JPS6315475A - Manufacture of field effect semiconductor device - Google Patents

Manufacture of field effect semiconductor device

Info

Publication number
JPS6315475A
JPS6315475A JP15916986A JP15916986A JPS6315475A JP S6315475 A JPS6315475 A JP S6315475A JP 15916986 A JP15916986 A JP 15916986A JP 15916986 A JP15916986 A JP 15916986A JP S6315475 A JPS6315475 A JP S6315475A
Authority
JP
Japan
Prior art keywords
resist
recess
pattern
gate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15916986A
Other languages
Japanese (ja)
Other versions
JPH0260216B2 (en
Inventor
Kinshiro Kosemura
小瀬村 欣司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15916986A priority Critical patent/JPS6315475A/en
Publication of JPS6315475A publication Critical patent/JPS6315475A/en
Publication of JPH0260216B2 publication Critical patent/JPH0260216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form easily an asymmetrical recess/T shaped gate electrode by forming a recess with the use of the first resist mask and in addition to laminating the second resist as well as the third resist that has sensitivity higher than that of the second resist, thereby opening a pattern for forming a T shaped gate. CONSTITUTION:A recess-forming pattern having an opening 7 is formed on a first resist coating 6 on a semiconductor substrate 1 and the recess 8 is formed by using the above pattern as a mask. A second resist coating 9 is formed and pre-baked, and then a third resist coating 10 more sensitive than the coating 9 is pre-baked is formed and pre-baked. Furthermore, an exposure 11 to a position close to the source electrode 4 from the middle of the recess 8 of the pattern corresponding to a gate length and the exposure 12, in which a dose to the pattern corresponding to size where a gate electrode is enlarged to a T shape is lower than that of the pattern corresponding to the gate length, are carried out according to an optional order. Then, the second and third resists 9 and 10 are treated with a development process to open gate-forming patterns 13a and 13b, through which gate metal 14' is applied to form a T-shaped gate electrode 14.

Description

【発明の詳細な説明】 〔概要〕 この発明は、電界効果型半導体装置を製造するに際して
、 第1のレジストマスクでリセスを形成し、第2のレジス
トとこれより高感度の第3のレジストとを積層して、ゲ
ート長相当のパターンのソース電極寄りの位置への露光
と、ゲート電極の拡大寸法相当のパターンのこれより低
ドーズ量の露光とを任意の順序で行い、現像処理してT
形ゲート形成用パターンを開口して、ゲート金属を被着
してT形ゲート電極を形成することにより、 非対称リセス・T形ゲート電極を容易に形成するもので
ある。
[Detailed Description of the Invention] [Summary] When manufacturing a field effect semiconductor device, the present invention forms a recess in a first resist mask, and uses a second resist and a third resist with higher sensitivity. A pattern corresponding to the gate length is exposed to light at a position close to the source electrode, and a pattern corresponding to the enlarged size of the gate electrode is exposed to light at a lower dose than this, and then developed and T.
The asymmetric recess/T-shaped gate electrode can be easily formed by opening the pattern for forming a shaped gate and depositing gate metal to form a T-shaped gate electrode.

(産業上の利用分野〕 本発明は電界効果型半導体装置の製造方法、特に非対称
リセス・T形ゲート電極を有する電界効果型半導体装匿
の製造方法に関する。
(Industrial Field of Application) The present invention relates to a method of manufacturing a field effect semiconductor device, and more particularly to a method of manufacturing a field effect semiconductor package having an asymmetric recessed T-shaped gate electrode.

電子移動度が高い砒化ガリウム(GaAs)等の■−V
 ’J%化合化合物体4体いて電界効果トランジスタの
遮断周波数等の特性向上が進められているが、ゲート電
極及びリセスの構造は電界効果トランジスタの特性を大
きく支配し、その製造方法の改善が要望されている。
■-V such as gallium arsenide (GaAs) with high electron mobility
Although progress is being made in improving the cutoff frequency and other characteristics of field-effect transistors, the structure of the gate electrode and recess greatly controls the characteristics of field-effect transistors, and improvements in the manufacturing method are required. has been done.

