JP3312235B2 - Beryllium copper alloy spring material and its manufacturing method - Google Patents

Beryllium copper alloy spring material and its manufacturing method

Info

Publication number
JP3312235B2
JP3312235B2 JP27091995A JP27091995A JP3312235B2 JP 3312235 B2 JP3312235 B2 JP 3312235B2 JP 27091995 A JP27091995 A JP 27091995A JP 27091995 A JP27091995 A JP 27091995A JP 3312235 B2 JP3312235 B2 JP 3312235B2
Authority
JP
Japan
Prior art keywords
beryllium
copper alloy
spring material
alloy spring
beryllium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27091995A
Other languages
Japanese (ja)
Other versions
JPH09111374A (en
Inventor
節 久保田
秀則 原田
洋一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP27091995A priority Critical patent/JP3312235B2/en
Publication of JPH09111374A publication Critical patent/JPH09111374A/en
Application granted granted Critical
Publication of JP3312235B2 publication Critical patent/JP3312235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ベリリウム銅合
金ばね材およびその製造方法に関し、さらに詳しくは、
半田付け性を改善することにより良好な耐久性とばね特
性を得られるようにしたベリリウム銅合金ばね材および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beryllium copper alloy spring material and a method for manufacturing the same.
The present invention relates to a beryllium copper alloy spring material capable of obtaining good durability and spring characteristics by improving solderability, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図12は、従来のベリリウム銅合金ばね
材の製造方法の一例を示すフローチャートである。ステ
ップB1では、図13に示す直径が例えば200μmで
ベリリウムの平均含有率が9.5〜13.5at%のベリ
リウム銅合金線11’に対して引抜き加工を施し、図1
4に示すように直径が例えば100μmの線状のベリリ
ウム銅合金ばね材11aを得る。あるいは、図13に示
すベリリウム銅合金線11’に対して圧延加工を施し、
図15に示すように厚さが例えば70μmで幅が例えば
105μmの箔状のベリリウム銅合金ばね材11bを得
る。ステップB2では、ベリリウム銅合金ばね材11a
または11bに対して例えば350℃で60秒の析出硬
化処理を施す。得られたベリリウム銅合金ばね材11a
または11bは、銅合金ばね材の中では最もばね特性が
優れており且つ小型設計が可能であるため、電子部品の
ばね材として広く使われている。
2. Description of the Related Art FIG. 12 is a flowchart showing an example of a conventional method for manufacturing a beryllium copper alloy spring material. In step B1, a beryllium copper alloy wire 11 ′ having a diameter of, for example, 200 μm and an average beryllium content of 9.5 to 13.5 at% shown in FIG.
As shown in FIG. 4, a linear beryllium copper alloy spring material 11a having a diameter of, for example, 100 μm is obtained. Alternatively, the beryllium copper alloy wire 11 ′ shown in FIG.
As shown in FIG. 15, a beryllium copper alloy spring material 11b having a thickness of, for example, 70 μm and a width of, for example, 105 μm is obtained. In step B2, beryllium copper alloy spring material 11a
Alternatively, a precipitation hardening treatment is performed on 11b at, for example, 350 ° C. for 60 seconds. The obtained beryllium copper alloy spring material 11a
Or, 11b is widely used as a spring material for electronic components because it has the most excellent spring characteristics among copper alloy spring materials and can be designed in a small size.

【0003】[0003]

【発明が解決しようとする課題】上記従来のベリリウム
銅合金ばね材11aまたは11bは、表面に酸化ベリリ
ウムの薄皮膜を有するため、難半田付け性である。この
ため、強力なフラックスを用いるか又は高温度で半田付
けを行っている。しかし、強力なフラックスを用いた
り,高温度で半田付けすると、ベリリウム銅合金ばね材
が腐食したり,ばね特性を劣化させたりする問題点があ
る。特に、線径または箔厚を0.2mm以下とすると、
この問題点が顕著となり、十分な耐久性やばね特性が得
られなくなる問題点がある。そこで、この発明の目的
は、強力なフラックスを用いたり,高温度で半田付けを
行ったりする必要がないように半田付け性を改善し、こ
れにより良好な耐久性とばね特性とを得られるようにし
たベリリウム銅合金ばね材およびその製造方法を提供す
ることにある。
The conventional beryllium-copper alloy spring material 11a or 11b has a thin film of beryllium oxide on its surface, so that it is difficult to solder. For this reason, a strong flux is used or soldering is performed at a high temperature. However, if a strong flux is used or soldering is performed at a high temperature, there is a problem that the beryllium copper alloy spring material is corroded or the spring characteristics are deteriorated. In particular, if the wire diameter or foil thickness is 0.2 mm or less,
This problem becomes remarkable, and there is a problem that sufficient durability and spring characteristics cannot be obtained. Accordingly, an object of the present invention is to improve the solderability so that it is not necessary to use a strong flux or to perform soldering at a high temperature, thereby obtaining good durability and spring characteristics. And a method of manufacturing the same.

