JPH04154117A - Low pressure cvd system - Google Patents
Low pressure cvd systemInfo
- Publication number
- JPH04154117A JPH04154117A JP28039890A JP28039890A JPH04154117A JP H04154117 A JPH04154117 A JP H04154117A JP 28039890 A JP28039890 A JP 28039890A JP 28039890 A JP28039890 A JP 28039890A JP H04154117 A JPH04154117 A JP H04154117A
- Authority
- JP
- Japan
- Prior art keywords
- core tube
- wafer
- furnace core
- ring
- pressure cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004518 low pressure chemical vapour deposition Methods 0.000 title description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 239000000376 reactant Substances 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 26
- 239000010408 film Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- 239000012495 reaction gas Substances 0.000 description 14
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000001272 nitrous oxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は減圧CVD装置に関し、特に反応容器として2
重炉芯管構造を有する減圧CVD装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduced pressure CVD apparatus, and particularly to a
The present invention relates to a reduced pressure CVD apparatus having a heavy furnace core tube structure.
従来、減圧CVD装置は半導体基板(以下ウェハという
)表面に多結晶シリコン膜あるいは二酸化シリコン(S
i02)膜、9化シリコン(SigN4)膜などの絶縁
膜形成を行うCVD(化学気相成長)工程等に用いられ
ている。第4図は従来一般に用いられている減圧CVD
装置の構成を示す断面図であり、図中1は外側炉芯管、
2は内側炉芯管、4はウェハ支持ボート、3はウェハ、
6は反応ガス供給孔、7は反応ガス排出孔である。Conventionally, low pressure CVD equipment deposits a polycrystalline silicon film or silicon dioxide (S) on the surface of a semiconductor substrate (hereinafter referred to as a wafer).
It is used in CVD (chemical vapor deposition) processes and the like for forming insulating films such as i02) films and silicon 9ide (SigN4) films. Figure 4 shows the low-pressure CVD method commonly used in the past.
It is a sectional view showing the configuration of the device, in which 1 is an outer furnace core tube,
2 is the inner furnace core tube, 4 is the wafer support boat, 3 is the wafer,
6 is a reaction gas supply hole, and 7 is a reaction gas discharge hole.
この種の装置を用いてウェハ3上に、例えは多結晶シリ
コン膜を形成するには、ウェハ3をウェハ支持ボート4
に搭載して内側炉芯管2内に導入し、反応ガス供給孔6
からシラン(SiH4)を内側炉芯管2内に供給するこ
とで、加熱源5により加熱されたウェハ表面上でシラン
の熱分解反応により前述の薄膜が生成出来る0反応によ
って生じた生成ガス及び未反応シランガスは、内側炉芯
管2と外側炉芯管1との間を通り反応ガス排出孔7から
真空ポンプ8によって外部へ排気される。In order to form, for example, a polycrystalline silicon film on a wafer 3 using this type of apparatus, the wafer 3 is placed on a wafer support boat 4.
The reaction gas is introduced into the inner furnace core tube 2 through the reaction gas supply hole 6.
By supplying silane (SiH4) into the inner furnace core tube 2, the gas produced by the zero reaction and the unused material can be generated by the thermal decomposition reaction of silane on the wafer surface heated by the heating source 5 to form the above-mentioned thin film. The reactive silane gas passes between the inner furnace core tube 2 and the outer furnace core tube 1 and is exhausted to the outside from the reactive gas discharge hole 7 by the vacuum pump 8.
しかしながら、上述した従来の減圧CVD装置において
、例えばシランと亜酸化窒素(N20)を用い二酸化シ
リコン膜を形成した場合、ウェハ面内における膜厚分布
は、第5図破線に示す様に、ウェハの周辺部において極
端に厚くなるという問題がある。前述の問題点はシラン
と亜酸化窒素による5i02膜形成の反応系がウェハに
供給される反応ガス量に大きく依存する供給律速となっ
ている為である。However, when a silicon dioxide film is formed using, for example, silane and nitrous oxide (N20) in the conventional low-pressure CVD apparatus described above, the film thickness distribution within the wafer surface is as shown by the broken line in Figure 5. There is a problem that the thickness becomes extremely thick at the periphery. The above-mentioned problem is due to the fact that the reaction system for forming the 5i02 film using silane and nitrous oxide is rate-limited in supply, which largely depends on the amount of reaction gas supplied to the wafer.