〔従来の技術〕[Conventional technology]

GaAsを半ぶ体材料とするショットキバリア形電界効
果トランジスタ(MES FET)がマイクロ波帯域等
において既に多数用いられており、更に空間分離ドーピ
ングと電子の2次元状態化により一層の高移動度を実現
した高電子移動度電界効果トランジスタ(HEMT)の
実用化が始まっている。
Schottky barrier field effect transistors (MES FETs), which use GaAs as the half-body material, are already widely used in microwave bands, etc., and have achieved even higher mobility through spatial separation doping and making electrons into a two-dimensional state. The practical use of high electron mobility field effect transistors (HEMTs) has begun.

これらのFETの特性向上のために、ゲート電極及びリ
セス構造について例えば下記の手段が従来行われている
In order to improve the characteristics of these FETs, the following measures have been conventionally taken for gate electrodes and recess structures, for example.

■ ゲート長の短縮: 遮断周波数がゲート長の2乗に
反比例することから、最新の微細加工技術を駆使してゲ
ート長を極力短縮している。
■ Shortening the gate length: Since the cutoff frequency is inversely proportional to the square of the gate length, the latest microfabrication technology is used to shorten the gate length as much as possible.

■ T形ゲート: ゲート長の短縮に伴うゲート抵抗(
ゲート電極の導体抵抗)の増大を防止するために、ゲー
ト電極の断面形状を丁字形として断面積を増大する。
■ T-shaped gate: Gate resistance (
In order to prevent an increase in the conductor resistance of the gate electrode, the cross-sectional shape of the gate electrode is made into a T-shape to increase the cross-sectional area.

■ リセス長の短縮: ソース抵抗(ソース−ゲート間
の直列抵抗)を減少して伝達コンダクタンスg1等を増
大する。
■ Reduction of recess length: Reduce source resistance (series resistance between source and gate) to increase transfer conductance g1, etc.

■ 非対称リセス:  リセス長の短縮に伴うドレイン
耐圧の低下を防止するために、ドレイン重臣−ゲート電
極間の間隔がソース電極−ゲート電ト)間の間隔より大
きい非対称構造として、ドレイン側の空乏層を伸ばし電
界強度を減少させる。
■ Asymmetrical recess: In order to prevent the drain breakdown voltage from decreasing due to the shortening of the recess length, the depletion layer on the drain side is and decrease the electric field strength.

前記■、■については既に多くの製造方法が提供されて
おり、また■、■については例えば本発明者が先に特願
昭57−163063によりその製造方法を提供してい
る。
Many manufacturing methods have already been provided for the above-mentioned (1) and (2), and for example, the present inventor has previously provided a manufacturing method for (1) and (3) in Japanese Patent Application No. 57-163063.

該発明によれば、第2図(al乃至telにその1例の
工程順模式側断面図を示す如(、基板21上に半導体活
性層23を形成して該半導体活性層23上にレジスト2
6を被覆し、該レジスト層26にゲート電極パターンに
従う主露光処理27を行い、かつ該露光処理27の後又
は前にドレイン電極25側に偏倚した補助露光28を行
う。前記露光27及び28を行ったレジスト層26を現
像して断面が非対称のレジスト空孔29を形成し、該レ
ジスト層26をマスクとして該半導体活性層23を選択
的にエツチングして該半導体活性層にリセス30を形成
し、更に該レジスト層26をマスクとして該リセス30
の表面にゲート電極34を形成する。なお22はバッフ
ァ層、24はソース電極、34゛はゲート金属層である
According to the invention, a semiconductor active layer 23 is formed on a substrate 21 and a resist 2 is deposited on the semiconductor active layer 23, as shown in FIG.
6 is coated, main exposure treatment 27 is performed on the resist layer 26 according to the gate electrode pattern, and auxiliary exposure 28 biased toward the drain electrode 25 side is performed after or before the exposure treatment 27. The resist layer 26 subjected to the exposures 27 and 28 is developed to form a resist hole 29 having an asymmetric cross section, and the semiconductor active layer 23 is selectively etched using the resist layer 26 as a mask. A recess 30 is formed in the recess 30, and the recess 30 is further formed using the resist layer 26 as a mask.
A gate electrode 34 is formed on the surface of the substrate. Note that 22 is a buffer layer, 24 is a source electrode, and 34 is a gate metal layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記発明によって短すセス長の非対称リセスを形成する
ことができ、またT形ゲート電極も製造されているが、
非対称リセスとT形ゲート電極とを併せて形成すること
は困難で未だ実現されず、これを可能にする製造方法が
要望されている。
According to the invention, an asymmetric recess with a shortened recess length can be formed, and a T-shaped gate electrode has also been manufactured.
It is difficult to form an asymmetric recess and a T-shaped gate electrode at the same time, and this has not yet been realized, and there is a need for a manufacturing method that makes this possible.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半導体基体上に第1のレジストを被覆し
てリセス形成用パターンを開口し、該パターンをマスク
としてリセスを形成し、第2のレジストを被覆してプリ
ベーキングした後に、該第2のレジストより高感度の第
3のレジストを被覆してプリベーキングし、 ゲート長相当のパターンの該リセスの中央からソース電
極寄りの位置への露光と、ゲート電極をT形に拡大する
寸法相当のパターンの該ゲート長相当のパターンより低
ドーズ量の露光とを任意の順序で行い、 該第2及び第3のレジストを現像処理してT形ゲート形
成用パターンを開口し、 次いでゲート金属を被着してT形ゲート電極を形成する
本発明による電界効果型半導体装置の製造方法により解
決される。
The above problem is solved by coating the semiconductor substrate with a first resist, opening a recess formation pattern, forming a recess using the pattern as a mask, coating the semiconductor substrate with a second resist, and pre-baking. A third resist with higher sensitivity than the second resist is coated and prebaked, and a pattern corresponding to the gate length is exposed from the center of the recess to a position near the source electrode, and a pattern corresponding to the size to expand the gate electrode into a T-shape is applied. The second and third resists are developed to open a T-shaped gate forming pattern, and then the gate metal is exposed to light at a lower dose than the pattern corresponding to the gate length. This problem is solved by a method for manufacturing a field-effect semiconductor device according to the invention, in which a T-shaped gate electrode is deposited.

