えば二酸化シリコン等からなる絶縁膜
13を介して前記ソース領域12から連続してゲ
ート電極、入力信号電極、転送電極141,14
、143,144、145〜148が設けられ、2つ
毎に共通接続されて二つの電極が共働してゲート
電極等を構成する。上記各電極には電荷のサンプ
リング信号φS、入力信号φINの他の電荷転送用の
クロツク信号φ1,φ2が交互に印加される様にな
つている。各ゲート電極、入力信号電極、転送電
極の下にはバリア領域と蓄積領域を有する構成に
なつている。一方、前記電極141,143,14
,147下の前記シリコン基板11内部の表面に
はP+高濃度領域151,153,155,157がイ
オン注入等によりセルフアラインで設けてあり、
これによりバリア領域を形成する。ソース領域1
2の電位は前記ゲート電極にサンプリング信号φS
のハイレベルが印加された時の電極141下の表
面電位より接地電位に近く、且前記電極141
サンプリング信号φSのローレベルが印加された時
の電極下のバリア領域141の表面電位より高い
様な範囲の任意の一定電位に保つことができる。
電極142は電極144,146,148より長さが
長くなつており電極142下には電極144,14
,148下に著積できる電荷より多くの電荷が蓄
積される。
A detailed explanation will be given below with reference to FIGS. 2 and 3. A source region 12 made of, for example, an n-type silicon layer having a conductivity opposite to that of the silicon substrate 11 is formed on the inner surface of a P-type silicon substrate 11 serving as a semiconductor substrate of one conductivity type. Further, on the silicon substrate, gate electrodes, input signal electrodes, and transfer electrodes 14 1 , 14 are continuously connected from the source region 12 via an insulating film 13 made of silicon dioxide or the like.
2 , 14 3 , 14 4 , 14 5 to 14 8 are provided, and every two electrodes are connected in common, and the two electrodes work together to form a gate electrode or the like. A charge sampling signal φ S and charge transfer clock signals φ 1 and φ 2 other than the input signal φ IN are alternately applied to each of the above electrodes. The structure includes a barrier region and an accumulation region under each gate electrode, input signal electrode, and transfer electrode. On the other hand, the electrodes 14 1 , 14 3 , 14
P + high concentration regions 15 1 , 15 3 , 15 5 , 15 7 are provided in self-alignment by ion implantation or the like on the inner surface of the silicon substrate 11 below 5 , 14 7 ,
This forms a barrier region. source area 1
2 is the sampling signal φ S applied to the gate electrode.
The surface potential of the barrier region 14 1 under the electrode 14 1 is closer to the ground potential than the surface potential under the electrode 14 1 when the high level of is applied, and the surface potential of the barrier region 14 1 under the electrode 14 1 is closer to the ground potential when the low level of the sampling signal φ S is applied to the electrode 14 1 . It can be maintained at any constant potential within a range higher than the potential.
The electrode 14 2 is longer than the electrodes 14 4 , 14 6 , 14 8 , and below the electrode 14 2 are the electrodes 14 4 , 14 .
6 , 14 More charges are accumulated than can be accumulated under 8 .

