JPH04154117A - Low pressure cvd system - Google Patents

Low pressure cvd system

Info

Publication number
JPH04154117A
JPH04154117A JP28039890A JP28039890A JPH04154117A JP H04154117 A JPH04154117 A JP H04154117A JP 28039890 A JP28039890 A JP 28039890A JP 28039890 A JP28039890 A JP 28039890A JP H04154117 A JPH04154117 A JP H04154117A
Authority
JP
Japan
Prior art keywords
core tube
wafer
furnace core
ring
pressure cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28039890A
Other languages
Japanese (ja)
Other versions
JP3057744B2 (en
Inventor
Atsushi Kaido
海藤 厚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2280398A priority Critical patent/JP3057744B2/en
Publication of JPH04154117A publication Critical patent/JPH04154117A/en
Application granted granted Critical
Publication of JP3057744B2 publication Critical patent/JP3057744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To relax the difference in the supply amount of a reactant gas between the center and the periphery of a wafer and to make the thickness of a produced film uniform by a method wherein a plurality of ring-shaped disks are arranged, at prescribed intervals perpendicularly to the direction of an axis, at the inside face of an inside core tube. CONSTITUTION:An inside core tube 2 for a reaction container is provided, at prescribed intervals perpendicularly to a core-tube axis, with a plurality of ring-shaped disks 9 having openings which are larger than the circumscribed circle of a wafer support boat 4. As a result, out of gas streams inside the inside core tube, a component perpendicular to an axis, i.e., a gas stream toward the center of a wafer, is increased, the difference in the supply amount of a reactant gas between the periphery and the center of the wafer is relaxed and the thickness distribution of a film formed on the wafer becomes good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は減圧CVD装置に関し、特に反応容器として2
重炉芯管構造を有する減圧CVD装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduced pressure CVD apparatus, and particularly to a
The present invention relates to a reduced pressure CVD apparatus having a heavy furnace core tube structure.

〔従来の技術〕[Conventional technology]

従来、減圧CVD装置は半導体基板(以下ウェハという
)表面に多結晶シリコン膜あるいは二酸化シリコン(S
i02)膜、9化シリコン(SigN4)膜などの絶縁
膜形成を行うCVD(化学気相成長)工程等に用いられ
ている。第4図は従来一般に用いられている減圧CVD
装置の構成を示す断面図であり、図中1は外側炉芯管、
2は内側炉芯管、4はウェハ支持ボート、3はウェハ、
6は反応ガス供給孔、7は反応ガス排出孔である。
Conventionally, low pressure CVD equipment deposits a polycrystalline silicon film or silicon dioxide (S) on the surface of a semiconductor substrate (hereinafter referred to as a wafer).
It is used in CVD (chemical vapor deposition) processes and the like for forming insulating films such as i02) films and silicon 9ide (SigN4) films. Figure 4 shows the low-pressure CVD method commonly used in the past.
It is a sectional view showing the configuration of the device, in which 1 is an outer furnace core tube,
2 is the inner furnace core tube, 4 is the wafer support boat, 3 is the wafer,
6 is a reaction gas supply hole, and 7 is a reaction gas discharge hole.

この種の装置を用いてウェハ3上に、例えは多結晶シリ
コン膜を形成するには、ウェハ3をウェハ支持ボート4
に搭載して内側炉芯管2内に導入し、反応ガス供給孔6
からシラン(SiH4)を内側炉芯管2内に供給するこ
とで、加熱源5により加熱されたウェハ表面上でシラン
の熱分解反応により前述の薄膜が生成出来る0反応によ
って生じた生成ガス及び未反応シランガスは、内側炉芯
管2と外側炉芯管1との間を通り反応ガス排出孔7から
真空ポンプ8によって外部へ排気される。
In order to form, for example, a polycrystalline silicon film on a wafer 3 using this type of apparatus, the wafer 3 is placed on a wafer support boat 4.
The reaction gas is introduced into the inner furnace core tube 2 through the reaction gas supply hole 6.
By supplying silane (SiH4) into the inner furnace core tube 2, the gas produced by the zero reaction and the unused material can be generated by the thermal decomposition reaction of silane on the wafer surface heated by the heating source 5 to form the above-mentioned thin film. The reactive silane gas passes between the inner furnace core tube 2 and the outer furnace core tube 1 and is exhausted to the outside from the reactive gas discharge hole 7 by the vacuum pump 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の減圧CVD装置において
、例えばシランと亜酸化窒素(N20)を用い二酸化シ
リコン膜を形成した場合、ウェハ面内における膜厚分布
は、第5図破線に示す様に、ウェハの周辺部において極
端に厚くなるという問題がある。前述の問題点はシラン
と亜酸化窒素による5i02膜形成の反応系がウェハに
供給される反応ガス量に大きく依存する供給律速となっ
ている為である。
However, when a silicon dioxide film is formed using, for example, silane and nitrous oxide (N20) in the conventional low-pressure CVD apparatus described above, the film thickness distribution within the wafer surface is as shown by the broken line in Figure 5. There is a problem that the thickness becomes extremely thick at the periphery. The above-mentioned problem is due to the fact that the reaction system for forming the 5i02 film using silane and nitrous oxide is rate-limited in supply, which largely depends on the amount of reaction gas supplied to the wafer.