〔作 用〕[For production]

本発明によれば、リセスを形成した半導体装置上に例え
ば電子ビーム露光用ポジ形のレジストを2層積層し、か
つゲート長相当のパターンとゲート電極をT形に拡大す
る寸法相当のパターンとの露光を任意の順序で行う。
According to the present invention, two layers of, for example, a positive resist for electron beam exposure are laminated on a semiconductor device in which a recess is formed, and a pattern corresponding to the gate length and a pattern corresponding to the size for enlarging the gate electrode into a T-shape are formed. Perform exposures in any order.

ただし、下層のレジストを上層のレジストより低感度で
T形ゲート電極の断面寸法が小さい部分の高さに相当す
る厚さとする。
However, the lower layer resist has lower sensitivity than the upper layer resist and has a thickness corresponding to the height of the portion of the T-shaped gate electrode having a smaller cross-sectional dimension.

またゲート長相当のパターンの露光はこの下層のレジス
トに所要の露光量を与えるドーズ量とし、T形に拡大す
る寸法相当のパターンの露光はこの上層のレジストに所
要の露光量を与えるドーズ量とする。なお少なくともゲ
ート長相当のパターンの露光はリセスの中央からソース
電極寄りの位置とする。
In addition, exposure of a pattern corresponding to the gate length is done at a dose that provides the required exposure amount for the resist layer below, and exposure for a pattern corresponding to the size that expands into a T-shape is set at a dose that provides the required exposure amount for the resist layer above. do. Note that the exposure of a pattern corresponding to at least the gate length is performed at a position close to the source electrode from the center of the recess.

この2層のレジストを現像処理すれば、上層のレジスト
には拡大した寸法のパターンの開口、下層のレジストに
はゲート長を目当のパターンの開口が形成され、ゲート
金属を被着してリフトオフすることによりT形ゲート電
極が形成される。
When these two layers of resist are developed, an opening with a pattern of enlarged dimensions is formed in the upper resist, and an opening with a pattern of the desired gate length is formed in the lower resist, and the gate metal is deposited and lifted off. A T-shaped gate electrode is thereby formed.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図(a)乃至([1はMES FETにかかる本発
明の実施例を示す工程順模式側断面図である。
FIGS. 1(a) to 1(a) are schematic side sectional views in the order of steps showing an embodiment of the present invention relating to a MES FET.

第1図fa)参照: 半絶縁性GaAs基Fi1上に、
例えばノンドープのGaAsバッファ層2と不純物濃度
2〜3 X 10”cm−3、厚さ200〜300nm
程度のn型GaAs活性層3とをエピタキシャル成長し
、素子間分離(図示を省略)を施した後に、例えば金ゲ
ルマニウム/金(AuGe/Au)を用いてソース電極
4及びドレイン電極5を配設する。
See Figure 1 fa): On the semi-insulating GaAs base Fi1,
For example, a non-doped GaAs buffer layer 2 with an impurity concentration of 2 to 3 x 10"cm-3 and a thickness of 200 to 300 nm.
After epitaxially growing an n-type GaAs active layer 3 of about 100 mL and performing device isolation (not shown), a source electrode 4 and a drain electrode 5 are provided using, for example, gold germanium/gold (AuGe/Au). .

