JPS63132466A - Material for lead frame - Google Patents

Material for lead frame

Info

Publication number
JPS63132466A
JPS63132466A JP27783286A JP27783286A JPS63132466A JP S63132466 A JPS63132466 A JP S63132466A JP 27783286 A JP27783286 A JP 27783286A JP 27783286 A JP27783286 A JP 27783286A JP S63132466 A JPS63132466 A JP S63132466A
Authority
JP
Japan
Prior art keywords
alloy
amorphous alloy
thickness
amorphous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27783286A
Other languages
Japanese (ja)
Inventor
Shoichi Matsuda
松田 昭一
Shun Sato
駿 佐藤
Toshio Yamada
山田 利男
Hiroaki Otsuka
広明 大塚
Masami Kobayashi
正巳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27783286A priority Critical patent/JPS63132466A/en
Publication of JPS63132466A publication Critical patent/JPS63132466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lead frame excellent in conductivity and tensile strength, by coating at least one side surface of an amorphous alloy foil with Cu or Cu alloy. CONSTITUTION:Single surface or both surfaces of amorphous alloy 1 are coated with Cu or Cu alloy 1 and made composite. By making composite material of amorphous alloy and Cu, the following defects can be improved while superior characteristics of amorphous alloy are maintained; low conductivity, durability for repeated bending, blanking property, and soldering property. Suitable thickness of amorphous alloy is 20-50mum. In the case of thickness less than or equal to 20mum, the strength and toughness are not sufficient. In the case of thickness more than 50mum, the alloy becomes fragile. The thickness of Cu or Cu alloy for making composite is 2-20mum. From economical view-point, Fe-base alloy is desirable for the composition of amorphous alloy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はIC(集積回路)などのパンケージを構成する
部品であるリードフレーム材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lead frame material that is a component of a pancage of an IC (integrated circuit) or the like.

(従来の技術) ICやトランジスタのチップに用いられるリードフレー
ムは特殊な合金の箔(又は薄板)が素材である。
(Prior Art) Lead frames used for IC and transistor chips are made of special alloy foil (or thin plate).

従来は例えば日経メカニカルエ985年1月号82〜8
7頁に解説されているようにFe42Niのいわゆる4
2アロイおよびCuをヘースとする合金の二種類が実用
材として主流をなしてきた。Fe −42Ni合金は強
度と熱膨張特性に関してCu合金よりすぐれているが、
導電性゛、熱伝導率などがCu合金より劣っている。一
方Cu合金は導電性、熱伝導率はすぐれた特性を示すが
、強度が低いという欠点を有している。また鉄箔を利用
した最も廉価なリードフレーム材もあるが、発請し易く
、機能的に信軌性に欠ける材料であるため、低品質の【
Cの製作材料に限定されているのが原状である。
Previously, for example, Nikkei Mechanical E, January 985 issue 82-8
As explained on page 7, the so-called 4 of Fe42Ni
Two types of alloys, 2-alloy and Cu-based alloy, have become mainstream as practical materials. Although Fe-42Ni alloy is superior to Cu alloy in terms of strength and thermal expansion properties,
It is inferior to Cu alloy in electrical conductivity, thermal conductivity, etc. On the other hand, Cu alloys exhibit excellent electrical conductivity and thermal conductivity, but have the drawback of low strength. There is also the cheapest lead frame material that uses iron foil, but it is easy to contract and lacks functional reliability, so it is a low-quality material.
In its original state, it is limited to the manufacturing materials of C.

これらの材料はそれぞれの特徴を生かせるタイプのパッ
ケージに使用されてきたが、ICの高集積化にともない
現状の材料では十分に対応しきれなくなってきた。例え
ば熱の放散や多ビン化による材料強度の向上が求められ
ている。
These materials have been used in packages that take advantage of their respective characteristics, but as ICs become more highly integrated, the current materials are no longer able to adequately support them. For example, there is a need to improve material strength by dissipating heat and increasing the number of bottles.