【0004】[0004]

【課題を解決するための手段】第1の観点では、この発
明は、ベリリウムの平均含有率が9.5〜13.5at%
であるベリリウム銅合金材の外周面にベリリウムの濃度
が0.05〜3.0at%であるベリリウム原子希薄
を形成し、そのベリリウム原子希薄層の外周面に錫膜
または半田膜を設けたことを特徴とするベリリウム銅合
金ばね材を提供する。上記第1の観点によるベリリウム
銅合金ばね材では、難半田付け性であるベリリウム銅合
金材の外周面にベリリウム原子希薄層を形成するが、
このベリリウム原子希薄層では酸化ベリリウムによる
難半田付け性は抑制され、銅による良好な半田付け性が
現れる。そして、このように半田付け性を改善したベリ
リウム原子希薄層の外周面に錫膜または半田膜を設け
ると、さらに半田付け性を良くすることが出来る。この
結果、強力なフラックスを用いたり,高温度で半田付け
を行ったりする必要がなくなり、線径または箔厚を0.
2mm以下とした場合でも良好な耐久性とばね特性とを
得られるようになる。なお、ベリリウムの濃度を0.0
5at%より小さくすると、銅の性質が強く現れ過ぎ、ば
ね特性が低下する。また、ベリリウムの濃度を3.0at
%より大きくすると、酸化ベリリウムの性質が強く現れ
過ぎ、半田付け性が低下する。
According to a first aspect of the present invention, an average beryllium content is 9.5 to 13.5 at%.
A beryllium atomically diluted copper layer having a beryllium concentration of 0.05 to 3.0 at% is formed on the outer peripheral surface of the beryllium copper alloy material, and a tin film or a solder film is provided on the outer peripheral surface of the beryllium atomically diluted copper layer. A beryllium copper alloy spring material is provided. In the beryllium copper alloy spring material according to the first aspect, a beryllium atom-diluted copper layer is formed on the outer peripheral surface of the beryllium copper alloy material that is difficult to solder.
In this beryllium atomically diluted copper layer, poor solderability due to beryllium oxide is suppressed, and good solderability due to copper appears. When a tin film or a solder film is provided on the outer peripheral surface of the beryllium atom diluted copper layer having improved solderability as described above, the solderability can be further improved. As a result, it is not necessary to use a strong flux or to perform soldering at a high temperature.
Even when the thickness is 2 mm or less, good durability and spring characteristics can be obtained. In addition, the concentration of beryllium was 0.0
If it is less than 5 at%, the properties of copper appear too strongly, and the spring characteristics deteriorate. In addition, the concentration of beryllium was 3.0 at.
%, The properties of beryllium oxide appear too strongly, and the solderability deteriorates.

【0005】第2の観点では、この発明は、ベリリウム
の平均含有率が9.5〜13.5at%であるベリリウム
銅合金材の外周面にベリリウムの濃度が0.05〜3.
0at%であるベリリウム原子希薄層を形成したことを
特徴とするベリリウム銅合金ばね材を提供する。上記第
2の観点によるベリリウム銅合金ばね材では、難半田付
け性であるベリリウム銅合金材の外周面にベリリウム原
子希薄層を形成するが、このベリリウム原子希薄
では酸化ベリリウムによる難半田付け性は抑制され、銅
による良好な半田付け性が現れる。この結果、強力なフ
ラックスを用いたり,高温度で半田付けを行ったりする
必要がなくなり、線径または箔厚を0.2mm以下とし
た場合でも良好な耐久性とばね特性とを得られるように
なる。なお、ベリリウムの濃度を0.05at%より小さ
くすると、銅の性質が強く現れ過ぎ、ばね特性が低下す
る。また、ベリリウムの濃度を3.0at%より大きくす
ると、酸化ベリリウムの性質が強く現れ過ぎ、半田付け
性が低下する。
According to a second aspect, the present invention provides a beryllium copper alloy material having an average beryllium content of 9.5 to 13.5 at%, wherein the beryllium concentration is 0.05 to 3.
A beryllium-copper alloy spring material characterized by forming a beryllium atom-diluted copper layer of 0 at%. In the second aspect according to the beryllium copper alloy spring member, forms a beryllium atom dilute copper layer on the outer peripheral surface of the beryllium copper alloy material is hardly solderability, flame soldering with beryllium oxide in this beryllium atom dilute copper layer Performance is suppressed, and good solderability with copper appears. As a result, there is no need to use a strong flux or to perform soldering at a high temperature, so that good durability and spring characteristics can be obtained even when the wire diameter or the foil thickness is 0.2 mm or less. Become. If the concentration of beryllium is smaller than 0.05 at%, the properties of copper appear too strongly, and the spring characteristics deteriorate. On the other hand, when the concentration of beryllium is higher than 3.0 at%, the properties of beryllium oxide appear too strongly, and the solderability deteriorates.