この半導体基体上に、例えば冨士通製CMR等の電子ビ
ーム露光用ポジレジストを厚さ例えば0.3〜0.5 
tnn程度に塗布してレジスト層6とし、プリベーキン
グ後露光、現像処理してリセス長相当のパターンの開ロ
アを設け、これをマスクとして例えば弗酸(HF)系溶
液によるエツチングを行いリセス8を形成する。なおリ
セス8下の活性層3の厚さは例えば70〜loonm程
度とする。
On this semiconductor substrate, a positive resist for electron beam exposure such as CMR manufactured by Fujitsu is applied to a thickness of 0.3 to 0.5 mm.
A resist layer 6 is formed by coating the resist layer 6 to a thickness of about 100 mm, and after prebaking, exposure and development are performed to form an open lower pattern corresponding to the recess length. Using this as a mask, etching is performed using, for example, a hydrofluoric acid (HF) solution to form a recess 8. Form. Note that the thickness of the active layer 3 under the recess 8 is, for example, approximately 70 to 100 m.

第1図(b)参照: この半導体基体上にまずレジスト
層9を塗布する。ただし本実施例では前記レジスト層6
を除去せず、これと同一の例えば富士通類CMR等のレ
ジストを重ねて塗布してレジスト層9とし、そのリセス
8上の厚さをT形ゲート電極の断面寸法がゲート長に相
当する部分の高さとしている。
See FIG. 1(b): First, a resist layer 9 is applied onto this semiconductor substrate. However, in this embodiment, the resist layer 6
The same resist, such as Fujitsu's CMR, is coated over the resist layer 9 without removing it. The height is high.

このレジスト層9のプリベーキング後に、これより高感
度の例えば東し製EBR−9等のポジレジストを厚さ例
えば0.5唖程変に塗布してレジスト層10とし、プリ
ベーキングを行う。
After prebaking the resist layer 9, a positive resist having a higher sensitivity, such as EBR-9 manufactured by Toshi Co., Ltd., is applied to a thickness of, for example, 0.5 μm to form a resist layer 10, and prebaking is performed.

第1図(C1参照: レジスト層9及び10に例えば下
記の様に、ゲート長相当のパターンとゲート電極をT形
に拡大する寸法相当のパターンとの露光を任意の順序で
行う。
FIG. 1 (see C1) The resist layers 9 and 10 are exposed to light in an arbitrary order with a pattern corresponding to the gate length and a pattern corresponding to the size to enlarge the gate electrode into a T shape, for example, as shown below.

ゲート長相当のパターンの露光11はドーズ量を例えば
1.5 X 10−’C/cm”程度として、レジスト
層9に必要な露光量を与え、他方T形に拡大する寸法相
当のパターンの露光12はドーズ量を例えば7X 10
−’C/cm”程度として、レジストN10のみに必要
な露光量を与える。なお少なくともゲート長相当のパタ
ーンの露光11はリセス8の中央からソース電極4寄り
の位置とする。
Exposure 11 of a pattern corresponding to the gate length is performed at a dose of, for example, about 1.5 x 10-'C/cm'' to provide the necessary exposure amount to the resist layer 9, and on the other hand, exposure of a pattern corresponding to the size of expanding into a T-shape is performed. 12 is the dose amount, for example 7X 10
-'C/cm'', the necessary exposure amount is applied only to the resist N10.The exposure 11 of the pattern corresponding to at least the gate length is set at a position close to the source electrode 4 from the center of the recess 8.

第1図Cd)参照: レジスト層10及び9を現像処理
する。この現像処理によりレジスト層10には開口13
b、レジスト層9には開口13aが形成される。
See FIG. 1Cd): The resist layers 10 and 9 are developed. Through this development process, the resist layer 10 has openings 13.
b. An opening 13a is formed in the resist layer 9.