このような現状の対応策として一つは合金成分の改良が
あり、他は2種以上の材料のクラツド化などが試みられ
ている。このうち合金成分の改良は主としてCu合金に
おいてなされている。CuO高導電性を保持しながら強
度を高めるために1%程度の異種元素を添加するもので
ある。しかし添加量の制約から強度の飛躍的向上は今の
ところ達成されていない。またクラツド材としてFe4
2NiアロイとCu合金のクラツド材が実用化されつつ
あるが、特性はさておき、製造上の難かしさにより、材
料コストが高くなる欠点がある。
One way to deal with this situation is to improve the alloy components, and other attempts have been made to create a cladding of two or more types of materials. Among these, improvements in alloy components have mainly been made in Cu alloys. About 1% of a different element is added to increase the strength while maintaining CuO's high conductivity. However, due to restrictions on the amount added, dramatic improvements in strength have not been achieved so far. In addition, Fe4 is used as a cladding material.
Clad materials of 2Ni alloy and Cu alloy are being put into practical use, but aside from their properties, they have the drawback of high material costs due to manufacturing difficulties.

(発明が解決しようとする問題点) 本発明はICの高集積化、パッケージの小型化の動向に
対応できる高導電性、高強度特性を併せもつ新規なリー
ドフレーム材料を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a novel lead frame material that has both high conductivity and high strength characteristics that can respond to the trends of higher integration of ICs and smaller packages.

(問題点を解決するための手段) 本発明のリードフレーム材料はアモルアス合金の薄帯を
基材とし、少なくとも一方の表面にCu又はCu合金を
被覆してなることを特徴とするものである。
(Means for Solving the Problems) The lead frame material of the present invention is characterized in that it uses a ribbon of amorphous alloy as a base material, and at least one surface thereof is coated with Cu or a Cu alloy.

アモルファス合金は融体から超急冷法によって作製され
る合金で、その構造(ランダムな原子配列)に起因する
様々な特徴的性質を有している。
Amorphous alloys are produced from melts by ultra-quenching, and have various characteristic properties due to their structure (random atomic arrangement).

例えば従来の結晶性金属(合金)では得られない高強度
高耐食性などを示す。しかしリードフレーム材料として
見た場合導電性や打抜き加工性及びハンダ性などがCu
合金に比べて劣る点が単体での実用化を阻んでいた。
For example, it exhibits high strength and high corrosion resistance that cannot be obtained with conventional crystalline metals (alloys). However, when viewed as a lead frame material, Cu has poor conductivity, punching workability, and solderability.
Its inferiority compared to alloys prevented its practical use as a standalone material.

本発明はアモルファス合金箔の高強度を生かしつつCu
の高導電性を付与するために、第1図に示したようにア
モルファス合金1の表面(片面又は両面)にCu又はC
u合金2を被覆し複合化したものである。複合化の方法
はメッキ法が多く用いられるが他の方法例えばクラッド
法によってもよい。
The present invention utilizes the high strength of amorphous alloy foil while
In order to impart high conductivity to the amorphous alloy 1, as shown in FIG.
This is a composite material coated with u-alloy 2. Although plating is often used as a composite method, other methods such as cladding may also be used.

アモルファス合金とCu (又はCu合金)を複合体と
することによりアモルファス合金のすぐれた特徴をその
まま保持しつつ、欠点である低い導電性、繰返し曲げ性
、打抜き性及びハンダ性が大幅に改゛善される。
By making a composite of amorphous alloy and Cu (or Cu alloy), the excellent characteristics of amorphous alloy are retained, while the disadvantages of low conductivity, repeated bendability, punchability, and solderability are significantly improved. be done.

好ましいアモルファス合金の厚みは20μm〜50μm
である。20μm未満では強度・靭性が不足し、50μ
mを超えると脆くなりCu (又はCu合金)複合化に
よっても繰返し曲げ性が不充分となる。これらの理由で
基材となるアモルファス合金の板厚の範囲を20〜50
μmとした。
The preferred thickness of the amorphous alloy is 20 μm to 50 μm.
It is. If it is less than 20 μm, the strength and toughness will be insufficient;
If it exceeds m, it becomes brittle and the repeated bendability becomes insufficient even when Cu (or Cu alloy) is composited. For these reasons, the thickness of the amorphous alloy that serves as the base material is set in the range of 20 to 50 mm.
It was set as μm.