【0006】第3の観点では、この発明は、ベリリウム
の平均含有率が9.5〜13.5at%のベリリウム銅合
金線の外周面に電着銅薄膜を形成し、次に引抜き加工ま
たは圧延加工を施して線径または箔厚を0.2mm以下
とすると共に前記電着銅薄膜の代りにベリリウムの濃度
が0.05〜3.0at%であるベリリウム原子希薄
を形成し、次に溶融めっきにより厚さ0.5μm以下の
錫膜または半田膜を形成することを特徴とするベリリウ
ム銅合金ばね材の製造方法を提供する。上記第3の観点
によるベリリウム銅合金ばね材の製造方法では、ベリリ
ウム銅合金線の外周面上に電着銅薄膜を形成した後、引
抜き加工または圧延加工を施して線径または箔厚を0.
2mm以下とするが、この引抜き加工または圧延加工に
より、ベリリウム銅合金と薄膜状電着銅とが相互拡散
し、前記電着銅薄膜の代りにベリリウムの濃度が0.0
5〜3.0at%であるベリリウム原子希薄層が形成さ
れる。このベリリウム原子希薄層では酸化ベリリウム
による難半田付け性が抑制され、銅による良好な半田付
け性が現れる。そして、このように半田付け性を改善し
たベリリウム原子希薄層の外周面に錫膜または半田膜
を設けると、さらに半田付け性を良くすることが出来
る。この結果、強力なフラックスを用いたり,高温度で
半田付けを行ったりする必要がなくなり、線径または箔
厚を0.2mm以下とした場合でも良好な耐久性とばね
特性とを得られるようになる。なお、錫膜または半田膜
の厚さを0.5μmより厚くすると、錫または半田の性
質が強く現れ過ぎ、ばね特性が低下する。
In a third aspect, the present invention provides a method for forming an electrodeposited copper thin film on the outer peripheral surface of a beryllium copper alloy wire having an average beryllium content of 9.5 to 13.5 at%, followed by drawing or rolling. A beryllium atom-diluted copper layer having a wire diameter or foil thickness of 0.2 mm or less and a beryllium concentration of 0.05 to 3.0 at% instead of the electrodeposited copper thin film is formed, A method for producing a beryllium copper alloy spring material, characterized in that a tin film or a solder film having a thickness of 0.5 μm or less is formed by hot-dip plating. In the method for producing a beryllium copper alloy spring material according to the third aspect, an electrodeposited copper thin film is formed on the outer peripheral surface of the beryllium copper alloy wire, and then subjected to drawing or rolling to reduce the wire diameter or the foil thickness to 0.1 mm.
By this drawing or rolling, the beryllium copper alloy and the thin-film electrodeposited copper interdiffuse, and the concentration of beryllium becomes 0.02 instead of the electrodeposited copper thin film.
A beryllium atomically diluted copper layer of 5 to 3.0 at% is formed. In this beryllium atomically diluted copper layer, the poor solderability due to beryllium oxide is suppressed, and good solderability due to copper appears. When a tin film or a solder film is provided on the outer peripheral surface of the beryllium atom diluted copper layer having improved solderability as described above, the solderability can be further improved. As a result, it is no longer necessary to use a strong flux or to perform soldering at a high temperature, so that good durability and spring characteristics can be obtained even when the wire diameter or the foil thickness is 0.2 mm or less. Become. If the thickness of the tin film or the solder film is larger than 0.5 μm, the properties of the tin or the solder appear too strongly, and the spring characteristics deteriorate.

【0007】第4の観点では、この発明は、ベリリウム
の平均含有率が9.5〜13.5at%のベリリウム銅合
金線の外周面に電着銅薄膜を形成し、次に引抜き加工ま
たは圧延加工を施して線径または箔厚を0.2mm以下
とすると共に前記電着銅薄膜の代りにベリリウム濃度が
0.05〜3.0at%であるベリリウム原子希薄層を
形成することを特徴とするベリリウム銅合金ばね材の製
造方法を提供する。上記第4の観点によるベリリウム銅
合金ばね材の製造方法では、ベリリウム銅合金線の外周
面上に電着銅薄膜を形成した後、引抜き加工または圧延
加工を施して線径または箔厚を0.2mm以下とする
が、この引抜き加工または圧延加工により、ベリリウム
銅合金と薄膜状電着銅とが相互拡散し、前記電着銅薄膜
の代りにベリリウム濃度が0.05〜3.0at%である
ベリリウム原子希薄層が形成される。このベリリウム
原子希薄層では酸化ベリリウムによる難半田付け性が
抑制され、銅による良好な半田付け性が現れる。この結
果、強力なフラックスを用いたり,高温度で半田付けを
行ったりする必要がなくなり、線径または箔厚を0.2
mm以下とした場合でも良好な耐久性とばね特性とを得
られるようになる。
According to a fourth aspect, the present invention provides a method for forming an electrodeposited copper thin film on the outer peripheral surface of a beryllium copper alloy wire having an average beryllium content of 9.5 to 13.5 at%, followed by drawing or rolling. Forming a beryllium atomically diluted copper layer having a wire diameter or foil thickness of 0.2 mm or less and a beryllium concentration of 0.05 to 3.0 at% in place of the electrodeposited copper thin film. The present invention provides a method for producing a beryllium copper alloy spring material. In the method of manufacturing a beryllium copper alloy spring material according to the fourth aspect, after forming an electrodeposited copper thin film on the outer peripheral surface of the beryllium copper alloy wire, the wire diameter or the foil thickness is reduced to 0. The drawing or rolling process causes the beryllium copper alloy and the thin-film electrodeposited copper to interdiffuse, and the beryllium concentration is 0.05 to 3.0 at% instead of the electrodeposited copper thin film. A beryllium atomically diluted copper layer is formed. In this beryllium atomically diluted copper layer, the poor solderability due to beryllium oxide is suppressed, and good solderability due to copper appears. As a result, it is not necessary to use a strong flux or to perform soldering at a high temperature.
Even if it is less than mm, good durability and spring characteristics can be obtained.