ここで、第6図を用い前述の問題点を説明する。内側炉
芯管2内における軸方向と平行なガスの流れ10と、軸
方向に垂直なガスの流れ11では、前者のガス流速が速
く、ウェハ外周部と内側炉芯管内側面との空間12と、
ウェハ3間の空間13におけるガス密度は、前者が大き
く、反応系が供給律速である為、ガス密度の大きいウェ
ハ周辺部において気相成長が活発となり、ウェハ中心部
よりも膜厚が厚くなっていた。上述の様なウェハ面内に
おける不均一な膜厚分布は半導体装置の製造歩留り及び
信頼性を著しく低下させるという欠点を有している。Here, the above-mentioned problem will be explained using FIG. Between the gas flow 10 parallel to the axial direction and the gas flow 11 perpendicular to the axial direction in the inner furnace core tube 2, the gas flow velocity of the former is high, and the space 12 between the wafer outer circumference and the inner surface of the inner furnace core tube is ,
The gas density in the space 13 between the wafers 3 is large, and since the reaction system is rate-limiting, vapor phase growth becomes active in the periphery of the wafer where the gas density is high, and the film thickness becomes thicker than in the center of the wafer. Ta. The non-uniform film thickness distribution within the wafer surface as described above has the drawback of significantly reducing the manufacturing yield and reliability of semiconductor devices.
本発明の減圧CVD装置は、反応容器として、内側炉芯
管と外側炉芯管の2重炉芯管構造を有し、前記内側炉芯
管の内側面にリング状円板を前記内側炉芯管軸方向に対
しほぼ垂直にかつ所定の間隔を隔て複数枚配置したもの
である。The reduced pressure CVD apparatus of the present invention has a double furnace core tube structure including an inner furnace core tube and an outer furnace core tube as a reaction vessel, and a ring-shaped disk is attached to the inner surface of the inner furnace core tube. A plurality of tubes are arranged substantially perpendicularly to the tube axis direction at predetermined intervals.
次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図及び第2図(a)、(b)は本発明の第1の実施
例を示す断面図及び内側炉芯管の上面図とA−A′線断
面図である。FIGS. 1, 2(a) and 2(b) are a cross-sectional view, a top view of an inner furnace core tube, and a cross-sectional view taken along the line A-A', showing a first embodiment of the present invention.
第1図及び第2図において、第1の実施例の減圧CVD
装置は、反応容器が外側炉芯管1と内側炉芯管2の2重
炉芯管構造をしており、ウェハ3を支持する為のウェハ
支持ボート4、ウェハ3を加熱する加熱源5、内側炉芯
管内に反応ガスを供給する反応ガス供給孔6と反応ガス
排出孔7及び真空ポンプ8の排気系から主に構成されて
いる。1 and 2, the reduced pressure CVD of the first embodiment
In the apparatus, the reaction vessel has a double furnace core tube structure of an outer furnace core tube 1 and an inner furnace core tube 2, a wafer support boat 4 for supporting the wafer 3, a heating source 5 for heating the wafer 3, It mainly consists of a reaction gas supply hole 6 for supplying reaction gas into the inner furnace core tube, a reaction gas discharge hole 7, and an exhaust system including a vacuum pump 8.
また、内側炉芯管2は、ウェハ支持ホード4の外接円よ
りやや大きい開口部を有する厚み3mm程のリング状円
板9を、内側炉芯管軸に対して垂直にかつ5cm程度の
間隔で複数枚具備している。リング状円板9を具備する
ことて、内側炉芯管内のガスの流れの内、軸方向に対し
垂直な成分すなわちウェハ中心部へのガスの流れを増加
させることができ、かつリング状円板表面での気相成長
による反応ガスの消費がおこるため、ウェハ周辺部とウ
ェハ中心部における反応ガス供給量の差の緩和が達成で
きる。In addition, the inner furnace core tube 2 has a ring-shaped disk 9 about 3 mm thick, which has an opening slightly larger than the circumscribed circle of the wafer support hoard 4, and is arranged perpendicularly to the inner furnace core tube axis at intervals of about 5 cm. Equipped with multiple sheets. By providing the ring-shaped disk 9, it is possible to increase the component perpendicular to the axial direction of the gas flow in the inner furnace core tube, that is, the gas flow toward the wafer center, and the ring-shaped disk 9 Since the reaction gas is consumed by vapor phase growth on the surface, the difference in the amount of reaction gas supplied between the wafer periphery and the wafer center can be alleviated.