複合化するCuないしCu合金の厚みは少なくとも2μ
mが必要である。導電性や打抜き性を重視する用途には
Cu (又はCu合金)の厚みを相対的に大きくするこ
とが好ましい。なお、Cuの厚みが20μm (片面)
を超えるとメッキ法を採用する場合コスト高となるので
、この厚み以下とすることが望しい。
The thickness of Cu or Cu alloy to be composited is at least 2μ
m is required. For applications where electrical conductivity and punchability are important, it is preferable to make the thickness of Cu (or Cu alloy) relatively large. In addition, the thickness of Cu is 20 μm (one side)
If the thickness exceeds this, the cost will increase if plating is used, so it is desirable to keep the thickness below this.

本発明のアモルファス合金箔−Cu (又はCu合金)
複合材は本来、Cuのすぐれた電気的、熱的性質をアモ
ルファス金属に付与すると共に、Cu合金の弱点である
機械的強度を改善するものであるから、Cuの純度は高
い方がよい。合金化は導電性を犠牲にしてCuの強度を
高めるための手段であり、このためCu合金を用いる場
合にはできるだけ不純物の少ないものがよく、添加元素
の含有量も1重量%以下とすることが望ましい。添加元
素としてSn。
Amorphous alloy foil of the present invention - Cu (or Cu alloy)
Since a composite material originally provides the excellent electrical and thermal properties of Cu to an amorphous metal and improves the mechanical strength, which is a weak point of Cu alloys, the higher the purity of Cu, the better. Alloying is a means to increase the strength of Cu at the expense of electrical conductivity. Therefore, when using a Cu alloy, it is best to use one with as few impurities as possible, and the content of additional elements should be 1% by weight or less. is desirable. Sn as an additive element.

Zn、  Pなどがよい。Zn, P, etc. are good.

本発明に使用されるアモルファス合金の組成は、経済性
を考慮してFeaXbMeで表示されるFeベース合金
とすることが望しい。ここでXはCr、Mo、W。
The composition of the amorphous alloy used in the present invention is preferably an Fe-based alloy represented by FeaXbMe in consideration of economic efficiency. Here, X is Cr, Mo, or W.

Ti、 Nb、 Ni、 Coの1種又は2種以上で、
MはB。
One or more of Ti, Nb, Ni, and Co,
M is B.

C1P 、St+ Geの1種又は2種以上を示す。ま
た含有量はa : 60〜90  (at%以下同じ)
、b: 。
It represents one or more of C1P, St+Ge. The content is a: 60-90 (same below at%)
, b: .

0〜20.c:10〜35の範囲にあるものがよい。た
だしa+b+c=100である。X元素の添加は機械的
性質や耐食性の改善、熱膨張率や磁気特性に対する要求
に応じて上記範囲から選定される。半金属(M)はアモ
ルファス形成に必要な元素として10〜35at%の添
加が必要である。
0-20. c: preferably in the range of 10 to 35. However, a+b+c=100. The addition of element X is selected from the above range depending on the requirements for improvement of mechanical properties and corrosion resistance, coefficient of thermal expansion, and magnetic properties. The semimetal (M) needs to be added in an amount of 10 to 35 at% as an element necessary for forming an amorphous state.

次にCuをアモルファス合金に被覆する手段の具体例を
以下に示す。  ′ アモルファス合金は、硝子に似た性質の金属であり、そ
の表面に強固な不動態皮膜が存在しているため、従来、
この合金への金属メッキは不可能視されていた。また、
仮りにこの不動態皮膜を除去して金属メッキを施しても
、水素が多く入ると水素脆性を起こして叩くだけで、あ
たかも硝子が破断するように破壊される性質がある。
Next, a specific example of means for coating an amorphous alloy with Cu will be shown below. ´ Amorphous alloys are metals with properties similar to glass, and have a strong passive film on their surfaces, so they have traditionally been
Metal plating on this alloy was considered impossible. Also,
Even if this passive film is removed and metal plating is applied, if a large amount of hydrogen enters the material, it will cause hydrogen embrittlement and will be destroyed just by hitting it, just like breaking glass.

