JPS58111371A - Inputting method for charge transfer element - Google Patents

Inputting method for charge transfer element

Info

Publication number
JPS58111371A
JPS58111371A JP56209220A JP20922081A JPS58111371A JP S58111371 A JPS58111371 A JP S58111371A JP 56209220 A JP56209220 A JP 56209220A JP 20922081 A JP20922081 A JP 20922081A JP S58111371 A JPS58111371 A JP S58111371A
Authority
JP
Japan
Prior art keywords
substrate
charge transfer
charges
transfer element
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56209220A
Other languages
Japanese (ja)
Inventor
Masaaki Nakai
中井 正章
Shinya Oba
大場 信弥
Haruhisa Ando
安藤 治久
Toshibumi Ozaki
俊文 尾崎
Masakazu Aoki
正和 青木
Takuya Imaide
宅哉 今出
Kenji Takahashi
健二 高橋
Toshiyuki Akiyama
俊之 秋山
Shusaku Nagahara
長原 脩策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56209220A priority Critical patent/JPS58111371A/en
Publication of JPS58111371A publication Critical patent/JPS58111371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76808Input structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To input bias charges under a storage gate at a time, and to magnify the function of the charge transfer element by injecting bias charges into the charge transfer element through a well layer from the substrate side. CONSTITUTION:The charge transfer element consists of an N-type Si substrate 1, the P type well 2, P<+> layers 3, a gate insulating film (SiO2) 4, storage electrodes (poly-Si) 5 and transfer electrodes (poly-Si) 6. When P type well potential WWELL is made 0V, positive voltage phi1M is applied to the storage gate and positive voltage Vsub is applied to the substrate 1, the well of potential is formed to the surface. When the well layer 2 is all depleted, punch-through currents flow between the surface and the substrate 1. Accordingly, charges are injected to a surface channel section, and surface channel potential is brought to Vsub. When the well layer 2 is depleted partially, the surface channel section and the substrate 1 are separated electrically. Later, clocks phi1, phi2 transfer charges in succession.

Description

【発明の詳細な説明】 本′発明は、C−MO8構造を持つ電荷移送素子におい
て、1段あた91層類以上の・(イアスミ荷を1時、蓄
積する場合に好適なバイアス電荷入力方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a bias charge input method suitable for storing 91 or more layers of Iasumi charges per stage in a charge transfer element having a C-MO8 structure. Regarding.

従来の電荷移送素子、例えば2相駆動CODの入力方法
では、1段あたD211類の電荷を蓄積する事は不可能
であった。4相駆動CODにおいて、特殊な駆動を行な
えは可能でおる(TV学会、19層0全国大会予稿集p
27〜)。
With the input method of a conventional charge transfer element, for example, a two-phase drive COD, it is impossible to accumulate D211 type charges per stage. It is possible to perform special drives in 4-phase drive COD (TV Society, Proceedings of the 19th Layer 0 National Conference, p.
27~).

本発明の目的は、電荷移送素子において、ノ(イアスミ
荷を1段あたり1種類以上入力する方法を提供する事に
ある。
An object of the present invention is to provide a method for inputting one or more types of insulator charges per stage in a charge transfer element.

従来、電荷移送素子は単一基板上に形成されておシ、バ
イアス電荷は入力段より注入していた。
Conventionally, charge transfer devices have been formed on a single substrate, and bias charges have been injected from the input stage.

そのため、1段あたり1種のバイアス電荷しか蓄積でき
なかった。最近のプロセス技術の向上により、浅いウェ
ル内に電荷移送素子を形成する事が可能となった。その
結果、縦方向のバイポーラトランジスタ効果を利用して
、1段あた91種以上のバイアス電荷を入力する拳が可
能となった。
Therefore, only one type of bias charge could be accumulated per stage. Recent improvements in process technology have made it possible to form charge transport elements within shallow wells. As a result, it has become possible to input more than 91 types of bias charges per stage by utilizing the vertical bipolar transistor effect.

本発明の入力法について説明する。The input method of the present invention will be explained.

