JPS63150912A - Formation of thin film and apparatus therefor - Google Patents
Formation of thin film and apparatus thereforInfo
- Publication number
- JPS63150912A JPS63150912A JP29663686A JP29663686A JPS63150912A JP S63150912 A JPS63150912 A JP S63150912A JP 29663686 A JP29663686 A JP 29663686A JP 29663686 A JP29663686 A JP 29663686A JP S63150912 A JPS63150912 A JP S63150912A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- container
- substrate
- gas
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 119
- 238000006243 chemical reaction Methods 0.000 claims abstract description 89
- 239000007789 gas Substances 0.000 claims abstract description 72
- 239000012495 reaction gas Substances 0.000 claims abstract description 37
- 230000002093 peripheral effect Effects 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000003852 thin film production method Methods 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 abstract description 41
- 239000010408 film Substances 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 9
- 238000001947 vapour-phase growth Methods 0.000 abstract description 9
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract 2
- 230000003416 augmentation Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 241000257465 Echinoidea Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000012494 Quartz wool Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、例えば反応ガス相互の化学反応又は反応ガス
と基板との化学反応により半導体ウェハその他の基板上
に酸化膜や絶縁膜、又基板と同一の結晶方位を有する単
結晶膜(エピタキシャル)等を生成する気相成長装置、
酸化拡散炉その他の薄膜成長方法及びその装置に係り、
特に多数枚の基板に均質な被膜が生成可能な薄膜生成方
法及びその装置に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention is applicable to the formation of oxide films, insulating films, or substrates on semiconductor wafers or other substrates, for example, by chemical reactions between reactive gases or chemical reactions between reactive gases and substrates. A vapor phase growth apparatus that produces a single crystal film (epitaxial) etc. having the same crystal orientation as
Regarding oxidation diffusion furnaces and other thin film growth methods and equipment,
In particular, the present invention relates to a method and apparatus for producing a thin film that can produce a uniform coating on a large number of substrates.
r従来の技術」
従来より、周囲に高周波誘導加熱体を囲設したベルジャ
型の反応容器内に円板状のサセプタ板を回転可能に配置
し、前記誘導加熱体によりサセプタ板とともに該サセプ
タ上に密着戴置させた基板を高温域(1100〜120
0℃)に加熱維持させながら、基板表面に反応ガスを流
し、所定の気相成長を行う装置(以下第1従来技術とい
う)や、又周囲に高周波誘導加熱体を囲設した円筒状の
反応管内に、軸線に沿って多角形錐台状のサセプタを回
転可能に配置し、該サセプタの前記加熱体と対面する側
面に夫々複数枚の基板を密着させて取り付けた基板表面
に反応ガスを流し、所定の気相成長を行う装置(以下第
2従来技術という)が存在する。rPrior art" Conventionally, a disc-shaped susceptor plate is rotatably arranged in a bell jar-type reaction vessel surrounded by a high-frequency induction heating element, and the induction heating element heats the susceptor together with the susceptor plate. The substrate placed in close contact with each other is placed in a high temperature range (1100~120
A device (hereinafter referred to as the first prior art) that performs a specified vapor phase growth by flowing a reaction gas over the substrate surface while maintaining heating at 0°C), and a cylindrical reaction device surrounded by a high-frequency induction heating element. A polygonal frustum-shaped susceptor is rotatably arranged in the tube along the axis, and a plurality of substrates are attached to the side surfaces of the susceptor facing the heating element, respectively, and a reactive gas is caused to flow over the surfaces of the substrates. There exists an apparatus (hereinafter referred to as the second prior art) that performs predetermined vapor phase growth.
しかしながら第1従来技術においては、反応容器軸線と
直交する単一平面上に基板を配置する構成を取る為に基
板処理枚数が必然的に少なく、而も基板の大口径化が進
むにつれサセプタ有効利用面積が低下する問題も生じる
。However, in the first conventional technology, the number of substrates processed is necessarily small because the substrates are arranged on a single plane perpendicular to the axis of the reaction vessel, and as the diameter of the substrate becomes larger, the susceptor can be used more effectively. There also arises the problem that the area is reduced.
又第2従来技術においても、多角形錐台の夫々の面に基
板を取り付ける構成を取る為に、基板を大口径化すれば
するほどその有効利用面積が低下するとともに、基板配
列が複雑になる為に自動ハンドリング操作が困難になる
。Also, in the second prior art, since the substrate is attached to each face of a truncated polygonal pyramid, the larger the diameter of the substrate, the lower the effective area and the more complicated the substrate arrangement. This makes automatic handling operations difficult.
又前記いずれの従来技術も基板がその加熱体であるサセ
プタ上に密着して配置される為に、基板装着/脱着の際
に基板表面に何等かの搬送部材を接触せねばならず、該
接触により基板の汚染や歩留まりの低下を引き起こし易
い。In addition, in all of the above-mentioned conventional techniques, since the substrate is placed in close contact with the susceptor, which is the heating element, it is necessary to bring some kind of conveying member into contact with the surface of the substrate when mounting/demounting the substrate. This tends to cause contamination of the substrate and reduction in yield.
この為、例えば第6図に示す如く、外周部に抵抗加熱体
その他の加熱源101を配した円筒状反応容器102内
に、該容器102軸線と一致する軸線を有する基板支持
治具103を設け、該支持治具103内に、容器102
軸線とほぼ直交させて多段状に平行に基板104を積層
配置するとともに、容器102上端部に取り付けたノズ
ル105より容器102下端側のガス排気口106へ向
け、反応ガスを流しながら基板104上に所定の気相成
長を行うようにした装置が提案されている。(特開昭8
0−152875号他、以下第3従来技術という)
かかる装置によれば円筒状容器102軸線とほぼ直交さ
せて多段状に、基板104を積層配置する為に前記2つ
の従来技術に比較して基板処理枚数が数段増大するとと
もに、大口径化に対応出来る縦型薄膜生成装置を提供出
来る。For this purpose, for example, as shown in FIG. 6, a substrate support jig 103 having an axis that coincides with the axis of the vessel 102 is provided in a cylindrical reaction vessel 102 having a resistance heating element or other heat source 101 arranged on the outer periphery. , a container 102 is placed inside the support jig 103.
The substrates 104 are stacked and arranged in parallel in a multi-tiered manner, almost perpendicular to the axis, and a reaction gas is flowed onto the substrate 104 from a nozzle 105 attached to the upper end of the container 102 toward a gas exhaust port 106 at the lower end of the container 102. An apparatus for performing predetermined vapor phase growth has been proposed. (Unexamined Japanese Patent Publication No. 8
No. 0-152875 et al., hereinafter referred to as the third prior art) According to this device, the substrates 104 are stacked and arranged in a multi-tiered manner substantially orthogonal to the axis of the cylindrical container 102, so compared to the above two prior art techniques, It is possible to provide a vertical thin film generating apparatus that can handle an increase in the number of sheets to be processed and a larger diameter.
「発明が解決しようとする問題点」
しかしながらかかる従来技術によれば反応容器と同軸上
に基板を積層配置する構成を取る為に、基板収納枚数を
多くすればする程、反応容器やその周囲に囲繞する加熱
源を縦長に配置しなければならず、その分反応容器内の
温度管理が困難になり、この結果上下に配設した基板相
互間の反応ガス温度の不均一化が生じ、基板相互間での
均−且つ均質な膜厚形成が困難になるという問題が生じ
る。``Problems to be Solved by the Invention'' However, according to the prior art, since the substrates are stacked and arranged coaxially with the reaction vessel, the more substrates are stored, the more the reaction vessel and its surroundings are The surrounding heating sources must be arranged vertically, making it difficult to control the temperature inside the reaction vessel.As a result, the temperature of the reaction gas between the substrates placed above and below becomes uneven, and the temperature between the substrates increases. A problem arises in that it becomes difficult to form a uniform film thickness between the layers.
又前記従来技術においては反応容器上端より導入された
ガスを基板配設面と直角方向(軸線方向)に流しながら
反応容器下端側の排出口より排出する構成を取る為に、
上端側の基板の気相成長により原料ガスが消費されたガ
ス流が順次下方の基板面に移動、言い換えればガス流が
下方に移動すればする程原料ガス濃度が薄くなり、基板
相互間の膜厚のバラツキが生じ易い。Furthermore, in the prior art, the gas introduced from the upper end of the reaction vessel is discharged from the outlet at the lower end of the reaction vessel while flowing in a direction perpendicular to the substrate mounting surface (in the axial direction).