【0008】[0008]

【発明の実施の形態】以下、図に示すこの発明の実施形
態に基づいてこの発明をさらに詳しく説明する。なお、
これによりこの発明が限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments of the present invention shown in the drawings. In addition,
This does not limit the present invention.

【0009】−第1の実施形態− 図1は、この発明の第1の実施形態にかかるベリリウム
銅合金ばね材の製造方法のフローチャートである。ステ
ップV1では、図2に示すように、ベリリウムの平均含
有率が9.5〜13.5at%のベリリウム銅合金線1
1’の外周面に電着銅薄膜12を形成し、被加工材10
とする。ステップV2では、被加工材10に対して引抜
き加工を施し、図3に示すような線状のベリリウム銅合
金ばね材20を得る。ステップV3では、前記ベリリウ
ム銅合金ばね材20に対して析出硬化処理を施し、ばね
特性を向上させる。ステップV4では、図4に示すよう
に、前記ベリリウム銅合金ばね材20の外周面に厚さ
0.2μmの錫膜または半田膜14を溶融めっきにより
形成し、線状のベリリウム銅合金ばね材21を得る。な
お、このステップV4は必須の工程ではない。
First Embodiment FIG. 1 is a flowchart of a method for manufacturing a beryllium copper alloy spring material according to a first embodiment of the present invention. In step V1, as shown in FIG. 2, beryllium copper alloy wire 1 having an average beryllium content of 9.5 to 13.5 at% was used.
An electrodeposited copper thin film 12 is formed on the outer peripheral surface of
And In step V2, the workpiece 10 is subjected to a drawing process to obtain a linear beryllium copper alloy spring material 20 as shown in FIG. In step V3, the beryllium copper alloy spring material 20 is subjected to a precipitation hardening treatment to improve spring characteristics. In step V4, as shown in FIG. 4, a tin film or solder film 14 having a thickness of 0.2 μm is formed on the outer peripheral surface of the beryllium copper alloy spring material 20 by hot-dip plating, and a linear beryllium copper alloy spring material 21 is formed. Get. This step V4 is not an essential step.

【0010】[0010]

【実施例】直径が200μmでベリリウムの平均含有率
が13.5at%のベリリウム銅合金線11’を巻枠から
引き出し、非鉄系用ノーキレート型電解脱脂剤水溶液
(キザイ株式会社製マックスクリーンBG−3200の
2%水溶液)を満たした電解脱脂槽中に導きながら1V
の電圧を印加して、ベリリウム銅合金線11’の外周面
に付着している油脂類を除去した。次に、そのベリリウ
ム銅合金線11’を5%硫酸槽中に導いて中和させた
後、水洗した。次に、硫酸銅200g/Lを含む硫酸溶
液を満たした電気めっき槽中に10m/分の速度で走行
させながら1Aの定電流によって厚さが1μmの電着銅
薄膜12を形成し、被加工材10として巻枠に巻き取っ
た。次に、巻枠から被加工材10を引き出し、300m
/分の速度で走行させながら連続伸線装置により75%
の加工度を与えて、直径が100μmの線状のベリリウ
ム銅合金ばね材20を得た。次に、ベリリウム銅合金ば
ね材20に対して、350℃で60秒の析出硬化処理を
施した。このベリリウム銅合金ばね材20の表面のベリ
リウムの濃度をオージェ電子分光分析法(AES)によ
り測定したところ、2.48at%であった。
EXAMPLE A beryllium copper alloy wire 11 'having a diameter of 200 .mu.m and an average beryllium content of 13.5 at% was pulled out from a bobbin, and was used as a non-ferrous non-chelate electrolytic degreasing agent aqueous solution (MacScreen BG- 3V 2% aqueous solution) while introducing into an electrolytic degreasing tank filled with 1V
To remove the oils and fats attached to the outer peripheral surface of the beryllium copper alloy wire 11 '. Next, the beryllium copper alloy wire 11 ′ was introduced into a 5% sulfuric acid bath to neutralize it, and then washed with water. Next, an electrodeposited copper thin film 12 having a thickness of 1 μm is formed with a constant current of 1 A while running at a speed of 10 m / min in an electroplating bath filled with a sulfuric acid solution containing 200 g / L of copper sulfate. The material 10 was wound on a bobbin. Next, the workpiece 10 is pulled out from the bobbin, and 300 m
75% with a continuous wire drawing machine while running at a speed of
To obtain a linear beryllium copper alloy spring material 20 having a diameter of 100 μm. Next, the beryllium copper alloy spring material 20 was subjected to a precipitation hardening treatment at 350 ° C. for 60 seconds. The beryllium concentration on the surface of the beryllium copper alloy spring material 20 was measured by Auger electron spectroscopy (AES) and found to be 2.48 at%.