第1図はりpツク、φ1、φ2で駆動する電荷移送素子
CODの断面を示したものである。1はN形Bi基板、
2はP形ワエル層、3は29層、4はゲート絶縁膜(S
iα1.5は蓄積電極(Poly@8i)、6は転送電
極(poly −Si )である。7は電荷の転送方向
を示す。このCODに電圧を印加し九時のφ1の蓄積ゲ
ート部、A−A’力方向電位分布を第2図に示す。11
は蓄積ゲート領域、12はゲート絶縁膜領域、13はP
形りエル領域、14はN形Si基板領域である。今、P
形つェル電位vwNLX、t−0マとし蓄積ゲートに正
電圧φIMを印加し、基板に正電圧’V’5vshを印
加すると、表面にポテンシャルの井戸ができる。この井
戸を利用して電荷を転送するものがCODである。この
時、表面からの空乏層幅Wd15は【1)式%式% Nム :P形りエル層不純物濃度 g3i:3iの誘電率 φS :フエルミ電圧 第3図は(1)式をグラフに示したものである。
FIG. 1 shows a cross section of a charge transfer element COD driven by p, φ1, and φ2. 1 is an N-type Bi substrate,
2 is a P-type Wael layer, 3 is a 29 layer, and 4 is a gate insulating film (S
iα1.5 is a storage electrode (Poly@8i), and 6 is a transfer electrode (poly-Si). 7 indicates the direction of charge transfer. FIG. 2 shows the potential distribution in the A-A' force direction at the storage gate portion of φ1 at 9 o'clock when a voltage is applied to this COD. 11
is a storage gate region, 12 is a gate insulating film region, and 13 is a P
The shaped L region 14 is an N-type Si substrate region. Now, P
When a positive voltage φIM is applied to the storage gate, and a positive voltage 'V'5vsh is applied to the substrate, a potential well is created on the surface. A COD uses this well to transfer charges. At this time, the depletion layer width Wd15 from the surface is determined by the formula (1). It is something that

Nm=10”crn−烏、φIM=20Vとすると、W
dは約5μmである。この時、P形つェル層O深さxl
を5μm以下とすると、ウェル層はすべて空乏化してし
まう。このような状態では、表面とN形Si基板間にパ
ンチスルー電流が流れる。その結果、表面チャネル部に
電荷が注入され、電位はVamhとなる。本発明はこの
パンチスルー電流を利用して、基板側より電荷を注入す
る事である0次に実施例を用いて説明する。
If Nm=10"crn-karasu and φIM=20V, W
d is approximately 5 μm. At this time, the P-type well layer O depth xl
If it is less than 5 μm, the well layer will be completely depleted. In such a state, a punch-through current flows between the surface and the N-type Si substrate. As a result, charges are injected into the surface channel portion, and the potential becomes Vamh. The present invention will be explained using a zero-order embodiment in which charge is injected from the substrate side using this punch-through current.

W41図の2相駆動CODにおいて、x1=4pmNム
= 10”an−”とし、第4図のクロックパルスを用
いてバイアス電荷を注入する。φIH=15V、161
M=12M=9V、$1L=$2L=OV、V−h=1
3■とする。入力期間16時のポテンシャルを第5図の
点線で示す。P形9エル層13は全て空乏化しているた
め、パンチスルー電流によシ、Nsmb14から電荷が
注入され表面に斜線部のバイアス電荷19が入力できる
。この時表面チャネル電位FiV−h電位となる。次に
転送期間17に移ると第5図の実線のようなポテンシャ
ルとなり、P形つェル層の一部しか空乏化しなくなる。
In the two-phase drive COD shown in FIG. W41, x1=4pmN=10"an-", and bias charges are injected using the clock pulse shown in FIG. φIH=15V, 161
M=12M=9V, $1L=$2L=OV, V-h=1
3■. The potential during the 16 o'clock input period is shown by the dotted line in FIG. Since the P-type 9L layer 13 is completely depleted, charges are injected from the Nsmb 14 by the punch-through current, and the bias charges 19 shown in the shaded area can be input to the surface. At this time, the surface channel potential becomes FiV-h potential. Next, in the transfer period 17, the potential becomes as shown by the solid line in FIG. 5, and only a portion of the P-type well layer becomes depleted.

そのた  。That's it.

め、表面チャネル部とN形基板とが電気的に分離される
。その後18の期間ではφ1、φ2を用いて電荷を順次
転送する。
Therefore, the surface channel portion and the N-type substrate are electrically isolated. After that, in the 18th period, charges are sequentially transferred using φ1 and φ2.

他の駆動方法として、第6図のようなりロックパルスを
用いると、各々の蓄積ゲー)Hl、H2にバイアス電荷
を1時的に蓄積する動作も可能である。
As another driving method, by using a lock pulse as shown in FIG. 6, it is also possible to temporarily accumulate bias charges in each of the storage gates H1 and H2.

本発明の入力方法は電荷移送素子の11類(例えは表面
形COD、埋め込み形COD%BBD)に依らず適用で
きる。
The input method of the present invention can be applied regardless of the type 11 type of charge transfer device (for example, surface type COD, buried type COD%BBD).