本箱1の実施例を用いてシラン及び亜酸化窒素による二
酸化シリコン膜を形成した。その結果は第5図の実線に
示すとおりとなり、ウェハ上に形成される膜厚分布は従
来例に比し良好なものとなった。Using the example in Bookcase 1, a silicon dioxide film was formed using silane and nitrous oxide. The results were as shown by the solid line in FIG. 5, and the thickness distribution of the film formed on the wafer was better than that of the conventional example.
第3図は本発明の第2の実施例の内側炉芯管の断面図で
ある。FIG. 3 is a sectional view of the inner furnace core tube of the second embodiment of the present invention.
この第2の実施例ではリング状円板9のリング幅が、内
側炉芯管2の上方向へと行くに従がい、小さくなった形
状を有しているものである。本箱2の実施例ては、リン
グ状円板で消費される反応ガス量を、リング幅を変化さ
せることにより内側炉芯管の上下方向において、任意調
整が可能である。よってウェハ面内のみならず、バッチ
内膜厚均一性においても良好な値を得ることが出来、半
導体装置の歩留り及び信頼性をより向上させることがで
きる。In this second embodiment, the ring width of the ring-shaped disc 9 becomes smaller as it goes upward in the inner furnace core tube 2. In the embodiment of the bookcase 2, the amount of reaction gas consumed by the ring-shaped disc can be arbitrarily adjusted in the vertical direction of the inner furnace core tube by changing the ring width. Therefore, good values can be obtained not only in the wafer plane but also in the batch-to-batch film thickness uniformity, and the yield and reliability of semiconductor devices can be further improved.
以上説明したように本発明は、反応容器として内側炉芯
管と外側炉芯管の2重炉芯管構造を有する減圧CVD装
置において、内側炉芯管の内側面にリング状円板を内側
炉芯管軸方向に対しほぼ垂直にかつ所定の間隔を隔て複
数枚配置することにより、ウェハの中心部と周辺部にお
ける反応ガス供給量の差を緩和することができる。従っ
て生成膜のウェハ面内膜厚均一性は従来技術と比し格段
に向上するため、半導体装置の製造上の歩留り及び信頼
性を著しく向上し得るという効果を有する。As explained above, the present invention provides a reduced pressure CVD apparatus having a double furnace core tube structure of an inner furnace core tube and an outer furnace core tube as a reaction vessel, and a ring-shaped disk is attached to the inner surface of the inner furnace core tube. By arranging a plurality of reactor gases at a predetermined interval and substantially perpendicular to the axial direction of the core tube, the difference in the amount of reactant gas supplied between the center and the periphery of the wafer can be alleviated. Therefore, the uniformity of the film thickness within the wafer surface of the produced film is significantly improved compared to the conventional technology, and this has the effect of significantly improving the manufacturing yield and reliability of semiconductor devices.
第1図は本発明の第1の実施例の断面図、第2図(a)
、(b)は第1図に示した内側炉芯管の上面図及びA−
A′線断面図、第3図は本発明の第2の実施例の内側炉
芯管の断面図、第4図は従来の減圧CVD装置の一例を
示す断面図、第5図はウェハ面上における膜厚分布図、
第6図は内側炉芯管内における反応ガスの流れと密度を
説明する為の断面図である。
1・・・外側炉芯管、2・・・内側炉芯管、3・・・ウ
ェハ、4・・・ウェハ支持ボート、5・・・加熱源、6
・・・反応ガス供給孔、7・・・反応ガス排出孔、8・
・・真空ポンプ、9・・・リング状円板、10・・・平
行なガスの流れ、11・・・垂直なガスの流れ、12.
13・・・空間。Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2(a)
, (b) is a top view of the inner furnace core tube shown in Fig. 1 and A-
3 is a sectional view of the inner furnace core tube according to the second embodiment of the present invention, FIG. 4 is a sectional view showing an example of a conventional low pressure CVD apparatus, and FIG. 5 is a sectional view taken on the wafer surface. Film thickness distribution map,
FIG. 6 is a cross-sectional view for explaining the flow and density of reaction gas in the inner furnace core tube. DESCRIPTION OF SYMBOLS 1...Outer furnace core tube, 2...Inner furnace core tube, 3...Wafer, 4...Wafer support boat, 5...Heating source, 6
... Reaction gas supply hole, 7 ... Reaction gas discharge hole, 8.
... Vacuum pump, 9... Ring-shaped disk, 10... Parallel gas flow, 11... Vertical gas flow, 12.
13...Space.