The gas flow in which the raw material gas is consumed by vapor phase growth on the upper end substrate sequentially moves to the lower substrate surface.In other words, the lower the gas flow moves, the thinner the raw material gas concentration becomes, and the film between the substrates becomes thinner. Variations in thickness are likely to occur.
又前記原料ガス濃度の低減に反比例して気相成長により
生じた副生成物の濃度が太きくなり、ガス温度も上昇す
る為に、ガス流方向の不純物濃度の差、言い換えれば抵
抗率のバラツキも生じ易い。Furthermore, inversely proportional to the reduction in the raw material gas concentration, the concentration of by-products produced by vapor phase growth increases, and the gas temperature also increases, resulting in a difference in impurity concentration in the gas flow direction, in other words, variations in resistivity. is also likely to occur.
本発明はかかる従来技術の欠点に鑑み、基板処理枚数を
著しく増大させるとともに、大口径化に対応出来る縦型
薄膜生成方法及びその装置を提供する21■を目的とす
る。In view of the drawbacks of the prior art, an object of the present invention is to provide a method and apparatus for producing a vertical thin film, which can significantly increase the number of substrates to be processed and can accommodate larger diameters.
又、本発明の他の目的とする所は、基板相互間と各基板
毎の膜厚と膜質の均一化あるいは前記特性の実現と抵抗
率のバラツキ等を解消し得る薄膜生成方法及びその装置
を提供する事にある。Another object of the present invention is to provide a method and apparatus for producing a thin film that can make the film thickness and quality uniform between substrates and for each substrate, achieve the above-mentioned characteristics, and eliminate variations in resistivity. It is about providing.
更に本発明の他の目的とする所は装着/脱着の際のハン
ドリング操作の容易化と該装着/脱着の際において基板
の汚染や歩留まりの低下を生じせしめる恐れのない薄膜
生成方法及びその装置を提供する事にある。Furthermore, another object of the present invention is to provide a method and apparatus for producing a thin film that facilitates handling operations during attachment/detachment and that does not cause contamination of the substrate or decrease in yield during the attachment/detachment. It is about providing.
「問題点を解決する為の手段」
本第1発明はかかる技術的課題を達成する為に、活性化
された空間における反応ガス相互の化学反応又は反応ガ
スと基板との化学反応を利用して例えばCVD (化学
的気相成長)法や酸化鉱υ法に基づいて半導体ウェハそ
の他の基板上に薄膜を生成する薄膜生成方法において、
■前記活性空間の中心部位より半径方向に所定距離隔て
た周囲空間上に、上下に縦列状に積層配置させた基板群
を位置させた点、
■前記空間の周辺部位から中心部位又はその逆方向へ向
け反応ガスを流すようにし、好ましくは少なくとも単一
の基板表面の反応域を通過した反応ガスが、他の基板表
面の反応域を通過する事なく活性空間外に排出されるよ
うにした点
を必須構成要件とする薄膜生成方法を提案する。"Means for Solving the Problem" The first invention utilizes a chemical reaction between reactive gases or a chemical reaction between a reactive gas and a substrate in an activated space to achieve the technical problem. For example, in a thin film production method in which a thin film is produced on a semiconductor wafer or other substrate based on the CVD (chemical vapor deposition) method or the ore oxide method, A group of substrates stacked vertically and vertically is placed in the space, and a reaction gas is caused to flow from the periphery of the space to the center or in the opposite direction, preferably at least on a single substrate. We propose a thin film production method in which the essential component is that the reaction gas that has passed through the reaction zone on the surface is discharged outside the active space without passing through the reaction zone on the surface of another substrate.
この場合前記活性空間とはドーム状の閉塞空間、管状の
開放空間のいずれも含み、又活性化させる手段には加圧
、常圧又は減圧下における加熱手段、プラズマ、光、P
hoto等のいずれも含む。In this case, the active space includes both a dome-shaped closed space and a tubular open space, and the activation means include heating means under pressurized, normal pressure or reduced pressure, plasma, light, P.
This includes both hoto and the like.
又、基板を積層配置するには後記実施例に示すようにカ
セット化された基板支持治具を用いて積層配置してもも
よく、又反応炉内の中心軸より放射状に伸びる枝状の支
持部材を設け、該支持部材上に基板を積層配置させても
よい。Furthermore, in order to arrange the substrates in a stacked manner, it is also possible to arrange them in a stacked manner using a substrate support jig made into a cassette as shown in the example below, or by using branch-like supports extending radially from the central axis in the reactor. A member may be provided and the substrates may be stacked and arranged on the support member.
尚反応ガスとは原料ガスやドーピングガスのみを指すの
ではなく、キャリアガス中にこれらのガスが混入された
ものをいう。Note that the reaction gas does not refer only to the raw material gas or doping gas, but refers to a carrier gas mixed with these gases.
又第2発明においては、かかる生成方法を具体化する為
に好ましい構成を示し、その必須構成要件とする所は、
例えば加圧、常圧又は減圧下におit ル熱CVD、プ
ラズマCVD、光CVD、Photo−CVD、MOC
VD、基板上に酸化膜を形成する酸化拡散炉等に適用さ
れる、いわゆる縦型構造の薄膜生成装置において
■上下に縦列に積層配置した基板群を容器軸線周囲の容
器内空間上に複数組配置した点、尚、前記反応容器とは
、ドーム状の反応容器の他に管状の反応容器も含む。In addition, in the second invention, a preferred configuration for embodying this generation method is shown, and its essential components are as follows:
For example, thermal CVD, plasma CVD, photo-CVD, Photo-CVD, MOC under pressure, normal pressure or reduced pressure.
In a thin film production device with a so-called vertical structure, which is applied to VD, oxidation diffusion furnaces, etc. that form oxide films on substrates, ■Multiple sets of substrates stacked vertically in vertical rows are placed in the space inside the container around the axis of the container. Note that the reaction vessel includes not only a dome-shaped reaction vessel but also a tubular reaction vessel.
■少なくとも容器中心部位側又は/及び容器周辺部位側
に反応ガス排出手段を設けた点、■導入管路より容器内
に分散された反応ガスが積層配置された基板表面の反応
域を通過する際にほぼ容器半径方向に沿って流れるよう
に構成した点言い変えれば反応ガスの流れ方向が、容器
中心部位より周辺部位へ向け、又は容器周辺部位より中
心部位へ向け筺れるように構成した点を必須構成要件と
する薄膜生成装置を提案する。■A reactive gas discharge means is provided at least on the center side of the container and/or on the peripheral side of the container.■When the reactive gas dispersed in the container from the introduction pipe passes through the reaction zone on the surface of the laminated substrate. In other words, the flow direction of the reactant gas is directed from the center of the container to the periphery, or from the periphery to the center of the container. We propose a thin film generation device as an essential component.
尚、本発明の好ましい実施例においては、前記反応ガス
の分散手段と排出手段とを容器中心部位側又は/及び容
器周辺部位側にの適宜位置に配設し、前記反応ガスが単
一の基板表面の反応域を通過後、他の基板表面の反応域
を通過する事なく容器外に排出可能に構成するのがよい
。In a preferred embodiment of the present invention, the dispersion means and discharge means for the reaction gas are arranged at appropriate positions on the center side of the container and/or on the side of the container periphery, and the reaction gas is distributed over a single substrate. After passing through the reaction zone on the surface, it is preferable to configure the substrate so that it can be discharged to the outside of the container without passing through the reaction zone on the surface of another substrate.
第3発明は前記第2発明の主要部を主要構成要素としつ
つ、更に一層均一な膜分布と抵抗分布を得んとするもの
で、その主要構成要素とする所は、
■上下に縦列に積層配置した基板群を、反応容器の中心
より半径方向に所定比離隔てた周囲空間に位置させた点
、
■該基板群が容器軸線を中心として公転しつつ且つ好ま
しくは該基板群自体が公転/自転可能に構成した点、に
ある。The third invention uses the main parts of the second invention as main components, and aims to obtain even more uniform film distribution and resistance distribution, and the main components are: ■ Vertical stacking The arranged substrate group is located in a surrounding space spaced apart from the center of the reaction vessel by a predetermined ratio in the radial direction; The point is that it is configured to be able to rotate.