【0011】また、電着銅薄膜12の厚さを0.8μm
に変え、その他は上記と同様にして、ベリリウムの濃度
が3.01at%のベリリウム銅合金ばね材20を得た。
また、電着銅薄膜12の厚さを1.2μmに変え、その
他は上記と同様にして、ベリリウムの濃度が2.05at
%のベリリウム銅合金ばね材20を得た。また、ベリリ
ウムの濃度が2.48at%のベリリウム銅合金ばね材2
0の外周面に溶融めっきにより厚さ0.2μmの半田膜
14を形成したベリリウム銅合金ばね材21を得た。
The thickness of the electrodeposited copper thin film 12 is 0.8 μm
In the same manner as described above, a beryllium copper alloy spring material 20 having a beryllium concentration of 3.01 at% was obtained.
Further, the thickness of the electrodeposited copper thin film 12 was changed to 1.2 μm, and the other conditions were the same as above, and the concentration of beryllium was 2.05 at.
% Beryllium copper alloy spring material 20 was obtained. In addition, beryllium copper alloy spring material 2 having a beryllium concentration of 2.48 at%
Thus, a beryllium copper alloy spring material 21 having a 0.2 μm thick solder film 14 formed on the outer peripheral surface by hot-dip plating was obtained.

【0012】また、比較のため、従来例としてベリリウ
ムの平均含有率が13.5at%である従来のベリリウム
銅合金ばね材(図14に示す11a)を用意した。ま
た、参考例としてリン青銅ばね材を用意した。
As a conventional example, a conventional beryllium copper alloy spring material (11a shown in FIG. 14) having an average beryllium content of 13.5 at% was prepared for comparison. Further, a phosphor bronze spring material was prepared as a reference example.

【0013】以上の各試料についてメニスコグラフ法に
より半田付け性試験を行った。試験条件は、半田浴組成
が60%Sn−残Pb,浴温260℃,浸漬時間7秒,
フラックスはロジン35%イソプロピルアルコール(is
opropyle alcohol)溶液を使用した。図5に試験結果を
示す。なお、試験結果は10個のサンプルの平均値であ
る。図5から判るように、この発明のベリリウム銅合金
ばね材20,21の半田濡れ時間は、銅合金の中で半田
付け性が最も優れているリン青銅ばね材の半田濡れ時間
と同程度かそれよりも短くなっている。
Each of the above samples was subjected to a solderability test by a meniscograph method. The test conditions were as follows: the solder bath composition was 60% Sn-residual Pb, the bath temperature was 260 ° C., the immersion time was 7 seconds,
The flux is rosin 35% isopropyl alcohol (is
opropyle alcohol) solution. FIG. 5 shows the test results. The test results are average values of 10 samples. As can be seen from FIG. 5, the solder wetting time of the beryllium copper alloy spring materials 20 and 21 of the present invention is about the same as the solder wetting time of the phosphor bronze spring material having the best solderability among the copper alloys. It is shorter than.

【0014】また、上記各試料の機械的特性を測定し
た。その測定結果を図6に示す。なお、測定結果は10
個のサンプルの平均値である。図6から判るように、こ
の発明のベリリウム銅合金ばね材20,21のヤング
率,引き張り強さ,伸びは、銅合金の中でもばね特性が
最も優れている従来のベリリウム銅合金ばね材(図14
に示す11a)と同程度である。
Further, the mechanical properties of each of the above samples were measured. FIG. 6 shows the measurement results. The measurement result was 10
This is the average of the samples. As can be seen from FIG. 6, the Young's modulus, tensile strength and elongation of the beryllium copper alloy spring materials 20 and 21 of the present invention are the same as those of the conventional beryllium copper alloy spring material (FIG. 14
11a) shown in FIG.

【0015】上記ベリリウム銅合金ばね材20,21に
よれば、強力なフラックスを用いたり,高温度で半田付
けを行ったりする必要がなくなり、線径を0.2mm以
下とした場合でも良好な耐久性とばね特性とを得られる
ようになる。
According to the beryllium copper alloy spring materials 20 and 21, it is not necessary to use a strong flux or to perform soldering at a high temperature, and good durability can be obtained even when the wire diameter is 0.2 mm or less. Properties and spring characteristics can be obtained.