Claims (1)
構造を有する減圧CVD装置において、前記内側炉芯管
の内側面にリング状円板を内側炉芯管の軸方向に対しほ
ぼ垂直にかつ所定の間隔を隔て複数枚配置したことを特
徴とする減圧CVD装置。In a reduced pressure CVD apparatus having a double furnace core structure of an inner furnace core tube and an outer furnace core tube as a reaction vessel, a ring-shaped disk is installed on the inner surface of the inner furnace core tube approximately in the axial direction of the inner furnace core tube. A reduced pressure CVD apparatus characterized in that a plurality of sheets are arranged vertically at predetermined intervals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2280398A JP3057744B2 (en) | 1990-10-18 | 1990-10-18 | Low pressure CVD equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2280398A JP3057744B2 (en) | 1990-10-18 | 1990-10-18 | Low pressure CVD equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04154117A true JPH04154117A (en) | 1992-05-27 |
JP3057744B2 JP3057744B2 (en) | 2000-07-04 |
Family
ID=17624474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2280398A Expired - Lifetime JP3057744B2 (en) | 1990-10-18 | 1990-10-18 | Low pressure CVD equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3057744B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513336A (en) * | 1990-12-18 | 1993-01-22 | Nec Yamagata Ltd | Reaction tube for low pressure cvd device |
JPH08162423A (en) * | 1994-11-30 | 1996-06-21 | Shinetsu Quartz Prod Co Ltd | Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment |
JP2001118836A (en) * | 1999-10-20 | 2001-04-27 | Hitachi Kokusai Electric Inc | Semiconductor manufacturing device, reaction tube therefor, and manufacturing method of semiconductor device |
WO2023153214A1 (en) * | 2022-02-08 | 2023-08-17 | 東京エレクトロン株式会社 | Plasma treatment device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4668609B2 (en) | 2004-12-28 | 2011-04-13 | オリンパス株式会社 | Culture observation equipment |
-
1990
- 1990-10-18 JP JP2280398A patent/JP3057744B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513336A (en) * | 1990-12-18 | 1993-01-22 | Nec Yamagata Ltd | Reaction tube for low pressure cvd device |
JPH08162423A (en) * | 1994-11-30 | 1996-06-21 | Shinetsu Quartz Prod Co Ltd | Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment |
JP2001118836A (en) * | 1999-10-20 | 2001-04-27 | Hitachi Kokusai Electric Inc | Semiconductor manufacturing device, reaction tube therefor, and manufacturing method of semiconductor device |
WO2023153214A1 (en) * | 2022-02-08 | 2023-08-17 | 東京エレクトロン株式会社 | Plasma treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP3057744B2 (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108070846B (en) | Gas supply unit and substrate processing apparatus including the same | |
US5895530A (en) | Method and apparatus for directing fluid through a semiconductor processing chamber | |
KR950012910B1 (en) | Vapor phase growth apparatus | |
US20060096540A1 (en) | Apparatus to manufacture semiconductor | |
US7392759B2 (en) | Remote plasma apparatus for processing substrate with two types of gases | |
JPH04348031A (en) | Chemical vapor growth equipment | |
US20060011298A1 (en) | Showerhead with branched gas receiving channel and apparatus including the same for use in manufacturing semiconductor substrates | |
KR20040068458A (en) | Mixer, and device and method for manufacturing thin-film | |
JP2969596B2 (en) | CVD equipment | |
US20210249230A1 (en) | Deposition radial and edge profile tunability through independent control of teos flow | |
KR20090131384A (en) | Top plate and apparatus for depositing thin film on wafer using the same | |
US5188058A (en) | Uniform gas flow CVD apparatus | |
JPH01140712A (en) | Cvd system | |
JPH04154117A (en) | Low pressure cvd system | |
US4705700A (en) | Chemical vapor deposition method for the thin film of semiconductor | |
JPH06349738A (en) | Vertical low-pressure cvd device | |
JP2943407B2 (en) | Continuous transportation treatment device of high-temperature melt and its method | |
JP2630089B2 (en) | Microwave plasma processing equipment | |
CN218812237U (en) | Improve film quality's air inlet structure | |
KR100407508B1 (en) | Device for growing thin-film over semiconductor wafer without rotation | |
JPH01235235A (en) | Vapor growth equipment | |
JPH042118A (en) | Formation of cvd film | |
JPS61248519A (en) | Chemical vapor deposition apparatus | |
JP2519151Y2 (en) | Chemical vapor phase generator | |
JPS63300512A (en) | Chemical vapor deposition apparatus |