これは、アモルファス合金が水素貯蔵合金にもなり得る
程、水素を吸収し易い金属であり、メッキ作業の工程中
に発生する水素原子が大量にこの合金に吸収されると、
水素脆性を起こして容易に破断するので、シートの形状
を維持することが困難となる。
This is because an amorphous alloy is a metal that easily absorbs hydrogen, so much so that it can also be used as a hydrogen storage alloy.If a large amount of hydrogen atoms generated during the plating process are absorbed into this alloy,
It causes hydrogen embrittlement and easily breaks, making it difficult to maintain the shape of the sheet.

また、水素脆性を起こしたアモルファス合金は物性的に
も劣化して利用できないが、併せて電気特性も失われる
ので、この合金に対するメッキ作業は、一般金属に対す
る金属メッキと異なり、水素脆性を起こさないように注
意することが肝要である。
In addition, amorphous alloys that have undergone hydrogen embrittlement deteriorate physically and cannot be used, but they also lose their electrical properties, so plating work on this alloy does not cause hydrogen embrittlement, unlike metal plating on general metals. It is important to be careful.

アモルファス合金箔へのメッキは次のように行うことが
できる。先ず、アモルファス合金箔を次の酸成分と添加
剤を適宜組合せた組成の酸性活性化浴中に、常温で30
秒〜7分間浸漬処理して化学的に研摩する。
Plating on amorphous alloy foil can be performed as follows. First, an amorphous alloy foil was placed in an acidic activation bath containing the following acid components and additives in an appropriate combination at room temperature for 30 min.
Chemically polish by soaking for 2 to 7 minutes.

く1)塩酸3〜20重量%、 (11)硫酸2〜30重量%、 (iii )クエン酸2〜15重量%、(iv)酢酸0
〜3重量%、 (v)硝酸2〜10重量%、 (vl)非イオンまたは両性界面活性剤0.1〜0.3
重量%、 (vi)アミン系腐食防止剤0〜0.15重量%、(v
ii)  2−ピロリドンまたはそのN−アルキル誘導
体く例、N−エチル〔もしくはメチルツー2−ピロリド
ン)0〜2Offi量%、(1K)アセチレン系グリコ
ール(例、2−ペンチン−1,4−ジオール、2−ブチ
ン−1,4−ジオール)0〜10重量%、 次いで、化学的に研摩したアモルファス合金箔を、次に
例示した酸成分と添加剤を適宜組合せた組成の電解浴を
用いて電解活性化する。
1) Hydrochloric acid 3-20% by weight, (11) Sulfuric acid 2-30% by weight, (iii) Citric acid 2-15% by weight, (iv) Acetic acid 0
~3% by weight, (v) nitric acid 2-10% by weight, (vl) nonionic or amphoteric surfactant 0.1-0.3
wt%, (vi) amine corrosion inhibitor 0-0.15 wt%, (v
ii) 2-pyrrolidone or its N-alkyl derivative, e.g. N-ethyl [or methyl-2-pyrrolidone) 0 to 2% by weight, (1K) acetylenic glycol (e.g., 2-pentyne-1,4-diol, 2-pyrrolidone) -butyne-1,4-diol) 0 to 10% by weight, and then the chemically polished amorphous alloy foil is electrolytically activated using an electrolytic bath having a composition that appropriately combines the acid components and additives listed below. do.

(i)燐酸2〜20重量%、 (11)硫酸2〜30重量%、 (iii )クエン酸2〜15重量%、(iv)酢酸0
〜5重量%、 (v)非イオンまたは両性界面活性剤0.1〜0.3重
量%、 (vl)アミン系腐食防止剤0〜0.15重量%、(v
i)2−ピロリドンまたはそのN−アルキル誘導体0〜
20重量%、 電解活性化は、アモルファス合金をカソードとし、例え
ば白金メッキチタンアノードを用い常温で電流密度1〜
7A、/dmzにて30秒〜5分間電解を行うことによ
り達成される。
(i) Phosphoric acid 2-20% by weight, (11) Sulfuric acid 2-30% by weight, (iii) Citric acid 2-15% by weight, (iv) Acetic acid 0
~5% by weight, (v) nonionic or amphoteric surfactant 0.1-0.3% by weight, (vl) amine corrosion inhibitor 0-0.15% by weight, (v
i) 2-pyrrolidone or its N-alkyl derivative 0-
20% by weight, electrolytic activation uses an amorphous alloy as a cathode, for example, a platinum-plated titanium anode, at a current density of 1 to 1 at room temperature.
This is achieved by electrolyzing at 7A, /dmz for 30 seconds to 5 minutes.