【0016】−第2の実施形態− 図7は、この発明の第2の実施形態にかかるベリリウム
銅合金ばね材の製造方法のフローチャートである。ステ
ップS1では、図8に示すように、ベリリウムの平均含
有率が9.5〜13.5at%のベリリウム銅合金線1
1’の外周面に電着銅薄膜12を形成し、被加工材10
とする。ステップS2では、被加工材10に対して引抜
き加工を施し、図9に示すような線状の第2の被加工材
20’を得る。ステップS3では、第2の被加工材2
0’に対して圧延加工を施し、図10に示すような箔状
のベリリウム銅合金ばね材40を得る。ステップS4で
は、前記ベリリウム銅合金ばね材40に対して析出硬化
処理を施し、ばね特性を向上させる。ステップS5で
は、図11に示すように、前記ベリリウム銅合金ばね材
40の外周面に厚さ0.2μmの錫膜または半田膜14
を溶融めっきにより形成し、箔状のベリリウム銅合金ば
ね材41を得る。なお、このステップS5は必須の工程
ではない。
Second Embodiment FIG. 7 is a flowchart of a method for manufacturing a beryllium copper alloy spring material according to a second embodiment of the present invention. In step S1, as shown in FIG. 8, beryllium copper alloy wire 1 having an average beryllium content of 9.5 to 13.5 at% is used.
An electrodeposited copper thin film 12 is formed on the outer peripheral surface of
And In step S2, the workpiece 10 is subjected to a drawing process to obtain a linear second workpiece 20 'as shown in FIG. In step S3, the second workpiece 2
Rolling is performed on 0 ′ to obtain a beryllium copper alloy spring material 40 in a foil shape as shown in FIG. In step S4, the beryllium copper alloy spring material 40 is subjected to a precipitation hardening treatment to improve spring characteristics. In step S5, as shown in FIG. 11, a tin film or solder film 14 having a thickness of 0.2 μm is formed on the outer peripheral surface of the beryllium copper alloy spring material 40.
Is formed by hot-dip plating to obtain a beryllium copper alloy spring material 41 in the form of a foil. This step S5 is not an essential step.

【0017】[0017]

【実施例】直径が180μmでベリリウムの平均含有率
が13.5at%のベリリウム銅合金線11’を巻枠から
引き出し、非鉄系用ノーキレート型電解脱脂剤水溶液
(キザイ株式会社製マックスクリーンBG−3200の
2%水溶液)を満たした電解脱脂槽中に導きながら1V
の電圧を印加して、ベリリウム銅合金線11’の外周面
に付着している油脂類を除去した。次に、そのベリリウ
ム銅合金線11’を5%硫酸槽中に導いて中和させた
後、水洗した。次に、硫酸銅100g/Lを含む硫酸溶
液を満たした電気めっき槽中に10m/分の速度で走行
させながら0.9Aの定電流によって厚さが1μmの電
着銅薄膜12を形成し、被加工材10として巻枠に巻き
取った。次に、巻枠から被加工材10を引き出し、30
0m/分の速度で走行させながら連続伸線装置により7
5%の加工度を与えて、直径が92μmの線状の第2の
被加工材20’を得て巻枠に巻き取った。次に、巻枠か
ら第2の被加工材20’を引き出し、25m/分の速度
で走行させながら4段圧延装置により厚さが70μm,
幅が105μmの箔状のベリリウム銅合金ばね材40を
得た。次に、このベリリウム銅合金ばね材40に対し
て、350℃で60秒の析出硬化処理を施した。このベ
リリウム銅合金ばね材40の表面のベリリウムの濃度を
オージェ電子分光分析法(AES)により測定したとこ
ろ、2.85at%であった。
EXAMPLE A beryllium copper alloy wire 11 'having a diameter of 180 .mu.m and an average beryllium content of 13.5 at% was pulled out from a bobbin, and an aqueous solution of a non-ferrous type non-ferrous type electrolytic degreasing agent (MacScreen BG- manufactured by Kizai Co., Ltd.) 3V 2% aqueous solution) while introducing into an electrolytic degreasing tank filled with 1V
To remove the oils and fats attached to the outer peripheral surface of the beryllium copper alloy wire 11 '. Next, the beryllium copper alloy wire 11 ′ was introduced into a 5% sulfuric acid bath to neutralize it, and then washed with water. Next, a 1 μm-thick electrodeposited copper thin film 12 was formed with a constant current of 0.9 A while running at a speed of 10 m / min in an electroplating bath filled with a sulfuric acid solution containing 100 g / L of copper sulfate, The workpiece 10 was wound on a bobbin. Next, the workpiece 10 is pulled out from the bobbin,
While running at a speed of 0 m / min, 7
By giving a workability of 5%, a linear second workpiece 20 ′ having a diameter of 92 μm was obtained and wound on a bobbin. Next, the second workpiece 20 ′ is pulled out from the bobbin, and is run at a speed of 25 m / min.
A beryllium copper alloy spring material 40 having a width of 105 μm was obtained. Next, the beryllium copper alloy spring material 40 was subjected to a precipitation hardening treatment at 350 ° C. for 60 seconds. The beryllium concentration on the surface of the beryllium copper alloy spring material 40 was measured by Auger electron spectroscopy (AES) and found to be 2.85 at%.

【0018】上記ベリリウム銅合金ばね材40,41に
よれば、強力なフラックスを用いたり,高温度で半田付
けを行ったりする必要がなくなり、箔厚を0.2mm以
下とした場合でも良好な耐久性とばね特性とを得られる
ようになる。
According to the beryllium copper alloy spring materials 40 and 41, it is not necessary to use a strong flux or to perform soldering at a high temperature, and good durability can be obtained even when the foil thickness is 0.2 mm or less. Properties and spring characteristics can be obtained.