又第4発明は前記第2発明の主要部を主要構成要素とし
つつ、第3発明と同様に更に一層均一な膜分布と抵抗分
布を得んとするもので、その主要構成要素とする所は、
■上下に縦列にa層配置した基板群を、反応容器の中心
より半径方向に所定比離隔てた周囲空間に位置させると
ともに、
■該基板群が、該基板軸線を中心として夫々自転可能に
構成した点にある。Further, the fourth invention uses the main parts of the second invention as the main components, and, like the third invention, aims to obtain even more uniform film distribution and resistance distribution, and the main components thereof are as follows. , (2) a group of substrates arranged vertically in a layer a is located in a surrounding space spaced apart from the center of the reaction vessel by a predetermined ratio in the radial direction; The point is in the composition.
「発明の効果」
前記第1発明によれば
垂直方向に積層配置した基板群を、反応容器と同軸上に
配置する事なく、活性空間の中心部位より半径方向に所
定比離隔てた周囲空間上に前記基板群を位置させる為に
、前記第3従来技術と異なり基板収納枚数を多くしても
、活性空間を形成する反応容器(管)の長さが172〜
174程度になり、その分活性空間内の温度管理が容易
になり、この結果基板相互間の反応ガス温度の均一化が
達成され、基板相互間での均−且つ均質な膜厚形成が容
易になる。"Effects of the Invention" According to the first invention, the vertically stacked substrate group is not arranged coaxially with the reaction vessel, but is placed in the surrounding space at a predetermined distance from the center of the active space in the radial direction. In order to position the group of substrates in the 3rd prior art, even if the number of substrates to be stored is increased, the length of the reaction vessel (tube) forming the active space is 172~172 mm.
174, which makes it easier to control the temperature in the active space, and as a result, uniformity of reaction gas temperature between substrates is achieved, making it easier to form a uniform film thickness between substrates. Become.
又前記技術手段によれば、前記活性空間の中心部位と周
縁部位間に夫々基板が空間軸線方向に平行に位置する番
となる為に、前記空間の周辺部位から中心部位又はその
逆方向へ向け反応ガスを流す事により、少なくとも単一
の基板表面の反応域を通過した反応ガスが、他の基板表
面の反応域を通過する番なく活性空間外に排出される、
言い変えれば生ガスのみが基板表面の反応域を通過させ
る事が出来る為に、均一の原料ガス濃度での気相成長が
可能である為に、基板相互間の膜厚のバラツキが生じる
恐れがなく、而も気相成長により生じた副生成物が他の
基板に接触する事なく外部に排出される為に、温度管理
も容易になり、且つ、ガス流方向の不純物濃度の差から
起因する抵抗率のバラツキも生ぜず、各基板毎での抵抗
率分布や幕圧分布において均一性がよく欠陥のない均質
な薄膜生成が容易になり、この結果、基板の大口径化に
も対応出来るとともに、膜生成が一層困難なエピタキシ
ャル膜の生成が容易になる。またこの効果を更にエピタ
キシャル膜の生成のみならず、基板の成分と気相反応ガ
スとの化学反応による単結晶または非単結晶薄膜を形成
する場合にも、表面反応が律速でない場合や表面律速で
あっても副生成物を生成する場合には同様な効果が顕著
に現れる。Further, according to the above technical means, since the substrates are positioned parallel to the spatial axis direction between the central part and the peripheral part of the active space, the substrates are directed from the peripheral part of the active space to the central part or in the opposite direction. By flowing the reactive gas, the reactive gas that has passed through the reaction zone on at least one substrate surface is discharged outside the active space without passing through the reaction zone on the other substrate surface.
In other words, since only raw gas can pass through the reaction zone on the substrate surface, vapor phase growth is possible with a uniform raw gas concentration, so there is a risk of variations in film thickness between substrates. Moreover, by-products generated by vapor phase growth are discharged to the outside without coming into contact with other substrates, making temperature control easier. There is no variation in resistivity, and it is easy to produce a homogeneous thin film with good uniformity and no defects in the resistivity distribution and curtain pressure distribution for each substrate, and as a result, it is possible to cope with larger diameter substrates. , it becomes easier to produce an epitaxial film, which is even more difficult to produce. Furthermore, this effect can be applied not only to the formation of epitaxial films but also to the formation of single-crystal or non-single-crystal thin films by chemical reactions between substrate components and gas-phase reactive gases, when surface reactions are not rate-determining or are not rate-determining. Even if there is, a similar effect will be noticeable if by-products are produced.
又前記基板群は中心部位の周囲に同一配列方向で配列さ
れている為に、基板配列が簡単化し、而も所定間隔存し
て平行に各基板が配設されている為に装着/脱着動作が
容易になり、この結果自動ハンドリング操作が容易にな
るとともに、層流状態で基板表面の反応域に反応ガスを
通過させる事が出来、各基板毎の膜質に均一化が一層向
上する。In addition, since the board groups are arranged in the same arrangement direction around the central part, the board arrangement is simplified, and since each board is arranged in parallel at a predetermined interval, mounting/detachment operations are easy. As a result, automatic handling becomes easier, and the reaction gas can be passed through the reaction zone on the substrate surface in a laminar flow state, further improving the uniformity of the film quality for each substrate.
又第2発明においては、
前記した第1発明の効果に加えてカセット化した基板支
持治具を用いる事により、該支持治具毎に基板を交換す
る事が出来、一層効率的に装着/脱着が可能になるとと
もに、後記実施例にしめすように平板状の支持板を介し
て基板を支持部材に装着する事により、基板装着/脱着
の際に基板表面に何等かの搬送部材を接触させる必要が
なく、基板の汚染や歩留まりの低下を引き起す余地がな
い。Furthermore, in the second invention, in addition to the effects of the first invention described above, by using a cassette-shaped board support jig, the board can be replaced for each support jig, and mounting/detachment can be carried out more efficiently. In addition, as shown in the example below, by mounting the board on the support member via a flat support plate, there is no need to contact some kind of transport member with the board surface when mounting/demounting the board. There is no possibility of contaminating the substrate or reducing yield.
更に本発明の好ましい実施例においては、前記支持部材
上に積層配置した基板が僅かに容器外側に傾斜させて配
設した場合において支持部材にストッパーを設けること
によって、ウニ/\が反応中一定の位置に保持される。Furthermore, in a preferred embodiment of the present invention, when the substrates laminated on the support member are arranged with a slight inclination toward the outside of the container, a stopper is provided on the support member to ensure that the sea urchin/\ is kept constant during the reaction. held in position.
またウニ/Xが反応空間で静置または公転(自転を含ま
ず)されている場合には、ウェハの傾斜を最高20″
ぐらいまでに選ぶことによって反応ガスの流れをスムー
ズにすることが可能である。In addition, if the Uni/X is stationary or revolving (not including rotation) in the reaction space, the wafer can be tilted up to 20".
It is possible to make the flow of the reaction gas smooth by selecting the amount within the range.
更に第3及び第4発明においては、
前記した第1発明の効果に加えて、基板群が反応ガスの
流れに沿って、公転、公転且つ自転若しくは自転する為
に、個々の基板上を波れるガス流の方向性をなくし、ま
たウェハの温度分布の均一化を達成し特にCVD成長層
の膜厚均質化、またはそれらを含め不純物濃度分布、言
いかえれば抵抗分布の均一化が達成し得る。Furthermore, in the third and fourth inventions, in addition to the effects of the first invention, since the substrate group revolves, revolves, and rotates or rotates on its own axis along the flow of the reaction gas, waves can be created on the individual substrates. By eliminating the directionality of the gas flow and achieving uniform temperature distribution on the wafer, in particular, it is possible to achieve uniform thickness of the CVD grown layer, or uniform impurity concentration distribution, in other words, uniform resistance distribution.
この場合前記基板群を公転/自転させる手段はそのいず
れも、反応ガスに接触せぬよう反応空間に近接して形成
することが必要であり、これによりパーティ、タルの付
着等に起因する成長層の欠陥を防止し得る。In this case, any means for revolving/rotating the substrate group needs to be formed close to the reaction space so as not to come into contact with the reaction gas, and as a result, the growth layer caused by the adhesion of particles, tar, etc. defects can be prevented.