このように構成された電荷転送素子に第4図に
示す様なクロツク信号φ1,φ2及びサンプリング
信号φS及び入力信号φINを与える時の電荷転送素
子の作用を時間を追つて説明する。今、時刻t1
おいてφSとφ1はハイレベルの電位であり、φIN
φ2はローレベルの電位にあるとするとシリコン
基板内の表面電位は第2図bに示す様になる。こ
の時電荷はソース領域12からゲート電極を構成
するバリア領域形成用電極141下を介して蓄積
領域形成用電極142下に入力され次に時刻t2
おいてφSがローレベルにもどるとバリア領域形成
用電極141及び蓄積領域形成用電極142下の表
面電位の差とチヤネル巾で決まる電荷が蓄積領域
形成用電極142下のポテンシヤル井戸に蓄積さ
れる。時刻t3において入力信号電極に印加される
入力信号φINがハイレベルになるとともにゲート
電極の蓄積領域形成用電極142下に蓄積された
電荷は入力信号電極143,144下のポテンシヤ
ル井戸に転送される。時刻t4においては入力信号
φINがローレベルになると、バリア領域と蓄積領
域の表面電位の差とチヤネル巾で決まる電荷量が
信号電荷として入力信号電極の144下に設定さ
れ、蓄積できない過剰な電荷はゲート電極下に引
き戻される。次に第3図b,cは時刻t5,t6に対
応する表面電位と電荷を示すが時刻t7において入
力信号φINがローレベルの時はゲート電極の142
下の電荷は入力信号電極144下へは入力されず
(第3図d)入力信号のローレベルに対応して電
荷のない状態が電荷転送素子に入力されることに
なる。
The operation of the charge transfer element configured in this way when clock signals φ 1 , φ 2 , sampling signal φ S and input signal φ IN as shown in FIG. 4 are applied to the charge transfer element will be explained in chronological order. . Now, at time t 1 , φ S and φ 1 are at high level potential, and φ IN ,
Assuming that φ 2 is at a low level potential, the surface potential within the silicon substrate will be as shown in FIG. 2b. At this time, charge is input from the source region 12 through the barrier region forming electrode 14 1 which constitutes the gate electrode to the storage region forming electrode 14 2 , and then at time t 2 when φ S returns to the low level, the barrier region Charges determined by the difference in surface potential under the region forming electrode 14 1 and the storage region forming electrode 14 2 and the channel width are accumulated in the potential well below the storage region forming electrode 14 2 . At time t3 , the input signal φ IN applied to the input signal electrode becomes high level, and the charges accumulated under the storage region forming electrode 142 of the gate electrode are transferred to the potential wells under the input signal electrodes 143 and 144 . will be forwarded to. At time t4 , when the input signal φ IN becomes low level, the amount of charge determined by the difference in surface potential between the barrier region and the storage region and the channel width is set as a signal charge 144 below the input signal electrode, and the excess that cannot be accumulated is set as a signal charge. This charge is pulled back under the gate electrode. Next, Fig. 3 b and c show the surface potential and charge corresponding to times t 5 and t 6. At time t 7 , when the input signal φ IN is at a low level, the gate electrode 14 2
The lower charge is not inputted below the input signal electrode 144 (FIG. 3d), and a state with no charge is inputted to the charge transfer element in response to the low level of the input signal.

従来は初段の入力信号電極を開閉する際、ソー
ス領域より吸い込む電荷量が、入力信号電極の立
ち上り速度即ち動作速度が速いと、設定した以上
の電荷が入力し、一定の信号電荷を安定に作る事
ができない等の設計上、信頼性上の問題があつた
が、このように一旦移し変えを行なうことにより
安定供給が可能となつた。
Conventionally, when opening and closing the input signal electrode of the first stage, the amount of charge sucked in from the source region is greater than the set value if the rising speed of the input signal electrode, that is, the operating speed is fast, and a constant signal charge is stably generated. There were design and reliability problems, such as the inability to do this, but once the transfer was carried out in this way, stable supply became possible.