【0019】[0019]

【発明の効果】この発明のベリリウム銅合金ばね材およ
びその製造方法によれば、ベリリウムの平均含有率が
9.5〜13.5at%であるベリリウム銅合金ばね材の
優れたばね特性を維持したままで半田付け性を改善でき
る。このため、強力なフラックスを用いたり,高温度で
半田付けを行ったりする必要がなくなり、腐食やばね特
性の劣化の問題がなくなる。従って、線径または箔厚を
0.2mm以下とした場合でも良好な耐久性とばね特性
とを得られるようになる。
According to the beryllium copper alloy spring material and the method of manufacturing the same of the present invention, the beryllium copper alloy spring material having an average beryllium content of 9.5 to 13.5 at% maintains the excellent spring characteristics. Can improve the solderability. For this reason, it is not necessary to use a strong flux or to perform soldering at a high temperature, and problems such as corrosion and deterioration of spring characteristics are eliminated. Therefore, good durability and spring characteristics can be obtained even when the wire diameter or the foil thickness is 0.2 mm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態にかかる線状のベリ
リウム銅合金ばね材の製造方法のフローチャートであ
る。
FIG. 1 is a flowchart of a method for manufacturing a linear beryllium copper alloy spring material according to a first embodiment of the present invention.

【図2】被加工材の断面図である。FIG. 2 is a sectional view of a workpiece.

【図3】この発明による線状のベリリウム銅合金ばね材
の断面図である。
FIG. 3 is a cross-sectional view of a linear beryllium copper alloy spring material according to the present invention.

【図4】この発明による別の線状のベリリウム銅合金ば
ね材の断面図である。
FIG. 4 is a cross-sectional view of another linear beryllium copper alloy spring material according to the present invention.

【図5】この発明による線状のベリリウム銅合金ばね材
の半田付け性試験結果を示す図表である。
FIG. 5 is a table showing the results of a solderability test of a linear beryllium copper alloy spring material according to the present invention.

【図6】この発明による線状のベリリウム銅合金ばね材
の機械的特性測定結果を示す図表である。
FIG. 6 is a table showing measurement results of mechanical properties of a linear beryllium copper alloy spring material according to the present invention.

【図7】この発明の第2の実施形態にかかる箔状のベリ
リウム銅合金ばね材の製造方法のフローチャートであ
る。
FIG. 7 is a flowchart of a method for manufacturing a foil-shaped beryllium copper alloy spring material according to the second embodiment of the present invention.

【図8】被加工材の断面図である。FIG. 8 is a sectional view of a workpiece.

【図9】第2の被加工材の断面図である。FIG. 9 is a sectional view of a second workpiece.

【図10】この発明による箔状のベリリウム銅合金ばね
材の断面図である。
FIG. 10 is a sectional view of a foil-shaped beryllium copper alloy spring material according to the present invention.

【図11】この発明による別の箔状のベリリウム銅合金
ばね材の断面図である。
FIG. 11 is a cross-sectional view of another foil-shaped beryllium copper alloy spring material according to the present invention.

【図12】従来のベリリウム銅合金ばね材の製造方法の
一例のフローチャートである。
FIG. 12 is a flowchart of an example of a conventional method for manufacturing a beryllium copper alloy spring material.

【図13】被加工材の断面図である。FIG. 13 is a sectional view of a workpiece.

【図14】従来の線状のベリリウム銅合金ばね材の断面
図である。
FIG. 14 is a sectional view of a conventional linear beryllium copper alloy spring material.

【図15】従来の箔状のベリリウム銅合金ばね材の断面
図である。
FIG. 15 is a cross-sectional view of a conventional foil-shaped beryllium copper alloy spring material.

【符号の説明】[Explanation of symbols]