電解活性化したアモルファス合金箔はアモルファス合金
表面に再び不動態皮膜が生成するのを防止するために、
出来るだけすばやくメッキ工程に移し、メッキによりC
u又はCu合金を被覆する。
In order to prevent the electrolytically activated amorphous alloy foil from forming a passive film on the amorphous alloy surface again,
Move to the plating process as quickly as possible, and by plating C
Coat with u or Cu alloy.

メッキの手法そのものは常法によって行なえばよい。例
えばCuメッキとしては、酸性硫酸銅浴、ビロリン酸銅
浴などを用いて行なうことができる。
The plating method itself may be performed by a conventional method. For example, Cu plating can be performed using an acidic copper sulfate bath, a copper birophosphate bath, or the like.

次に実施例により本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

(実施例) 実施例1 合金組成がFB7aCrJ+ zca、板幅25龍、板
厚26μmのアモルファス合金箔の両面に片面あたり7
μm、両面合計14μmのCuメッキを以下の方法によ
り施した。
(Example) Example 1 7 per side on both sides of an amorphous alloy foil with an alloy composition of FB7aCrJ+zca, a plate width of 25 mm, and a plate thickness of 26 μm.
Cu plating with a total thickness of 14 μm on both sides was performed by the following method.

先ず、アモルファス合金箔をトリクレンによる脱脂、洗
浄およびアルカリ脱脂を行った後、次の組成を有する酸
性活性化浴を通して化学的に研摩した。ポリエチレング
リコールアルキルエーテル0、2重量%、N−メチル−
2−ピロリドン5重量%、2−ブチン−1.4−ジオー
ル1重量%、アミン系腐食防止剤0. 1重量%を、3
5%塩酸5容■%、85%硫酸5容量%、クエン酸粉末
10重量%、90%酢酸1容量%、68%硝酸2容量%
からなる混酸液に加えて酸性活性化浴とした。
First, an amorphous alloy foil was degreased with trichlene, washed, and degreased with alkali, and then chemically polished through an acidic activation bath having the following composition. Polyethylene glycol alkyl ether 0.2% by weight, N-methyl-
5% by weight of 2-pyrrolidone, 1% by weight of 2-butyne-1,4-diol, 0. 1% by weight, 3
5% hydrochloric acid 5% by volume, 85% sulfuric acid 5% by volume, citric acid powder 10% by weight, 90% acetic acid 1% by volume, 68% nitric acid 2% by volume
An acidic activation bath was prepared by adding the mixed acid solution consisting of:

次いで、ポリエチレングリコールアルキルエーテル0.
2重量%、N−メチル−2−ピロリドン5重量%、アミ
ン系腐食防止剤0.1重量%を、85%燐酸10容量%
、85%硫酸5容量%、クエン酸粉末5重量%、90%
酢酸1容壇%からなる混酸液に加え、65゛cに加熱し
た。アモルファス合金箔およびチタン白金メツキ板を電
極として上記電解浴中で電流を通じ4ボルトにセソトシ
てアモルファス合金箔の表面の活性化を行った。
Next, polyethylene glycol alkyl ether 0.
2% by weight, 5% by weight of N-methyl-2-pyrrolidone, 0.1% by weight of amine corrosion inhibitor, 10% by volume of 85% phosphoric acid.
, 85% sulfuric acid 5% by volume, citric acid powder 5% by weight, 90%
It was added to a mixed acid solution consisting of 1% acetic acid and heated to 65°C. The surface of the amorphous alloy foil was activated by passing an electric current through the amorphous alloy foil and the titanium/platinum plated plate as electrodes to 4 volts in the above electrolytic bath.