更に本第3発明の好ましい実施例によれば、反応容器の
軸線上に沿って容器内に侵入するガス導入管とと反応容
器間が反応容器軸線を中心として相対的に回転しながら
基板群を公転させるように構成する事により、前記基板
群の公転若しくは自公転に加えてガス流方向も周方向に
変化する車になる為に、前記効果がより一層効果的に達
成出来る。Furthermore, according to a preferred embodiment of the third invention, the substrate group is moved between the gas introduction pipe that enters the reaction container along the axis of the reaction container and the reaction container while rotating relatively around the reaction container axis. By configuring it to revolve, it becomes a wheel in which the gas flow direction changes in the circumferential direction in addition to the revolution or rotation of the substrate group, so that the above effect can be achieved even more effectively.
等の種々の著効を有す。It has various effects such as
「実施例」
以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.
第1図乃至第3図は末弟1及び第2発明の実施例に係る
ホットウォール型の減圧CVD装置を示す。1 to 3 show a hot wall type reduced pressure CVD apparatus according to the first and second embodiments of the invention.
本装置はガス導入管4を支持し、排気口6を有する基台
1と、該基台1上にシール手段7を介して載設された内
容器2と外容器3よりなる反応炉と、前記内容器2に収
容される基板支持治具5とからなり、これらの部材はい
ずれも石英ガラス材で形成されている。This apparatus includes a base 1 supporting a gas introduction pipe 4 and having an exhaust port 6, and a reactor comprising an inner container 2 and an outer container 3 mounted on the base 1 via a sealing means 7. It consists of a substrate support jig 5 housed in the inner container 2, and these members are all made of quartz glass material.
基台1は、その上面に円筒台状の内容器取付台11を設
けるとともに、該取付台11の中心部を貫通する如く、
吸引ポンプ12が連結された排気口6を設け、該排気口
θ内に軸線上に沿って内容器2内の反応室上方位置にま
で延設するガス導入管5を配設支持する。The base 1 is provided with a cylindrical inner container mounting base 11 on its upper surface, and has an inner container mounting base 11 that extends through the center of the base 11.
An exhaust port 6 connected to a suction pump 12 is provided, and a gas introduction pipe 5 extending along the axis to a position above the reaction chamber in the inner vessel 2 is disposed and supported within the exhaust port θ.
そして前記ガス導入管4の先端部を球状に膨出させると
ともにその周面上に多数の貫通孔13aを穿設してガス
導入口13を形成するとともに、該導入口13より反応
室IA内に分散された反応ガスが、内容器2内壁に沿っ
て放射状に反応室IA周縁側に導かれるよう構成する。Then, the distal end of the gas introduction tube 4 is bulged into a spherical shape, and a large number of through holes 13a are formed on the circumferential surface thereof to form a gas introduction port 13. The dispersed reaction gas is configured to be guided radially along the inner wall of the inner container 2 toward the periphery of the reaction chamber IA.
又前記ガス導入口13直下には、鏡板状のガイド板9が
取り付けられている、
ガイド板9は、その下方に位置する基板支持治具5配設
空間とほぼ同一か僅かに大なる直径を有する鏡板状をな
し、その周端部を垂直下方に腕曲させる事により、前記
ガス導入口13より反応室IA内に導入された反応ガス
が、前記ガイド板9に沿って反応室IA周縁側に分散さ
れた後、その終端位置で内容器2内壁に沿って反応ガス
が垂直下方に向け流れるように構成する。Further, a mirror plate-like guide plate 9 is attached directly below the gas inlet 13. The guide plate 9 has a diameter that is approximately the same or slightly larger than the space in which the substrate support jig 5 is located below the guide plate 9. By bending the peripheral end vertically downward, the reaction gas introduced into the reaction chamber IA from the gas inlet 13 is directed along the guide plate 9 to the peripheral edge side of the reaction chamber IA. After being dispersed, the reactant gas is configured to flow vertically downward along the inner wall of the inner container 2 at its terminal position.
尚、ガイド板9は石英ガラス材で形成してもよいが、吸
熱可能な高純度のグラファイト(表面にSiCコートす
ると良い)で形成する事により前記熱源lOよりの輻射
熱がガイド板θ自体にも吸収され、反応室IA内の均熱
化がより一層達成される。The guide plate 9 may be made of quartz glass material, but by forming it with high-purity graphite that can absorb heat (it is better to coat the surface with SiC), the radiant heat from the heat source IO can be applied to the guide plate θ itself. As a result, heat uniformity within the reaction chamber IA is further achieved.
またこのガイド板9は反応室を汚染しないグラファイト
以外の断熱材を選ぶことも良い。It is also preferable to select a heat insulating material other than graphite for the guide plate 9, which does not contaminate the reaction chamber.
一方前記取付台11の内部には石英綿14その他の断熱
材を封入し、反応室IA内の熱が基台1側に逃げないよ
うに構成している。On the other hand, a heat insulating material such as quartz wool 14 is sealed inside the mounting base 11 to prevent the heat in the reaction chamber IA from escaping to the base 1 side.
外容器3は、赤外線の吸収を低く抑えた透明石英ガラス
材を用いて円筒ドーム状に形成され、基端側より所定間
隔離隔させた外周囲に赤外線ランプその他の輻射熱源1
0を囲繞する。尚、前記外容器3は赤外線の吸収を低く
抑えた透明石英ガラス材のみに限定されるものではなく
、気泡を含んだ半透明石英ガラス材も用いる事が出来、
これにより外容器3透過後の赤外線が散乱し、均熱性が
一層向上する。The outer container 3 is formed into a cylindrical dome shape using a transparent quartz glass material with low absorption of infrared rays, and an infrared lamp or other radiant heat source 1 is mounted on the outer periphery at a predetermined distance from the base end.
Surrounds 0. Note that the outer container 3 is not limited to only a transparent quartz glass material that suppresses infrared absorption, but can also be made of a translucent quartz glass material containing air bubbles.
This scatters infrared rays after passing through the outer container 3, further improving thermal uniformity.
又前記外容器3の基端側は基台1上に取り付けられたリ
ング状耐圧シール手段7により密封封止されている。Further, the base end side of the outer container 3 is hermetically sealed by a ring-shaped pressure-resistant sealing means 7 mounted on the base 1.
内容器2も赤外線吸収性のよい石英ガラス材又はシリコ
ン材等を用いて、外容器3に対し相似形に縮小された円
筒ドーム状に形成するとともに。The inner container 2 is also formed into a cylindrical dome shape similar to the outer container 3 using a quartz glass material or a silicone material with good infrared absorbing properties.
その基端側を隔室と通気可能にして塵埃等が侵入不可能
な程度に取付台ll上に密着戴置させる。The proximal end side thereof is made to be ventilated with the compartment, and it is placed tightly on the mounting base 11 to the extent that dust and the like cannot enter.
尚、前記内容器2も外容器3と同様に気密的にシールし
て、内容器2に外容器3間に囲まれる隔室2A内にパー
ジガスが、又反応室IA内に反応ガスが揄れるように構
成してもよい。The inner container 2 is also airtightly sealed in the same manner as the outer container 3, so that the purge gas is contained in the compartment 2A surrounded by the inner container 2 and the outer container 3, and the reaction gas is contained in the reaction chamber IA. It may be configured as follows.
基板支持治具5は第3図に示す如く、所定間陽春して上
下に水平に配置された底板15と天板16間に3木の棒
状キール部材18を直立して固設し、該キール部材1日
の内周面側に多数の支持溝19を刻設して、円板状のサ
セプタ21により支持された半導体ウェハ20が軸線と
ほぼ直交する平面上に沿って20〜数十枚積層して配置
可能に構成する。As shown in FIG. 3, the substrate support jig 5 has a three-wood bar-shaped keel member 18 fixed upright between a bottom plate 15 and a top plate 16 which are vertically arranged horizontally after being exposed for a predetermined period of time. A large number of support grooves 19 are carved on the inner peripheral surface of the member, and 20 to several dozen semiconductor wafers 20 supported by a disk-shaped susceptor 21 are stacked along a plane substantially perpendicular to the axis. and configure it so that it can be placed.