第1図tel参照: ゲート金属として例えばアルミニ
ウム(At)を真空中で被着する。このゲート金属は開
口13b内では図示の如く堆積してT形ゲート電極14
が形成される。なおレジスト層10上にはゲート金属層
14゛ が堆積する。
Refer to Figure 1 (tel): For example, aluminum (At) is deposited as a gate metal in a vacuum. This gate metal is deposited in the opening 13b as shown in the figure, and the T-shaped gate electrode 14 is deposited inside the opening 13b.
is formed. Note that a gate metal layer 14' is deposited on the resist layer 10.

第1図(f)参照: レジスト層10.9及び6を剥離
、除去すればゲート金属層14゛  も除去される。
Refer to FIG. 1(f): When the resist layers 10.9 and 6 are stripped and removed, the gate metal layer 14' is also removed.

本実施例はMES FETを引例しているが、IIEM
T’4−についても同様に本発明を適用して、非対称リ
セス・T形ゲート電極構造を容易に実現することができ
る。
This example uses MES FET as an example, but IIEM
The present invention can be similarly applied to T'4- to easily realize an asymmetric recess/T-shaped gate electrode structure.

〔発明の効果〕〔Effect of the invention〕

以上説明した如(本発明によれば、非対称リセス・T形
ゲート電極構造により電界効巣型半導体装置の多くの特
性向上を同時に実現して、その進展に大きい効果が得ら
れる。
As described above (according to the present invention), the asymmetric recess/T-shaped gate electrode structure simultaneously realizes many improvements in the characteristics of a field effect type semiconductor device, and has a great effect on its progress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al乃至(flは本発明の実施例の工程順模式
第2図(al乃至(elは従来例の工程順模式側断面図
である。 図において、 ■は半絶縁性GaAs基板、 2はGaAsバッファ層
、3はn型GaAs活性層、  4はソース電極、5は
ドレイン電極、    6はレジスト層、7はリセスの
パターン、 8はリセス、9は低感度のレジスト層、 10は高感度のレジスト層、 11はゲート長相当のパターンの露光、12はT形に拡
大する寸法相当のパターンの露光、13aはレジスト層
9の開口、 13bはレジストNIOの開口、 14はT形ゲート電極、 14′はレジスト層上のゲート金属堆積を示す。 単 ; 〆1 羊 1 四 (b)         2q $ 2 図 $ 2 図
FIG. 1 (al to (fl) is a schematic diagram of the process order of the embodiment of the present invention. FIG. 2 (al to (el) is a schematic side sectional view of the process order of the conventional example. In the figure, 2 is a GaAs buffer layer, 3 is an n-type GaAs active layer, 4 is a source electrode, 5 is a drain electrode, 6 is a resist layer, 7 is a recess pattern, 8 is a recess, 9 is a low-sensitivity resist layer, 10 is a high-sensitivity resist layer Sensitivity resist layer, 11 is exposure of a pattern corresponding to the gate length, 12 is exposure of a pattern corresponding to the size expanding into a T shape, 13a is an opening in the resist layer 9, 13b is an opening in the resist NIO, 14 is a T-shaped gate electrode , 14' shows the gate metal deposition on the resist layer.

Claims (1)

【特許請求の範囲】 半導体基体上に第1のレジストを被覆してリセス形成用
パターンを開口し、該パターンをマスクとしてリセスを
形成し、 第2のレジストを被覆してプリベーキングした後に、該
第2のレジストより高感度の第3のレジストを被覆して
プリベーキングし、 ゲート長相当のパターンの該リセスの中央からソース電
極寄りの位置への露光と、ゲート電極をT形に拡大する
寸法相当のパターンの該ゲート長相当のパターンより低
ドーズ量の露光とを任意の順序で行い、 該第2及び第3のレジストを現像処理してT形ゲート形
成用パターンを開口し、 次いでゲート金属を被着してT形ゲート電極を形成する
ことを特徴とする電界効果型半導体装置の製造方法。
[Claims] A first resist is coated on a semiconductor substrate, a recess formation pattern is opened, a recess is formed using the pattern as a mask, a second resist is coated and prebaked, and then a recess formation pattern is opened. A third resist with higher sensitivity than the second resist is coated and prebaked, and a pattern corresponding to the gate length is exposed from the center of the recess to a position near the source electrode, and the gate electrode is expanded into a T-shape. Exposure at a lower dose than the pattern corresponding to the gate length of the corresponding pattern is performed in any order, the second and third resists are developed to open a T-shaped gate forming pattern, and then the gate metal is exposed. 1. A method of manufacturing a field effect semiconductor device, comprising depositing a T-shaped gate electrode.
JP15916986A 1986-07-07 1986-07-07 Manufacture of field effect semiconductor device Granted JPS6315475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15916986A JPS6315475A (en) 1986-07-07 1986-07-07 Manufacture of field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15916986A JPS6315475A (en) 1986-07-07 1986-07-07 Manufacture of field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS6315475A true JPS6315475A (en) 1988-01-22
JPH0260216B2 JPH0260216B2 (en) 1990-12-14