ここで、第6図を用い前述の問題点を説明する。内側炉
芯管2内における軸方向と平行なガスの流れ10と、軸
方向に垂直なガスの流れ11では、前者のガス流速が速
く、ウェハ外周部と内側炉芯管内側面との空間12と、
ウェハ3間の空間13におけるガス密度は、前者が大き
く、反応系が供給律速である為、ガス密度の大きいウェ
ハ周辺部において気相成長が活発となり、ウェハ中心部
よりも膜厚が厚くなっていた。上述の様なウェハ面内に
おける不均一な膜厚分布は半導体装置の製造歩留り及び
信頼性を著しく低下させるという欠点を有している。
Here, the above-mentioned problem will be explained using FIG. Between the gas flow 10 parallel to the axial direction and the gas flow 11 perpendicular to the axial direction in the inner furnace core tube 2, the gas flow velocity of the former is high, and the space 12 between the wafer outer circumference and the inner surface of the inner furnace core tube is ,
The gas density in the space 13 between the wafers 3 is large, and since the reaction system is rate-limiting, vapor phase growth becomes active in the periphery of the wafer where the gas density is high, and the film thickness becomes thicker than in the center of the wafer. Ta. The non-uniform film thickness distribution within the wafer surface as described above has the drawback of significantly reducing the manufacturing yield and reliability of semiconductor devices.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の減圧CVD装置は、反応容器として、内側炉芯
管と外側炉芯管の2重炉芯管構造を有し、前記内側炉芯
管の内側面にリング状円板を前記内側炉芯管軸方向に対
しほぼ垂直にかつ所定の間隔を隔て複数枚配置したもの
である。
The reduced pressure CVD apparatus of the present invention has a double furnace core tube structure including an inner furnace core tube and an outer furnace core tube as a reaction vessel, and a ring-shaped disk is attached to the inner surface of the inner furnace core tube. A plurality of tubes are arranged substantially perpendicularly to the tube axis direction at predetermined intervals.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図及び第2図(a)、(b)は本発明の第1の実施
例を示す断面図及び内側炉芯管の上面図とA−A′線断
面図である。
FIGS. 1, 2(a) and 2(b) are a cross-sectional view, a top view of an inner furnace core tube, and a cross-sectional view taken along the line A-A', showing a first embodiment of the present invention.

第1図及び第2図において、第1の実施例の減圧CVD
装置は、反応容器が外側炉芯管1と内側炉芯管2の2重
炉芯管構造をしており、ウェハ3を支持する為のウェハ
支持ボート4、ウェハ3を加熱する加熱源5、内側炉芯
管内に反応ガスを供給する反応ガス供給孔6と反応ガス
排出孔7及び真空ポンプ8の排気系から主に構成されて
いる。
1 and 2, the reduced pressure CVD of the first embodiment
In the apparatus, the reaction vessel has a double furnace core tube structure of an outer furnace core tube 1 and an inner furnace core tube 2, a wafer support boat 4 for supporting the wafer 3, a heating source 5 for heating the wafer 3, It mainly consists of a reaction gas supply hole 6 for supplying reaction gas into the inner furnace core tube, a reaction gas discharge hole 7, and an exhaust system including a vacuum pump 8.

また、内側炉芯管2は、ウェハ支持ホード4の外接円よ
りやや大きい開口部を有する厚み3mm程のリング状円
板9を、内側炉芯管軸に対して垂直にかつ5cm程度の
間隔で複数枚具備している。リング状円板9を具備する
ことて、内側炉芯管内のガスの流れの内、軸方向に対し
垂直な成分すなわちウェハ中心部へのガスの流れを増加
させることができ、かつリング状円板表面での気相成長
による反応ガスの消費がおこるため、ウェハ周辺部とウ
ェハ中心部における反応ガス供給量の差の緩和が達成で
きる。
In addition, the inner furnace core tube 2 has a ring-shaped disk 9 about 3 mm thick, which has an opening slightly larger than the circumscribed circle of the wafer support hoard 4, and is arranged perpendicularly to the inner furnace core tube axis at intervals of about 5 cm. Equipped with multiple sheets. By providing the ring-shaped disk 9, it is possible to increase the component perpendicular to the axial direction of the gas flow in the inner furnace core tube, that is, the gas flow toward the wafer center, and the ring-shaped disk 9 Since the reaction gas is consumed by vapor phase growth on the surface, the difference in the amount of reaction gas supplied between the wafer periphery and the wafer center can be alleviated.

本箱1の実施例を用いてシラン及び亜酸化窒素による二
酸化シリコン膜を形成した。その結果は第5図の実線に
示すとおりとなり、ウェハ上に形成される膜厚分布は従
来例に比し良好なものとなった。
Using the example in Bookcase 1, a silicon dioxide film was formed using silane and nitrous oxide. The results were as shown by the solid line in FIG. 5, and the thickness distribution of the film formed on the wafer was better than that of the conventional example.

第3図は本発明の第2の実施例の内側炉芯管の断面図で
ある。
FIG. 3 is a sectional view of the inner furnace core tube of the second embodiment of the present invention.

この第2の実施例ではリング状円板9のリング幅が、内
側炉芯管2の上方向へと行くに従がい、小さくなった形
状を有しているものである。本箱2の実施例ては、リン
グ状円板で消費される反応ガス量を、リング幅を変化さ
せることにより内側炉芯管の上下方向において、任意調
整が可能である。よってウェハ面内のみならず、バッチ
内膜厚均一性においても良好な値を得ることが出来、半
導体装置の歩留り及び信頼性をより向上させることがで
きる。
In this second embodiment, the ring width of the ring-shaped disc 9 becomes smaller as it goes upward in the inner furnace core tube 2. In the embodiment of the bookcase 2, the amount of reaction gas consumed by the ring-shaped disc can be arbitrarily adjusted in the vertical direction of the inner furnace core tube by changing the ring width. Therefore, good values can be obtained not only in the wafer plane but also in the batch-to-batch film thickness uniformity, and the yield and reliability of semiconductor devices can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、反応容器として内側炉芯
管と外側炉芯管の2重炉芯管構造を有する減圧CVD装
置において、内側炉芯管の内側面にリング状円板を内側
炉芯管軸方向に対しほぼ垂直にかつ所定の間隔を隔て複
数枚配置することにより、ウェハの中心部と周辺部にお
ける反応ガス供給量の差を緩和することができる。従っ
て生成膜のウェハ面内膜厚均一性は従来技術と比し格段
に向上するため、半導体装置の製造上の歩留り及び信頼
性を著しく向上し得るという効果を有する。
As explained above, the present invention provides a reduced pressure CVD apparatus having a double furnace core tube structure of an inner furnace core tube and an outer furnace core tube as a reaction vessel, and a ring-shaped disk is attached to the inner surface of the inner furnace core tube. By arranging a plurality of reactor gases at a predetermined interval and substantially perpendicular to the axial direction of the core tube, the difference in the amount of reactant gas supplied between the center and the periphery of the wafer can be alleviated. Therefore, the uniformity of the film thickness within the wafer surface of the produced film is significantly improved compared to the conventional technology, and this has the effect of significantly improving the manufacturing yield and reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の断面図、第2図(a)
、(b)は第1図に示した内側炉芯管の上面図及びA−
A′線断面図、第3図は本発明の第2の実施例の内側炉
芯管の断面図、第4図は従来の減圧CVD装置の一例を
示す断面図、第5図はウェハ面上における膜厚分布図、
第6図は内側炉芯管内における反応ガスの流れと密度を
説明する為の断面図である。 1・・・外側炉芯管、2・・・内側炉芯管、3・・・ウ
ェハ、4・・・ウェハ支持ボート、5・・・加熱源、6
・・・反応ガス供給孔、7・・・反応ガス排出孔、8・
・・真空ポンプ、9・・・リング状円板、10・・・平
行なガスの流れ、11・・・垂直なガスの流れ、12.
13・・・空間。
Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2(a)
, (b) is a top view of the inner furnace core tube shown in Fig. 1 and A-
3 is a sectional view of the inner furnace core tube according to the second embodiment of the present invention, FIG. 4 is a sectional view showing an example of a conventional low pressure CVD apparatus, and FIG. 5 is a sectional view taken on the wafer surface. Film thickness distribution map,
FIG. 6 is a cross-sectional view for explaining the flow and density of reaction gas in the inner furnace core tube. DESCRIPTION OF SYMBOLS 1...Outer furnace core tube, 2...Inner furnace core tube, 3...Wafer, 4...Wafer support boat, 5...Heating source, 6
... Reaction gas supply hole, 7 ... Reaction gas discharge hole, 8.
... Vacuum pump, 9... Ring-shaped disk, 10... Parallel gas flow, 11... Vertical gas flow, 12.
13...Space.

Claims (1)

【特許請求の範囲】[Claims]  反応容器として内側炉芯管と外側炉芯管の2重炉芯管
構造を有する減圧CVD装置において、前記内側炉芯管
の内側面にリング状円板を内側炉芯管の軸方向に対しほ
ぼ垂直にかつ所定の間隔を隔て複数枚配置したことを特
徴とする減圧CVD装置。
In a reduced pressure CVD apparatus having a double furnace core structure of an inner furnace core tube and an outer furnace core tube as a reaction vessel, a ring-shaped disk is installed on the inner surface of the inner furnace core tube approximately in the axial direction of the inner furnace core tube. A reduced pressure CVD apparatus characterized in that a plurality of sheets are arranged vertically at predetermined intervals.
JP2280398A 1990-10-18 1990-10-18 Low pressure CVD equipment Expired - Lifetime JP3057744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280398A JP3057744B2 (en) 1990-10-18 1990-10-18 Low pressure CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280398A JP3057744B2 (en) 1990-10-18 1990-10-18 Low pressure CVD equipment

Publications (2)

Publication Number Publication Date
JPH04154117A true JPH04154117A (en) 1992-05-27
JP3057744B2 JP3057744B2 (en) 2000-07-04

Family

ID=17624474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280398A Expired - Lifetime JP3057744B2 (en) 1990-10-18 1990-10-18 Low pressure CVD equipment

Country Status (1)

Country Link
JP (1) JP3057744B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513336A (en) * 1990-12-18 1993-01-22 Nec Yamagata Ltd Reaction tube for low pressure cvd device
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JP2001118836A (en) * 1999-10-20 2001-04-27 Hitachi Kokusai Electric Inc Semiconductor manufacturing device, reaction tube therefor, and manufacturing method of semiconductor device
WO2023153214A1 (en) * 2022-02-08 2023-08-17 東京エレクトロン株式会社 Plasma treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668609B2 (en) 2004-12-28 2011-04-13 オリンパス株式会社 Culture observation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513336A (en) * 1990-12-18 1993-01-22 Nec Yamagata Ltd Reaction tube for low pressure cvd device
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JP2001118836A (en) * 1999-10-20 2001-04-27 Hitachi Kokusai Electric Inc Semiconductor manufacturing device, reaction tube therefor, and manufacturing method of semiconductor device
WO2023153214A1 (en) * 2022-02-08 2023-08-17 東京エレクトロン株式会社 Plasma treatment device

Also Published As

Publication number Publication date
JP3057744B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
CN108070846B (en) Gas supply unit and substrate processing apparatus including the same
US5895530A (en) Method and apparatus for directing fluid through a semiconductor processing chamber
KR950012910B1 (en) Vapor phase growth apparatus
US20060096540A1 (en) Apparatus to manufacture semiconductor
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
JPH04348031A (en) Chemical vapor growth equipment
US20060011298A1 (en) Showerhead with branched gas receiving channel and apparatus including the same for use in manufacturing semiconductor substrates
KR20040068458A (en) Mixer, and device and method for manufacturing thin-film
JP2969596B2 (en) CVD equipment
US20210249230A1 (en) Deposition radial and edge profile tunability through independent control of teos flow
KR20090131384A (en) Top plate and apparatus for depositing thin film on wafer using the same
US5188058A (en) Uniform gas flow CVD apparatus
JPH01140712A (en) Cvd system
JPH04154117A (en) Low pressure cvd system
US4705700A (en) Chemical vapor deposition method for the thin film of semiconductor
JPH06349738A (en) Vertical low-pressure cvd device
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
JP2630089B2 (en) Microwave plasma processing equipment
CN218812237U (en) Improve film quality's air inlet structure
KR100407508B1 (en) Device for growing thin-film over semiconductor wafer without rotation
JPH01235235A (en) Vapor growth equipment
JPH042118A (en) Formation of cvd film
JPS61248519A (en) Chemical vapor deposition apparatus
JP2519151Y2 (en) Chemical vapor phase generator
JPS63300512A (en) Chemical vapor deposition apparatus