前記支持治具5は、ハンドリング操作の容易化を図る為
に、キール部材18を容器中央側に片寄せて配置し、容
器2周面側の側方位置より、ウェハ20を支持するサセ
プタ21を装着/抜出可能に構成するとともに、ウェハ
が反応中安定してその位置が保持されるようわずかに傾
斜させである。またウェハ保持具が自転しない場合には
、ガスフローの全体バランスから反応容器軸線に直交す
る反応容器軸線上で中心方向または外側方向に下方に最
高20″程度傾斜させると反応ガスをスムーズに流すこ
とができる。In order to facilitate handling operations, the support jig 5 has the keel member 18 disposed to one side toward the center of the container, and the susceptor 21 that supports the wafer 20 from a lateral position on the circumferential surface of the container 2. It is configured to be able to be loaded/unloaded and is slightly tilted so that the wafer can be stably maintained in its position during the reaction. In addition, if the wafer holder does not rotate, the reaction gas can flow smoothly by tilting the wafer holder downward by a maximum of 20 inches on the axis of the reaction vessel perpendicular to the axis of the reaction vessel, which is perpendicular to the axis of the reaction vessel, from the viewpoint of the overall gas flow balance. I can do it.
そしてかかる支持治具5を排気口6を挟んでその周囲空
間上の反応室IA内に2〜4台夫々対称位置に戴置させ
る。Two to four supporting jigs 5 are placed at symmetrical positions in the reaction chamber IA in the surrounding space with the exhaust port 6 in between.
尚、前記ウェハ20を支持するサセプタ21は石英ガラ
ス材で形成してもよいが、吸熱可能なグラファイトで形
成する車により前記熱源10よりの複写熱がサセプタ2
1自体にも吸収され、ウェハ20の均熱化がより一層達
成される。The susceptor 21 that supports the wafer 20 may be made of quartz glass, but the copying heat from the heat source 10 is transferred to the susceptor 2 by a wheel made of heat-absorbing graphite.
1 itself, and the temperature uniformity of the wafer 20 is further achieved.
次にかかる実施例の作用を説明する
先ず、反応室IA内をパージガスで置換し、次いで前記
反応室IA内にH2ガスをガスガス導入管5より流しな
がら、反応室IA及び隔室2A内を1〜10torr前
後の減圧下に置き、外容器3外周囲に囲設した輻射熱源
lOにより外容器3を介して内容器2を加熱し、反応室
IA内を所定温度(1100〜1200℃)まで加熱維
持させた後、キャリアガス(H2ガス)内に原料ガスと
ドーピングガスを所定割合で混入した反応ガスを前記ガ
スガス導入管5より反応室IA内に導入する。Next, the operation of this embodiment will be explained. First, the inside of the reaction chamber IA is replaced with purge gas, and then, while flowing H2 gas into the reaction chamber IA from the gas gas introduction pipe 5, the insides of the reaction chamber IA and the compartment 2A are Placed under reduced pressure of ~10 torr, the inner container 2 is heated via the outer container 3 by a radiant heat source IO placed around the outer periphery of the outer container 3, and the inside of the reaction chamber IA is heated to a predetermined temperature (1100 to 1200°C). After maintaining the temperature, a reaction gas in which a raw material gas and a doping gas are mixed in a carrier gas (H2 gas) at a predetermined ratio is introduced into the reaction chamber IA through the gas introduction pipe 5.
そしてガスガス導入管5先端に位置する前記ガス導入口
13より反応室IA内内方方位置導入された反応ガスは
、前記ガイド板8に沿って反応室IAA縁側に分散され
層流化されながら、その終端位置で内容器2内壁に沿っ
て反応ガスが垂直下方に向けカーテン状に流れ、そして
該容器周縁部位と対面するウェハ積層間隔位置22より
順次各ウェハ20表面の反応域に流れ込み、層流化され
且つ未反応の生ガスにより気送成長成長を行った後、単
一のウェハ20表面の反応域を通過した反応ガスが他の
ウェハ20表面の反応域を通過する事なく中央空間より
排気口6を通って容器外に排出される。The reaction gas introduced inward into the reaction chamber IA from the gas introduction port 13 located at the tip of the gas introduction pipe 5 is dispersed to the edge of the reaction chamber IAA along the guide plate 8 and is made into a laminar flow. At the end position, the reaction gas flows vertically downward along the inner wall of the inner container 2 in a curtain shape, and from the wafer stacking interval position 22 facing the container periphery, it sequentially flows into the reaction zone on the surface of each wafer 20, forming a laminar flow. After pneumatic growth is performed using the unreacted raw gas, the reaction gas that has passed through the reaction zone on the surface of a single wafer 20 is exhausted from the central space without passing through the reaction zone on the surface of other wafers 20. It is discharged out of the container through the port 6.
かかる実施例によれば、反応ガスが筒状の内容器2内壁
面に沿って垂直下方に向けカーテン状に流れる為に、下
方に位置するウェハ20にも順次未反応の生ガスが供給
可能であるが、上方位置にあるウェハ20表面の反応域
を通過し中央空間に滞留した反応ガスの一部が下方に位
置するウェハ20表面の反応域に再度入り込む場合があ
る。According to this embodiment, since the reaction gas flows vertically downward in a curtain-like manner along the inner wall surface of the cylindrical inner container 2, unreacted raw gas can be sequentially supplied to the wafer 20 located below. However, part of the reaction gas that has passed through the reaction zone on the surface of the wafer 20 located above and remains in the central space may re-enter the reaction zone on the surface of the wafer 20 located below.
第4図はかかる欠点を解消したもので、その構成を前記
実施例との差異を中心に説明する。FIG. 4 eliminates this drawback, and its structure will be explained focusing on the differences from the previous embodiment.
反応室IAA央部位の排気口8延長線上には、ガイド板
9下面にまで達する円筒管30が連接されており、該円
筒管30の周面上の、支持治具5のウェハ積層間隔位置
22と対応する部位に貫通孔31を穿設する。A cylindrical tube 30 that reaches the lower surface of the guide plate 9 is connected to the extension line of the exhaust port 8 at the center of the reaction chamber IAA, and the wafer stacking interval position 22 of the support jig 5 on the circumferential surface of the cylindrical tube 30 is connected. A through hole 31 is bored at a location corresponding to.
又内容器取付台ll上の内容器周縁部位と対応する位置
には多数の小孔33が円周方向に環状に穿設されており
、該小孔33は取付台11内部に形成されたリング状空
隙輪34と連通させ、該空隙幅34は排出管35を介し
て吸引ポンプ3Bと連結されている。In addition, a large number of small holes 33 are bored in an annular manner in the circumferential direction at positions corresponding to the peripheral edge of the inner container on the inner container mounting base ll. The gap width 34 is connected to the suction pump 3B via a discharge pipe 35.
かかる実施例によれば、例えば前記排気口8よりの吸引
力と、小孔33と連通ずる排出管35よりの吸引力を、
所定割合に配分する事により、前記ガス導入口13より
反応室IA内内方方位置導入され、ガイド板9に沿って
反応室IAA縁側に分散された反応ガスが小孔33の吸
引力により内容器2内壁に沿って確実にカーテン状に涼
れ、下方に位置するウニ八積層間隔位置22内にも確実
に、層流化され且つ未反応の生ガスが流れ込むとともに
、各ウェハ20表面の反応域を通過した反応ガスは円筒
管30の周面上に穿孔した貫通孔31より容器外に確実
に排出され、ウェハ20表面で反応したガスの一部が下
方に位置するウェハ20表面の反応域に再度入り込む恐
れを確実に解消し得る。According to this embodiment, for example, the suction force from the exhaust port 8 and the suction force from the discharge pipe 35 communicating with the small hole 33 are
By distributing the reaction gas at a predetermined ratio, the reaction gas is introduced into the reaction chamber IA from the gas inlet 13 and dispersed along the guide plate 9 to the edge of the reaction chamber IAA. The raw gas cools down reliably in a curtain-like manner along the inner wall of the vessel 2, and laminarized and unreacted raw gas flows reliably into the sea urchin 8 stacking interval position 22 located below, as well as the reaction on the surface of each wafer 20. The reaction gas that has passed through the area is reliably discharged to the outside of the container through the through hole 31 bored on the circumferential surface of the cylindrical tube 30, and part of the gas that has reacted on the surface of the wafer 20 is transferred to the reaction area on the surface of the wafer 20 located below. The fear of re-entering can be reliably eliminated.
更に上方位置にあるウェハ20表面の反応域を通過し、
中央空間に滞留したガスの一部がウェハ支持台の間隙を
通し、下方のウェハ表面に影響を与えることを妨げるも
う一つの手段として、排気管を複数並列しあるいは同心
円状配置の多重構造としてその上端の排気孔をウェハ毎
、または隣接するウェハのグループ毎に設け、それぞれ
から一定の排ガスflt量で排気することも採用できる
。Furthermore, it passes through the reaction zone on the surface of the wafer 20 located at an upper position,
Another way to prevent some of the gas stagnant in the central space from passing through the gap between the wafer supports and affecting the wafer surface below is to install multiple exhaust pipes in parallel or in a concentric configuration. It is also possible to provide an exhaust hole at the upper end for each wafer or for each group of adjacent wafers, and to exhaust a fixed amount of exhaust gas flt from each wafer.
第5図は第3発明の実施例に係る減圧CVD装置を示し
、前記実施例との差異を中心に説明するに、本実施例は
、シール手段7を介して外容器3を戴置する基台40と
、該基台40中心軸上に環状シール41を介して回転可
能に軸支され、その先端部に前記ガイド板9が連接され
た円筒管42と、該円筒管42の途中位置に固設され、
前記円筒管42の回転に追従して回転する内容器戴置台
43と、前記円筒管42より半径方向に所定距離隔てた
内容器戴置台43上に、支軸44を介して回転可能に軸
支された治具取付台45とからなる。FIG. 5 shows a reduced pressure CVD apparatus according to an embodiment of the third invention, and the differences from the previous embodiment will be mainly explained. A pedestal 40, a cylindrical tube 42 which is rotatably supported on the center axis of the pedestal 40 via an annular seal 41 and has the guide plate 9 connected to its tip, and Fixedly installed,
An inner container mounting table 43 rotates following the rotation of the cylindrical tube 42, and an inner container mounting table 43 is rotatably supported via a support shaft 44 on the inner container mounting table 43, which is spaced a predetermined distance from the cylindrical tube 42 in the radial direction. It consists of a jig mounting base 45.
そして内容器戴置台43上方に位置する円筒管42周面
上には、前記第2実施例と同様に支持治具5のウェハ積
層間隔位置22と対応する部位に貫通孔31が穿設され
ている。On the circumferential surface of the cylindrical tube 42 located above the inner container mounting table 43, a through hole 31 is bored at a position corresponding to the wafer stacking interval position 22 of the support jig 5, as in the second embodiment. There is.
又前記円筒管42の基台40下方位置にはモータ歯車4
6と噛合する第1の歯車47が回心状に嵌着されており
、又基台40と内容器戴置台43間に挟まれる隔室内に
は、且つ円筒管42を貫通させる中心孔49aを介して
円筒管42軸線と同心状に基台4θ上に固設された第2
の歯車49を有し、該第2の歯車49は、内容器戴置台
43に軸支された支軸44下端に取り付けられた歯車4
8と噛合している。Further, a motor gear 4 is located below the base 40 of the cylindrical tube 42.
A first gear 47 meshing with the inner container 6 is fitted in a pivoted manner, and a center hole 49a through which the cylindrical tube 42 passes is provided in the compartment sandwiched between the base 40 and the inner container mounting table 43. A second plate is fixed on the base 4θ concentrically with the axis of the cylindrical tube 42 through the
The second gear 49 has a gear 49 attached to the lower end of a support shaft 44 that is pivotally supported on the inner container mounting base 43.
It meshes with 8.
前記円筒管42内の軸線上には前述したガス導入管5が
挿設されており、該導入管5の先端部に設けたガス導入
口13をガイド板9の中心に穿設した穴51よりその上
方位置まで延設させるとともに、該ガス導入管5は前記
円筒v42の回転に追従して回転する事なく図示しない
支持手段により所定位置に固定回走に支持させている。The aforementioned gas introduction tube 5 is inserted on the axis of the cylindrical tube 42, and the gas introduction port 13 provided at the tip of the introduction tube 5 is inserted through a hole 51 bored in the center of the guide plate 9. At the same time, the gas introduction pipe 5 is fixedly supported at a predetermined position by a support means (not shown) without rotating following the rotation of the cylinder v42.
かかる実施例によれば、前記モータ50の回転により、
モータ歯車48−第1の歯車47−円筒管42を介して
内容器戴置台43と該戴置台43に戴置された内容器2
が回転し、容器軸線を中心として基板支持治具5の公転
をなすとともに、該基板支持治具5の回転に追従して、
基台40上に固設された第2の歯車48の周囲を同心状
に支軸44が移動(公転)しながら、該第2の歯車43
に噛合している歯車48が従動回転し、これにより歯車
48−支軸44−治具取付台45を介して、基板支持治
具5が前記公転に追従して自転する事となる。According to this embodiment, by the rotation of the motor 50,
An inner container mounting base 43 and an inner container 2 mounted on the mounting base 43 via the motor gear 48 - the first gear 47 - the cylindrical pipe 42
rotates, causing the substrate support jig 5 to revolve around the container axis, and following the rotation of the substrate support jig 5,
While the spindle 44 concentrically moves (revolutions) around the second gear 48 fixed on the base 40, the second gear 43
The gear 48 meshing with the substrate rotates as a result of this, and the substrate support jig 5 rotates following the revolution via the gear 48, the support shaft 44, and the jig mounting base 45.
一方、前記ガス導入管5は前記円筒管42の回転に追従
して回転する事なく所定位置に固定されている為に、前
記内容器2の回転によりガス流方向が相対的に周方向に
変化し、前述した本発明の効果が円滑に達成される。On the other hand, since the gas introduction pipe 5 is fixed at a predetermined position without rotating following the rotation of the cylindrical pipe 42, the gas flow direction changes relatively in the circumferential direction due to the rotation of the inner container 2. However, the effects of the present invention described above can be smoothly achieved.
尚、本実施例においては、基板支持治具5に積層支持さ
れる基板20が自転する為に、前記実施例にように該基
板を僅かに容器中心部側に傾斜させる必要はなく、略水
平状態を維持すればよい。In this embodiment, since the substrates 20 stacked and supported by the substrate support jig 5 rotate, it is not necessary to tilt the substrates slightly toward the center of the container as in the previous embodiments, but to tilt the substrates substantially horizontally. Just maintain the condition.
第7図は第4発明の実施例に係る減圧CVD装置を示し
、前記第3発明の実施例との差異を中心に説明するに、
内容器戴置台53は支持棒58により基台40上に固定
されており、一方円部間42は環状シール41及び53
aを介して軸線上に挿通されており、基台40と内容器
j!置台53に挟まれる隔室内に中継歯車59を連結し
、該中継歯車53を治具取付台55側の歯車48と噛合
させている。FIG. 7 shows a reduced pressure CVD apparatus according to an embodiment of the fourth invention, and the differences from the embodiment of the third invention will be mainly explained.
The inner container mounting stand 53 is fixed on the base 40 by a support rod 58, while the annular seals 41 and 53 are arranged between the circular parts 42.
It is inserted along the axis via a, and the base 40 and the inner container j! A relay gear 59 is connected in a compartment sandwiched between the mounting bases 53, and the relay gear 53 is meshed with the gear 48 on the jig mounting base 55 side.
かかる構成によれば、円筒管42の回転により中継歯車
59が従動回転し、該中継歯車59の回転により歯車4
日が夫々回転し、支軸44を介して治具取付台55、基
板支持治具5が回転し、基板群を夫々自転させる。尚、
この際、内容器戴置台53は支持棒56により基台40
上に固定されている為に公転せず、基板支持治具5を介
した基板群の自転のみが行われる。According to this configuration, the relay gear 59 is driven to rotate by the rotation of the cylindrical tube 42, and the rotation of the relay gear 59 causes the gear 4 to rotate.
The jig mounting base 55 and the substrate support jig 5 rotate through the support shaft 44, causing the substrate groups to rotate respectively. still,
At this time, the inner container mounting stand 53 is attached to the base 40 by the support rod 56.
Since it is fixed above, it does not revolve, and only the substrate group rotates via the substrate support jig 5.