上記実施例ではゲート電極より入力信号電極に
過剰な電荷を転送するため、ゲート電極の電荷蓄
積領域のゲート長を長くしたが、ゲート電極のチ
ヤネル巾を広くすることにより電荷蓄積領域の大
きさを大きくしても同様の効果を得ることもでき
る。また以上の方法を組み合わせて、同様の効果
を得ることも可能である。また上記実施例では各
部の表面電位の設定をイオン注入等による高濃度
領域(P+層)の濃度の制御により行なつたが、
二酸化シリコン膜等の絶縁膜13の厚さを変える
ことにより表面電位を設定してもよい。またこの
絶縁膜13の厚さとともに高濃度領域の濃度を制
御してもよいこは勿論である。また上記説明はP
型半導体基板を用いて行なつたが、n型半導体基
板を用いた場合には各部の信号を逆符号にするこ
とによつて同様に作用することは明らかである。
更に上記実施例では2相ドロツプクロツク駆動の
電荷転送素子の場合について説明したが、その他
多相ドロツプクロツク駆動のME/B方式の電荷
転送素子にも勿論適用することができる。ドロツ
プクロツクに限らずプツシユクロツク駆動の場合
にも適用可能である。また埋め込みチヤネル型の
電荷転送素子にも適用できる。この様に本発明は
上記実施例に限定されるものではなく本発明の要
旨を逸脱しない範囲において種々変形して実施す
ることができる。
In the above embodiment, in order to transfer excess charge from the gate electrode to the input signal electrode, the gate length of the charge storage region of the gate electrode is increased, but the size of the charge storage region is increased by widening the channel width of the gate electrode. A similar effect can also be obtained by increasing the size. It is also possible to obtain similar effects by combining the above methods. Furthermore, in the above embodiment, the surface potential of each part was set by controlling the concentration of the high concentration region (P + layer) by ion implantation, etc.
The surface potential may be set by changing the thickness of the insulating film 13 such as a silicon dioxide film. It goes without saying that the concentration of the high concentration region may be controlled as well as the thickness of the insulating film 13. Also, the above explanation is
Although this was done using a type semiconductor substrate, it is clear that when an n-type semiconductor substrate is used, the same effect can be achieved by changing the signals of each part to opposite signs.
Further, in the above embodiment, the charge transfer element driven by a two-phase drop clock was described, but it is of course applicable to other ME/B type charge transfer elements driven by a multi-phase drop clock. It is applicable not only to drop clock drive but also to push clock drive. It can also be applied to a buried channel type charge transfer element. As described above, the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来素子の信号電荷の入力を説明する
為の図、第2図及び第3図は本発明の一実施例を
示す図、第4図は第2図及び第3図の電荷転送素
子の駆動信号の波形図である。 11……シリコン基板、12……ソース領域、
13……絶縁膜、141,142,〜148……電
極、151,153,155,157……P+層(高濃
度領域)。
Fig. 1 is a diagram for explaining the input of signal charges of a conventional element, Figs. 2 and 3 are diagrams showing an embodiment of the present invention, and Fig. 4 is a diagram for explaining the charge transfer of Figs. 2 and 3. FIG. 3 is a waveform diagram of a drive signal for an element. 11...Silicon substrate, 12...Source region,
13...Insulating film, 141 , 142 , to 148 ...Electrode, 151 , 153 , 155 , 157 ...P + layer (high concentration region).

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板と、この基板の表面部に
形成され前記基板と反対導電型のソース領域と、
前記基板上に絶縁膜を介して形成され且つ前記ソ
ース領域と離間して電荷の転送方向に配列される
複数の転送電極と、これら転送電極と前記ソース
間の前記基板上に絶縁膜を介して形成されるゲー
ト電極と、このゲート電極と前記転送電極間の前
記基板上に絶縁膜を介して形成される入力信号電
極と、前記ゲート電極、入力信号電極及び転送電
極の各々の下に形成されるバリア領域及び電荷蓄
積領域と、前記ゲート電極に電荷をサンプリング
するパルス信号を供給する手段と、前記入力信号
電極に入力信号を供給する手段と、前記複数の転
送電極にそれぞれ所定位相のクロツク信号を与え
る手段とを具備し、前記ゲート電極下の電荷蓄積
領域の大きさを前記入力信号電極下及び前記転送
電極下の電荷蓄積領域より大としたことを特徴と
する電荷転送装置。
1 a semiconductor substrate of one conductivity type; a source region formed on the surface of this substrate and of a conductivity type opposite to that of the substrate;
a plurality of transfer electrodes formed on the substrate with an insulating film interposed therebetween and arranged in a charge transfer direction apart from the source region; and a plurality of transfer electrodes formed on the substrate between the transfer electrodes and the source with an insulating film interposed therebetween. a gate electrode formed, an input signal electrode formed on the substrate between the gate electrode and the transfer electrode via an insulating film, and an input signal electrode formed under each of the gate electrode, the input signal electrode, and the transfer electrode. means for supplying a pulse signal for sampling charges to the gate electrode; means for supplying an input signal to the input signal electrode; and a clock signal of a predetermined phase to each of the plurality of transfer electrodes. 2. A charge transfer device, characterized in that the size of the charge storage region under the gate electrode is larger than the charge storage region under the input signal electrode and the transfer electrode.
JP7873978A 1978-06-30 1978-06-30 Electric charge transferring device Granted JPS558007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7873978A JPS558007A (en) 1978-06-30 1978-06-30 Electric charge transferring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7873978A JPS558007A (en) 1978-06-30 1978-06-30 Electric charge transferring device

Publications (2)

Publication Number Publication Date
JPS558007A JPS558007A (en) 1980-01-21
JPS6315753B2 true JPS6315753B2 (en) 1988-04-06

Family

ID=13670248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7873978A Granted JPS558007A (en) 1978-06-30 1978-06-30 Electric charge transferring device

Country Status (1)

Country Link
JP (1) JPS558007A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132669A (en) * 1983-01-20 1984-07-30 Sony Corp Input circuit of charge transfer element
JPH0669089B2 (en) * 1983-10-15 1994-08-31 松下電子工業株式会社 Charge transfer device
JPH0763093B2 (en) * 1985-05-15 1995-07-05 株式会社日立製作所 Driving method for charge transfer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119983A (en) * 1974-07-29 1976-02-17 Fairchild Camera Instr Co DENKADO NYUSOSHI
JPS52135276A (en) * 1976-05-07 1977-11-12 Toshiba Corp Charge transfer element
JPS52135686A (en) * 1976-05-10 1977-11-12 Toshiba Corp Me/b type charge transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119983A (en) * 1974-07-29 1976-02-17 Fairchild Camera Instr Co DENKADO NYUSOSHI
JPS52135276A (en) * 1976-05-07 1977-11-12 Toshiba Corp Charge transfer element
JPS52135686A (en) * 1976-05-10 1977-11-12 Toshiba Corp Me/b type charge transfer device

Also Published As

Publication number Publication date
JPS558007A (en) 1980-01-21

Similar Documents

Publication Publication Date Title
US3660697A (en) Monolithic semiconductor apparatus adapted for sequential charge transfer
US4112456A (en) Stabilized charge injector for charge coupled devices with means for increasing the speed of propagation of charge carriers
US6466489B1 (en) Use of source/drain asymmetry MOSFET devices in dynamic and analog circuits
JPH084136B2 (en) Charge transfer device
US3996600A (en) Charge coupled optical scanner with blooming control
JPS588150B2 (en) How a charge-coupled semiconductor device operates
US4040077A (en) Time-independent ccd charge amplifier
JPS6233751B2 (en)
JPS6315753B2 (en)
EP0161023B1 (en) Charge-coupled semiconductor device with dynamic control
US3935477A (en) Analog inverter for use in charge transfer apparatus
JPS5921181B2 (en) charge transfer device
US4280067A (en) Semiconductor charge transfer device having a decoupling gate for stopping reverse charge flow
JPS6249991B2 (en)
JPH07106553A (en) Solid state image pickup element
US3908182A (en) Non-volatile memory cell
SE437438B (en) PROCEDURE FOR OPERATING A CHARGING COUPLE SEMICONDUCTOR DEVICE AS A CHARGING COUPLING DEVICE FOR THE IMPLEMENTATION OF THE PROCEDURE
US4449224A (en) Dynamic merged load logic (MLL) and merged load memory (MLM)
JP2786665B2 (en) Charge transfer device
JPS5931063A (en) Input device for charge coupled unit
JPH04229630A (en) Apparatus and method for sampling of analog signal voltage
JP2723063B2 (en) Charge transfer device
JPS58111371A (en) Inputting method for charge transfer element
JPS6213827B2 (en)
KR920001398B1 (en) Ccd type image sensor