Family

ID=15687786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15916986A Granted JPS6315475A (en) 1986-07-07 1986-07-07 Manufacture of field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS6315475A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165623A (en) * 1988-12-20 1990-06-26 Nec Corp Method of forming fine electrode
US5240869A (en) * 1990-10-30 1993-08-31 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a field effect transistor
US5470767A (en) * 1992-08-06 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US5610090A (en) * 1993-04-27 1997-03-11 Goldstar Co., Ltd. Method of making a FET having a recessed gate structure
US6537865B2 (en) 1998-05-01 2003-03-25 Oki Electric Industry Co., Ltd. Semiconductor device and process of fabricating same
US8338241B2 (en) 2010-12-06 2012-12-25 Electronics And Telecommunications Research Institute Method of manufacturing high frequency device structure
US8722474B2 (en) 2011-12-13 2014-05-13 Electronics And Telecommunications Research Institute Semiconductor device including stepped gate electrode and fabrication method thereof
US8841154B2 (en) 2012-07-11 2014-09-23 Electronics And Telecommunications Research Institute Method of manufacturing field effect type compound semiconductor device
US9634112B2 (en) 2012-12-12 2017-04-25 Electronics And Telecommunications Research Institute Field effect transistor and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165623A (en) * 1988-12-20 1990-06-26 Nec Corp Method of forming fine electrode
US5240869A (en) * 1990-10-30 1993-08-31 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a field effect transistor
US5470767A (en) * 1992-08-06 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US5610090A (en) * 1993-04-27 1997-03-11 Goldstar Co., Ltd. Method of making a FET having a recessed gate structure
US6537865B2 (en) 1998-05-01 2003-03-25 Oki Electric Industry Co., Ltd. Semiconductor device and process of fabricating same
US8338241B2 (en) 2010-12-06 2012-12-25 Electronics And Telecommunications Research Institute Method of manufacturing high frequency device structure
US8722474B2 (en) 2011-12-13 2014-05-13 Electronics And Telecommunications Research Institute Semiconductor device including stepped gate electrode and fabrication method thereof
US8841154B2 (en) 2012-07-11 2014-09-23 Electronics And Telecommunications Research Institute Method of manufacturing field effect type compound semiconductor device
US9634112B2 (en) 2012-12-12 2017-04-25 Electronics And Telecommunications Research Institute Field effect transistor and method of fabricating the same

Also Published As

Publication number Publication date
JPH0260216B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
JPH0260217B2 (en)
JPS6315475A (en) Manufacture of field effect semiconductor device
JPS63174374A (en) Manufacture of field-effect semiconductor device
JPH065682B2 (en) Method for manufacturing semiconductor device
JP2523985B2 (en) Method for manufacturing semiconductor device
JP3106747B2 (en) Method for manufacturing compound semiconductor FET
JPS62274675A (en) Manufacture of field-effect transistor
JPS6215861A (en) Manufacture of semiconductor device
JPS6112079A (en) Manufacture of semiconductor element
JPS6155967A (en) Manufacture of field-effect transistor
JPS62115782A (en) Manufacture of semiconductor device
JPH02113539A (en) Manufacture of semiconductor device
JPS63137481A (en) Manufacture of semiconductor device
JP2607310B2 (en) Method for manufacturing field effect transistor
JPS61265870A (en) Manufacture of field effect transistor
JPS63171A (en) Manufacture of semiconductor device
JPH06120253A (en) Field effect transistor and its manufacture
JPS63129674A (en) Manufacture of field effect type semiconductor device
JPS6015978A (en) Manufacture of field effect transistor
JPH11150129A (en) Semiconductor device and fabrication thereof
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH04274332A (en) Manufacture of semiconductor device
JPS63181477A (en) Manufacture of semiconductor device
JPH03293733A (en) Manufacture of semiconductor device
JPH0485940A (en) Manufacture of compound semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term