活性化したアモルファス合金箔は、直ちに硫酸銅20g
/jLクエン酸90 g / 1、クエン酸ソーダ90
g/lのメッキ浴中で6A/dm”の電流密度で10秒
間メッキして極く薄い銅ストライクメッキを行ない、さ
らに硫酸銅180 g/l、硫酸45 g/、i!のメ
ッキ浴中で、2 A/dm” 、7分間のメッキを行な
い約7μmの洞メッキを得た。
The activated amorphous alloy foil is immediately treated with 20g of copper sulfate.
/jL citric acid 90 g / 1, sodium citrate 90
A very thin copper strike plating was performed by plating for 10 seconds at a current density of 6A/dm'' in a plating bath of 180 g/l of copper sulfate, 45 g/l of sulfuric acid, i! , 2 A/dm" and 7 minutes to obtain a sinus plating of about 7 μm.

得られたCu−アモルファス合金−Cuの複合材料の板
厚は40μmで、各種特性の測定結果は表1の通りであ
った。
The plate thickness of the obtained Cu-amorphous alloy-Cu composite material was 40 μm, and the measurement results of various properties were as shown in Table 1.

表    1 本Fe42Ni合金(厚み0.2mm)。Table 1 Genuine Fe42Ni alloy (thickness 0.2mm).

本章Cu−5%Sn合金(厚み0.2mm)ここで導電
率は[AC5%で示す。
This chapter Cu-5%Sn alloy (thickness 0.2mm) Here, the electrical conductivity is expressed as [AC5%].

表1に示した特性値から明らかなように本発明の複合材
料の板厚は40μmであり、従来の材料に比べ約175
の薄板であるにもかかわらず、リードフレーム材料とし
て適していることがわかる。
As is clear from the characteristic values shown in Table 1, the plate thickness of the composite material of the present invention is 40 μm, which is about 175 μm compared to the conventional material.
Although it is a thin plate, it is suitable as a lead frame material.

実施例2 合金組成がFe74Mo+oB+zC4、板幅50mm
、板厚40μmのアモルファス合金箔の両面に片面あた
り12μm、両面合計24μmのCuメッキを以下の方
法により施した。
Example 2 Alloy composition is Fe74Mo+oB+zC4, plate width 50mm
Cu plating was applied to both sides of an amorphous alloy foil having a plate thickness of 40 μm to a thickness of 12 μm per side and a total thickness of 24 μm on both sides by the following method.

実施例1と同様にアモルファス合金箔の表面を活性化し
た後、銅ストライクメッキを行ない、さらに、ピロ燐酸
銅(Cu分36%)80g//2、ピロ燐酸カリウム3
00g/β、アンモニア(20%溶液)0.2容量%の
メッキ浴を用いて、浴温60℃でアモルファス合金箔に
電圧6〜7■を印加しながら電解メッキを行なった。
After activating the surface of the amorphous alloy foil in the same manner as in Example 1, copper strike plating was performed, and copper pyrophosphate (Cu content 36%) 80 g//2, potassium pyrophosphate 3
Using a plating bath containing 00 g/β and 0.2% by volume of ammonia (20% solution), electrolytic plating was carried out at a bath temperature of 60° C. while applying a voltage of 6 to 7 μm to the amorphous alloy foil.

得られたCu−アモルファス合金−Cuの複合材料の板
厚は64μ翔で、各種特性の測定結果は表2の通りであ
った。
The plate thickness of the obtained Cu-amorphous alloy-Cu composite material was 64 μm, and the measurement results of various properties were as shown in Table 2.

表    2 表2の特性値は、リードフレーム材料として表1に挙げ
た比較例に比べて本発明の材料が強度、導電率ともにす
ぐれていることを示している。
Table 2 The characteristic values in Table 2 show that the material of the present invention is superior in both strength and electrical conductivity compared to the comparative example listed in Table 1 as a lead frame material.