以上記載した如く、−前述したいずれの実施例において
も前述した夫々の発明の効果が円滑に達成されるが、こ
れらの実施例はかかる効果に加えて下記のような効果を
併せ有す。As described above, in each of the embodiments described above, the effects of the respective inventions described above are smoothly achieved, but in addition to these effects, these embodiments also have the following effects.
即ち前記実施例はいずれも内容器2と外容器3からなる
二重容器で形成され且つシール手段7が外容器3のみで
ある為に、内容器2と外容器3の内圧をほぼ同一に設定
出来る為に、交換の必要性のほとんどない外容器3さえ
丈夫であれば、内容器2は薄肉の異形容器でも使用可能
であり、この結果製造コストの低減とともに内容器2の
形状を自由に設定出来る為に、例えばガスを均一にウェ
ハ20表面に流すのに都合のよい形状に設定する事も可
能である。That is, since all of the above embodiments are formed of a double container consisting of an inner container 2 and an outer container 3, and the sealing means 7 is only for the outer container 3, the internal pressures of the inner container 2 and the outer container 3 are set to be almost the same. As long as the outer container 3, which hardly needs to be replaced, is strong, the inner container 2 can be used even with a thin, irregularly shaped container.As a result, manufacturing costs are reduced and the shape of the inner container 2 can be freely set. Therefore, it is also possible to set the shape to be convenient for, for example, allowing gas to flow uniformly over the surface of the wafer 20.
又ウェハ20が内容器2の横断面に沿っておおよそ配置
されている為に、同一ウェハ20内の均熱性がよくスリ
ップライン等の欠陥が発生しにくい。Furthermore, since the wafers 20 are arranged roughly along the cross section of the inner container 2, the heat uniformity within the same wafer 20 is good and defects such as slip lines are less likely to occur.
而もウェハ20はガス流れ方向に対し上向きに数°の角
度をもって平行に配置されている為に、ガスはウェハ積
層間隔位置2257内に侵入し易くウェハ20面上を炉
管中央に向かっておおよそ層流状態で通過させる事が出
来る0等の効果を上げる事が出来る
更に前記いずれの実施例についても基板20の表面(薄
層の成長される側)が上側となるよう配置されているが
、これを逆に下側になるよう配置することも可能である
。この場合には、基板の周辺でできるだけ少ない接触部
で保持したり、また背面に薄膜の成長がないよう適当な
カバーが必要となるが、しばしばウェハー表面が上側に
配置されている場合に多発する突起状の結晶欠陥の原因
となる反応ガスまたは反応ガスの稀釈ガスによるウェー
ハ表面上への微粒子の搬入着地が妨げられるという効果
が発生する。Moreover, since the wafer 20 is arranged parallel to the gas flow direction at an angle of several degrees upward, the gas easily enters the wafer stacking interval position 2257, and the gas flows over the wafer 20 surface roughly toward the center of the furnace tube. In addition, in each of the above embodiments, the surface of the substrate 20 (the side on which the thin layer is grown) is placed on the upper side. It is also possible to arrange this so that it is on the lower side. In this case, it is necessary to hold the wafer with as few contact points as possible around the periphery of the substrate, and to provide a suitable cover to prevent thin film growth on the back side, which often occurs when the wafer surface is placed on the upper side. This results in the effect that the reaction gas or the dilution gas of the reaction gas, which causes protruding crystal defects, prevents fine particles from entering and landing on the wafer surface.
第1図乃至第2図は水弟1及び第2発明の実施第4図は
前記実施例の変形例を示す正面断面図である。
第5図は第3発明の実施例に係る減圧CVD装置を示す
断面図である。
第7図は第4発明の実施例に係る減圧CVD装若を示す
断面図である。
第3図はこれらの実施例に使用される基板支持治具を示
す概略斜視図である。
第6図は従来技術を示す正面断面図である。
特許出願人:信越半導体株式会社
第1図
第2図
第3図
第4図
第5図
第7
第6図
図1 and 2 are embodiments of the first and second inventions. FIG. 4 is a front sectional view showing a modification of the above embodiment. FIG. 5 is a sectional view showing a reduced pressure CVD apparatus according to an embodiment of the third invention. FIG. 7 is a sectional view showing a low pressure CVD device according to an embodiment of the fourth invention. FIG. 3 is a schematic perspective view showing a substrate support jig used in these examples. FIG. 6 is a front sectional view showing the prior art. Patent applicant: Shin-Etsu Semiconductor Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 6
Claims (1)
、または半導体ウェハその他の基板との化学反応によっ
て当該基板上に薄膜を生成する薄膜生成方法において、
該空間の中心部位より半径方向に所定距離隔てた周囲空
間内に、上下に縦列状に積層配置させた基板群を位置さ
せるとともに、前記空間の周辺部位から中心部位又はそ
の逆方向へ向け反応ガスを流すようにした事を特徴とす
る薄膜生成方法 2)少なくとも単一の基板表面の反応域を通過した反応
ガスが、他の基板表面の反応域を通過する事なく活性空
間外に排出されるようにした事を特徴とする特許請求の
範囲第1項記載の薄膜生成方法 3)垂直方向に軸線を有する反応容器を用いて複数の基
板表面に薄膜を生成する薄膜生成装置において、上下に
縦列に積層配置した基板群を容器軸線周囲の容器内空間
上に複数組配置するとともに、少なくとも容器中心部位
側又は/及び容器周辺部位側に反応ガス排出手段を設け
、前記積層配置された基板表面の反応域を通過する反応
ガスがほぼ容器半径方向に沿って流れるように構成した
事を特徴とする薄膜生成装置 4)前記上下に縦列に積層配置した基板群が、カセット
化した基板支持治具に装着されている特許請求の範囲第
3項記載の薄膜生成装置 5)前記反応ガスの分散手段と排出手段とを容器中心部
位側又は/及び容器周辺部位側にの適宜位置に配設し、
前記反応ガスが単一の基板表面の反応域を通過後、他の
基板表面の反応域を通過する事なく容器外に排出可能に
構成した特許請求の範囲第3項又は第4項記載の薄膜生
成事を特徴とする薄膜生成装置 6)垂直方向に軸線を有する反応容器を用いて複数の基
板表面に薄膜を生成する薄膜生成装置において、上下に
縦列に積層配置した基板群を、反応容器の中心より半径
方向に所定距離隔てた周囲空間に位置させるとともに、
該基板群が容器軸線を中心として公転可能に構成した事
を特徴とする薄膜生成装置 7)前記基板群が容器軸線を中心として公転しつつ且つ
該基板群自体が自転可能に構成した特許請求の範囲第6
項記載の薄膜生成装置 8)反応容器の軸線上に沿って容器内に侵入するガス導
入管と前記反応容器間が容器軸線を中心として相対的に
回転しながら基板群を公転させるように構成した特許請
求の範囲第6項又は第7項記載の薄膜生成装置 9)前記基板群を公転させる手段と自転させる手段のい
ずれもが、反応ガスに接触せぬよう反応空間に近接して
形成されている特許請求の範囲第6項から第8項までの
いずれか1項記載の薄膜生成装置。 10)垂直方向に軸線を有する反応容器を用いて複数の
基板表面に薄膜を生成する薄膜生成装置において、上下
に縦列に積層配置した基板群を、反応容器の中心より半
径方向に所定距離隔てた周囲空間に位置させるとともに
、該基板群が、該基板軸線を中心として夫々自転可能に
構成した事を特徴とする薄膜生成装置[Claims] 1) A thin film production method in which a thin film is produced on a substrate by mutual chemical reaction of reactive gases in an activated space or chemical reaction with a semiconductor wafer or other substrate,
A group of substrates stacked vertically and vertically in a vertically stacked manner is placed in a surrounding space radially separated by a predetermined distance from the center of the space, and a reactive gas is directed from the periphery of the space to the center or the opposite direction. 2) The reaction gas that has passed through the reaction zone on the surface of at least one substrate is discharged outside the active space without passing through the reaction zones on the surfaces of other substrates. 3) A thin film production method for producing thin films on the surfaces of a plurality of substrates using a reaction vessel having an axis in the vertical direction. A plurality of sets of substrates stacked in layers are arranged in the inner space of the container around the axis of the container, and a reactive gas exhaust means is provided at least on the center side of the container and/or on the side of the container periphery, so that the surface of the stacked substrates is A thin film production device characterized in that the reaction gas passing through the reaction zone flows approximately along the radial direction of the container. 4) The substrate group stacked vertically in vertical rows is mounted on a cassette-shaped substrate support jig. 5) The dispersion means and discharge means for the reaction gas are disposed at appropriate positions on the side of the center part of the container and/or on the side of the peripheral part of the container, and
The thin film according to claim 3 or 4, wherein the reaction gas is configured to be able to be discharged outside the container after passing through a reaction zone on the surface of a single substrate without passing through a reaction zone on the surface of another substrate. 6) In a thin film production device that produces thin films on the surfaces of a plurality of substrates using a reaction vessel having an axis in the vertical direction, a group of substrates stacked vertically in vertical rows is placed in the reaction vessel. Located in a surrounding space a predetermined distance away from the center in the radial direction,