本発明によれば、電荷移送素子の段数によらず、一度に
バイアス電荷を蓄積ゲート下に入力する事が可能であり
、電荷移送素子機能が拡大できる。
According to the present invention, it is possible to input bias charges under the storage gate at one time regardless of the number of stages of charge transfer elements, and the function of the charge transfer element can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Fi2相駆動CODの断面図、第2図および第5
図ticcn内部のポテンシャル図、第3図は空乏層幅
の電圧依存性を示す図、第4図および第6図はパルスタ
イミングチャートである。 1・・・N形3i基板、2・・・P形つェル鳩、3・・
・10層、4・・・ゲート絶縁膜、5・・・蓄積ゲート
電極、6第 1  口 第 2I211 yfJ3   t¥1 M41¥l /4/7/8 聞 5UfU !fJ 6  図 鴫1頁の続き 0発 明 者 青木正和 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 今出宅哉 横浜市戸塚区吉田町292番地株 式会社日立製作所家電研究所内 0発 明 者 高橋健二 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 秋山俊之 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 長原脩策 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
Figure 1: Cross-sectional view of Fi two-phase drive COD, Figures 2 and 5
ticcn, FIG. 3 is a diagram showing the voltage dependence of the depletion layer width, and FIGS. 4 and 6 are pulse timing charts. 1...N-type 3i board, 2...P-type swell pigeon, 3...
・10 layers, 4... Gate insulating film, 5... Storage gate electrode, 6 1st port 2I211 yfJ3 t¥1 M41¥l /4/7/8 5UfU! fJ 6 Illustration continued on page 10 Author Masakazu Aoki 1-280 Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory Author: Takuya Imade Home Appliance Research, Hitachi, Ltd. 292 Yoshida-cho, Totsuka-ku, Yokohama City 0 within the facility Author: Kenji Takahashi, 1-280 Higashi-Koigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory, 0 author: Toshiyuki Akiyama, 1-280 Higashi-Koigakubo, Kokubunji City, Hitachi, Ltd., 0 publications Author: Shusaku Nagahara, Kokubunji City Hitachi, Ltd. Central Research Laboratory, 1-280 Higashi Koigakubo

Claims (1)

【特許請求の範囲】[Claims] 1、 ウェル内に形成した電荷移送素子において、バイ
アス電荷を基板側よりウェルを介し、電荷移送素子内に
注入する事を特徴とする電荷移送素子の入力方法。
1. An input method for a charge transfer element, which is characterized in that, in a charge transfer element formed in a well, bias charges are injected into the charge transfer element from the substrate side through the well.
JP56209220A 1981-12-25 1981-12-25 Inputting method for charge transfer element Pending JPS58111371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209220A JPS58111371A (en) 1981-12-25 1981-12-25 Inputting method for charge transfer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209220A JPS58111371A (en) 1981-12-25 1981-12-25 Inputting method for charge transfer element

Publications (1)

Publication Number Publication Date
JPS58111371A true JPS58111371A (en) 1983-07-02

Family

ID=16569330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209220A Pending JPS58111371A (en) 1981-12-25 1981-12-25 Inputting method for charge transfer element

Country Status (1)

Country Link
JP (1) JPS58111371A (en)

Similar Documents

Publication Publication Date Title
US6466489B1 (en) Use of source/drain asymmetry MOSFET devices in dynamic and analog circuits
JP2008060550A (en) Imaging apparatus
JPH084136B2 (en) Charge transfer device
JPS6233751B2 (en)
JPH0671014B2 (en) Output stage for embedded channel charge-coupled device
US5892251A (en) Apparatus for transferring electric charges
EP0280097B1 (en) Charge transfer device with booster circuit
JPS58111371A (en) Inputting method for charge transfer element
JPS6249991B2 (en)
JPS5921181B2 (en) charge transfer device
JP3077608B2 (en) Charge transfer device and method of manufacturing the same
JPS5829634B2 (en) charge coupled device
JPS6318344B2 (en)
JPS6315753B2 (en)
JP2870046B2 (en) Charge-coupled device
US4890307A (en) Input circuit of charge transfer device
JP2768736B2 (en) Charge transfer device
JP2723063B2 (en) Charge transfer device
US5612554A (en) Charge detection device and driver thereof
JPH08330573A (en) Charge transfer device
JPS62243365A (en) Semiconductor device
CA1101548A (en) Two phase charge coupled devices employing fixed charge for creating asymmetrical potential wells
JPS61279175A (en) Driving method for charge transfer device
JPS61194870A (en) Solid-state image pick-up device
JP2877183B2 (en) Charge transfer device