(発明の効果) 本発明のアモルファス合金箔とCuの複合体は、と(に
導電体と引張強度がともに従来材よりすぐれており、I
Cの高集積化、パッケージの小型化、軽量化、多ピン化
に対応するためのリードフレーム材として最適である。
(Effects of the Invention) The composite of the amorphous alloy foil and Cu of the present invention is superior in both electrical conductivity and tensile strength to conventional materials;
It is ideal as a lead frame material to support higher integration of C, smaller and lighter packages, and increased number of pins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明材料の説明図で、(alはCu (又は
Cu合金)の片面被覆、ft、)は両面被覆の例である
。 1:アモルファス合金箔、2:Cu(又はCu合金)被
膜層。 第1図
FIG. 1 is an explanatory diagram of the material of the present invention, where (al is one-sided coating of Cu (or Cu alloy), ft, is an example of double-sided coating). 1: Amorphous alloy foil, 2: Cu (or Cu alloy) coating layer. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)アモルファス合金箔の少なくとも一方の表面にC
u又はCu合金を被覆したことを特徴とするリードフレ
ーム用材料。
(1) C on at least one surface of the amorphous alloy foil
A lead frame material characterized by being coated with u or Cu alloy.
(2)アモルファス合金箔の板厚が20〜50μmで、
Cu又はCu合金の厚みが片面で2〜20μmである特
許請求の範囲第(1)項記載のリードフレーム用材料。
(2) The thickness of the amorphous alloy foil is 20 to 50 μm,
The lead frame material according to claim 1, wherein the Cu or Cu alloy has a thickness of 2 to 20 μm on one side.
JP27783286A 1986-11-22 1986-11-22 Material for lead frame Pending JPS63132466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27783286A JPS63132466A (en) 1986-11-22 1986-11-22 Material for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27783286A JPS63132466A (en) 1986-11-22 1986-11-22 Material for lead frame

Publications (1)

Publication Number Publication Date
JPS63132466A true JPS63132466A (en) 1988-06-04

Family

ID=17588887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27783286A Pending JPS63132466A (en) 1986-11-22 1986-11-22 Material for lead frame

Country Status (1)

Country Link
JP (1) JPS63132466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367191A (en) * 1991-09-18 1994-11-22 Fujitsu Limited Leadframe and resin-sealed semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367191A (en) * 1991-09-18 1994-11-22 Fujitsu Limited Leadframe and resin-sealed semiconductor device
US5753535A (en) * 1991-09-18 1998-05-19 Fujitsu Limited Leadframe and resin-sealed semiconductor device

Similar Documents

Publication Publication Date Title
JPS59145553A (en) Composite structure and method of forming same
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP2007239076A (en) Tinning coat, tinning liquid for forming tinning coat, method for forming tinning coat and chip type electronic parts formed of electrode with tinning coat
US4652347A (en) Process for electroplating amorphous alloys
TW200844267A (en) Sn-plated copper alloy material for printed board terminal
KR20090006084A (en) Heat-resistant sn-plated cu-zn alloy strip suppressed in whiskering
JP2004517734A (en) Brazing products
EP0127857B1 (en) Solderable stainless steel article and method for making same
JPS60218440A (en) Copper alloy for lead frame
US4767508A (en) Strike plating solution useful in applying primer plating to electronic parts
KR101889087B1 (en) Thin sheet for electric connecting terminal having improved soldering property and method for soldering the same
EP0132596A2 (en) Solderable nickel-iron alloy article and method for making same
JPS63132466A (en) Material for lead frame
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
CN112222552B (en) Gamma electrode wire and preparation method thereof
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JP2001032028A (en) Copper alloy for electronic parts, and its manufacture
JPS61219465A (en) Connecting method for amorphous alloy
JPS58141544A (en) Electronic parts
JPH02170996A (en) Bright-tin plated metallic sheet
JPS60128234A (en) Copper alloy for lead frame
JP2001200323A (en) Lead material for electronic parts and electronic parts using same lead material
JP3312235B2 (en) Beryllium copper alloy spring material and its manufacturing method
JPS59222543A (en) Copper alloy for lead frame
JPH0218996A (en) Amorphous alloy material plated with metal and plating method