7) A thin film production device characterized in that the substrate group is configured to be able to revolve around the container axis 7) A thin film generating device characterized in that the substrate group is configured to be able to revolve around the container axis and the substrate group itself can rotate Range 6th
8) Thin film production device described in section 8) The device is configured such that the substrate group is revolved between the gas introduction pipe that enters the reaction container along the axis of the reaction container and the reaction container while rotating relative to each other about the container axis. 9) The device for producing a thin film according to claim 6 or 7, wherein both the means for revolving the substrate group and the means for rotating the substrate group are formed close to the reaction space so as not to come into contact with the reaction gas. A thin film production device according to any one of claims 6 to 8. 10) In a thin film production device that uses a reaction vessel having an axis in the vertical direction to produce thin films on the surfaces of multiple substrates, a group of substrates stacked vertically in columns are separated by a predetermined distance in the radial direction from the center of the reaction vessel. A thin film production device, characterized in that the substrate group is located in a surrounding space and is configured to be able to rotate on its own axis about the substrate axis.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29663686A JPS63150912A (en) | 1986-12-15 | 1986-12-15 | Formation of thin film and apparatus therefor |
US07/126,784 US4926793A (en) | 1986-12-15 | 1987-11-30 | Method of forming thin film and apparatus therefor |
EP87117846A EP0270991B1 (en) | 1986-12-15 | 1987-12-02 | Apparatus for forming thin film |
DE3789424T DE3789424T2 (en) | 1986-12-15 | 1987-12-02 | Device for producing thin layers. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29663686A JPS63150912A (en) | 1986-12-15 | 1986-12-15 | Formation of thin film and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63150912A true JPS63150912A (en) | 1988-06-23 |
JPH0588537B2 JPH0588537B2 (en) | 1993-12-22 |
Family
ID=17836108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29663686A Granted JPS63150912A (en) | 1986-12-15 | 1986-12-15 | Formation of thin film and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63150912A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63300512A (en) * | 1987-05-30 | 1988-12-07 | Komatsu Ltd | Chemical vapor deposition apparatus |
US20080152803A1 (en) * | 2005-02-17 | 2008-06-26 | Franck Lamouroux | Method For the Densification of Thin Porous Substrates By Means of Vapour Phase Chemical Infiltration and Device For Loading Such Substrates |
JP2009179885A (en) * | 2003-02-12 | 2009-08-13 | Jtekt Corp | Amorphous carbon film forming apparatus |
JP2011528753A (en) * | 2008-07-23 | 2011-11-24 | イオンボント アクチェンゲゼルシャフト オルテン | CVD reactor for depositing a layer from a reaction gas mixture on a workpiece |
CN102586759A (en) * | 2011-01-11 | 2012-07-18 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Gas delivery system and semiconductor processing equipment applying same |
JP2015133405A (en) * | 2014-01-14 | 2015-07-23 | 日立金属株式会社 | Semiconductor manufacturing apparatus |
JP2015145317A (en) * | 2014-01-31 | 2015-08-13 | ヤマハ株式会社 | Device for producing carbon nanotube |
CN105339522A (en) * | 2014-06-12 | 2016-02-17 | 深圳市大富精工有限公司 | Vacuum coating device and vacuum coating method |
CN105378143A (en) * | 2014-06-12 | 2016-03-02 | 深圳市大富精工有限公司 | Vacuum coating device, data line supports, and vacuum coating method |
CN106245111A (en) * | 2016-10-10 | 2016-12-21 | 无锡宏纳科技有限公司 | The wafer support structure in low pressure chemical phase precipitation chamber |
-
1986
- 1986-12-15 JP JP29663686A patent/JPS63150912A/en active Granted
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63300512A (en) * | 1987-05-30 | 1988-12-07 | Komatsu Ltd | Chemical vapor deposition apparatus |
JP2009179885A (en) * | 2003-02-12 | 2009-08-13 | Jtekt Corp | Amorphous carbon film forming apparatus |
US20080152803A1 (en) * | 2005-02-17 | 2008-06-26 | Franck Lamouroux | Method For the Densification of Thin Porous Substrates By Means of Vapour Phase Chemical Infiltration and Device For Loading Such Substrates |
US8163088B2 (en) * | 2005-02-17 | 2012-04-24 | Snecma Propulsion Solide | Method of densifying thin porous substrates by chemical vapor infiltration, and a loading device for such substrates |
US8491963B2 (en) | 2005-02-17 | 2013-07-23 | Snecma Propulsion Solide | Method of densifying thin porous substrates by chemical vapor infiltration, and a loading device for such substrates |
JP2011528753A (en) * | 2008-07-23 | 2011-11-24 | イオンボント アクチェンゲゼルシャフト オルテン | CVD reactor for depositing a layer from a reaction gas mixture on a workpiece |
CN102586759A (en) * | 2011-01-11 | 2012-07-18 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Gas delivery system and semiconductor processing equipment applying same |
JP2015133405A (en) * | 2014-01-14 | 2015-07-23 | 日立金属株式会社 | Semiconductor manufacturing apparatus |
JP2015145317A (en) * | 2014-01-31 | 2015-08-13 | ヤマハ株式会社 | Device for producing carbon nanotube |
CN105339522A (en) * | 2014-06-12 | 2016-02-17 | 深圳市大富精工有限公司 | Vacuum coating device and vacuum coating method |
CN105378143A (en) * | 2014-06-12 | 2016-03-02 | 深圳市大富精工有限公司 | Vacuum coating device, data line supports, and vacuum coating method |
CN106245111A (en) * | 2016-10-10 | 2016-12-21 | 无锡宏纳科技有限公司 | The wafer support structure in low pressure chemical phase precipitation chamber |
Also Published As
Publication number | Publication date |
---|---|
JPH0588537B2 (en) | 1993-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4926793A (en) | Method of forming thin film and apparatus therefor | |
JP3178824B2 (en) | High productivity multi-station type processing equipment for compound single wafer. | |
US4421786A (en) | Chemical vapor deposition reactor for silicon epitaxial processes | |
US5493987A (en) | Chemical vapor deposition reactor and method | |
JPH03287770A (en) | Single wafer processing atmospheric cvd device | |
JPS6289871A (en) | Method and apparatus for constituting chemical vapor deposition reaction apparatus having axial symmetry | |
JPH05243166A (en) | Semiconductor substrate vapor growth device | |
JP2000150399A (en) | Method and device for cvd reaction for manufacturing epitaxial-grown semiconductor wafer | |
JPS63150912A (en) | Formation of thin film and apparatus therefor | |
JPH0786173A (en) | Film deposition | |
JP2701767B2 (en) | Vapor phase growth equipment | |
JPS61127696A (en) | Vapor phase reactor | |
JPS6365639B2 (en) | ||
KR100919661B1 (en) | Semiconductor Manufacturing Apparatus | |
JPS60113921A (en) | Method for vapor-phase reaction and device thereof | |
JPS63150913A (en) | Device for forming thin film | |
JPH04154117A (en) | Low pressure cvd system | |
JPS61289623A (en) | Vapor-phase reaction device | |
JP3184550B2 (en) | Vapor phase growth method and apparatus | |
JPS63300512A (en) | Chemical vapor deposition apparatus | |
JPH11288887A (en) | Semiconductor vapor growth device | |
JP2775837B2 (en) | Chemical vapor deposition equipment | |
JPH02156523A (en) | Upright wafer boat | |
JPH11102903A (en) | Method and equipment for thin film forming and method for manufacturing semiconductor device | |
CN116024655A (en) | Silicon wafer epitaxial growth base support frame and device |