20,21,40,41 ベリリウム銅合金ば
ね材 10 被加工材 20’ 第2の被加工材 13 ベリリウム原子希薄層 14 錫膜または半田膜
20, 21, 40, 41 Beryllium copper alloy spring material 10 Work material 20 'Second work material 13 Beryllium atom diluted layer 14 Tin film or solder film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 9/00 - 9/10 F16F 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 9/00-9/10 F16F 1/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ベリリウムの平均含有率が9.5〜1
3.5at%であるベリリウム銅合金材の外周面にベリリ
ウムの濃度が0.05〜3.0at%であるベリリウム原
子希薄層を形成し、そのベリリウム原子希薄層の外
周面に錫膜又は半田膜を設けたことを特徴とするベリリ
ウム銅合金ばね材。
An average beryllium content of 9.5 to 1
The concentration of beryllium forms a beryllium atom dilute copper layer is 0.05~3.0At% on an outer peripheral surface of the beryllium copper alloy material is 3.5 at%, Suzumaku or on the outer peripheral surface of the beryllium atoms dilute copper layer Beryllium copper alloy spring material characterized by having a solder film.
【請求項2】 ベリリウムの平均含有率が9.5〜1
3.5at%であるベリリウム銅合金材の外周面にベリリ
ウムの濃度が0.05〜3.0at%であるベリリウム原
子希薄層を形成したことを特徴とする被覆ベリリウム
銅合金ばね材。
2. An average beryllium content of 9.5 to 1
Coated beryllium copper alloy spring material concentration of beryllium in the outer peripheral surface of the beryllium copper alloy material is 3.5 at% is characterized by the formation of the beryllium atoms dilute copper layer is 0.05~3.0at%.
【請求項3】 ベリリウムの平均含有率が9.5〜1
3.5at%のベリリウム銅合金線の外周面に電着銅薄膜
を形成し、次に引抜き加工または圧延加工を施して線径
または箔厚を0.2mm以下とすると共に前記電着銅薄
膜の代りにベリリウムの濃度が0.05〜3.0at%で
あるベリリウム原子希薄層を形成し、次に溶融めっき
により厚さ0.5μm以下の錫膜または半田膜を形成す
ることを特徴とするベリリウム銅合金ばね材の製造方
法。
3. An average beryllium content of 9.5 to 1
An electrodeposited copper thin film is formed on the outer peripheral surface of a 3.5 at% beryllium copper alloy wire, and then subjected to a drawing process or a rolling process to reduce the wire diameter or the foil thickness to 0.2 mm or less and to reduce the thickness of the electrodeposited copper thin film. Instead, a beryllium atomically diluted copper layer having a beryllium concentration of 0.05 to 3.0 at% is formed, and then a tin film or a solder film having a thickness of 0.5 μm or less is formed by hot-dip plating. Manufacturing method of beryllium copper alloy spring material.
【請求項4】 ベリリウムの平均含有率が9.5〜1
3.5at%のベリリウム銅合金線の外周面に電着銅薄膜
を形成し、次に引抜き加工または圧延加工を施して線径
または箔厚を0.2mm以下とすると共に前記電着銅薄
膜の代りにベリリウムの濃度が0.05〜3.0at%で
あるベリリウム原子希薄層を形成することを特徴とす
るベリリウム銅合金ばね材の製造方法。
4. An average beryllium content of 9.5 to 1
An electrodeposited copper thin film is formed on the outer peripheral surface of a 3.5 at% beryllium copper alloy wire, and then subjected to a drawing process or a rolling process to reduce the wire diameter or the foil thickness to 0.2 mm or less and to reduce the thickness of the electrodeposited copper thin film. A method for producing a beryllium-copper alloy spring material, comprising forming a beryllium atom-diluted copper layer having a beryllium concentration of 0.05 to 3.0 at% instead.
JP27091995A 1995-10-19 1995-10-19 Beryllium copper alloy spring material and its manufacturing method Expired - Fee Related JP3312235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27091995A JP3312235B2 (en) 1995-10-19 1995-10-19 Beryllium copper alloy spring material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27091995A JP3312235B2 (en) 1995-10-19 1995-10-19 Beryllium copper alloy spring material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH09111374A JPH09111374A (en) 1997-04-28
JP3312235B2 true JP3312235B2 (en) 2002-08-05

Family

ID=17492825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27091995A Expired - Fee Related JP3312235B2 (en) 1995-10-19 1995-10-19 Beryllium copper alloy spring material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3312235B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829485B2 (en) * 2003-06-10 2011-12-07 有限会社真空実験室 Vacuum component material, vacuum component, vacuum device, vacuum component material manufacturing method, vacuum component processing method, and vacuum device processing method
CN103714981B (en) * 2013-12-20 2015-08-05 宁波赛特勒电子有限公司 A kind of relay
CN103707573B (en) * 2013-12-20 2015-07-15 宁波赛特勒电子有限公司 Double-layer spring leaf composite material of relay and application thereof

Also Published As

Publication number Publication date
JPH09111374A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP4413992B2 (en) Copper alloy sheet for electrical and electronic parts
JP4934785B2 (en) Sn-plated copper alloy material and manufacturing method thereof
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP3470795B2 (en) Copper coated aluminum wire
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP2915623B2 (en) Electrical contact material and its manufacturing method
JP2007092173A (en) Cu-Ni-Si-Zn BASED ALLOY TINNED STRIP
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP3312235B2 (en) Beryllium copper alloy spring material and its manufacturing method
US20210164120A1 (en) Plated wire rod
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP3779864B2 (en) Electronic component lead wire, method for manufacturing the same, and electronic component using the lead wire
JPH10265874A (en) Copper alloy for electrical/electronic parts and its production
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JPS6338547A (en) High strength conductive copper alloy
JP2001032028A (en) Copper alloy for electronic parts, and its manufacture
JPH09228094A (en) Reflow plated member and its production
JP2001200323A (en) Lead material for electronic parts and electronic parts using same lead material
JP5076088B2 (en) Sn plated copper substrate, manufacturing method of Sn plated copper substrate, lead frame and connector terminal using the same
JP3700924B2 (en) Electrolytic capacitor lead wire and manufacturing method thereof
JP5334648B2 (en) Copper alloy sheet with excellent heat resistance for tin plating
JP4838524B2 (en) Copper alloy material for electrical and electronic parts
JP2006161146A (en) TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME
JPS6342393A (en) Method for tin or tin alloy plating copper or copper alloy wire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees