JP4838524B2 - Copper alloy material for electrical and electronic parts - Google Patents
Copper alloy material for electrical and electronic parts Download PDFInfo
- Publication number
- JP4838524B2 JP4838524B2 JP2005098921A JP2005098921A JP4838524B2 JP 4838524 B2 JP4838524 B2 JP 4838524B2 JP 2005098921 A JP2005098921 A JP 2005098921A JP 2005098921 A JP2005098921 A JP 2005098921A JP 4838524 B2 JP4838524 B2 JP 4838524B2
- Authority
- JP
- Japan
- Prior art keywords
- electronic parts
- copper alloy
- electrical
- alloy material
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
本発明は、例えば携帯電話やパーソナルコンピュータの電子部品などに使用される電気電子部品用銅合金材に関し、特には多数回のリフローはんだ付けを必要とする電気電子部品用の銅合金材に関するものである。 The present invention relates to a copper alloy material for electrical and electronic parts used for electronic parts of mobile phones and personal computers, for example, and more particularly to a copper alloy material for electrical and electronic parts that require reflow soldering many times. is there.
出願人においては、従来より、この種の電気電子部品用銅合金材を提供しており、そのうちのCDA72500(9%Ni−2.3%Sn)を改良した銅合金は、トランジスタ用にも使用されている。しかし、この銅合金材は固溶したNiを8%以上含むため、Snを含むめっきを施した際のCu−Sn金属間化合物(Cu−Sn合金層)は針状形態になり易く、合金層成長速度が早くなるため、リフローはんだ付け性が悪くなる傾向にあった。 The applicant has conventionally provided this kind of copper alloy material for electric and electronic parts, and the copper alloy improved from CDA72500 (9% Ni-2.3% Sn) is also used for transistors. Has been. However, since this copper alloy material contains 8% or more of solid-dissolved Ni, the Cu-Sn intermetallic compound (Cu-Sn alloy layer) when plated with Sn is likely to be in an acicular form, and the alloy layer Since the growth rate was increased, the reflow solderability tended to deteriorate.
また、近年のはんだ合金の鉛(Pb)フリー化とリフロー回数の増加により、リフローはんだ付け性(耐リフロー性)の問題が注目され始めている。更に電気電子部品用(例えばトランジスタ用、特にはミニトランジスタ用)においては、アセンブリ工程での樹脂モールディングの際に発生する樹脂バリ剥離性も要求されている。 In addition, due to the recent trend toward lead (Pb) -free solder alloys and the increase in the number of reflows, the problem of reflow solderability (reflow resistance) has begun to attract attention. Furthermore, in the case of electrical and electronic parts (for example, for transistors, particularly for minitransistors), resin burr peeling properties that occur during resin molding in the assembly process are also required.
本発明は、上記の問題点に鑑みなされたものであって、その目的は、電気電子部品の製造過程などで要求される耐リフロー性はもとより樹脂バリ剥離性や曲げ加工性に優れ、更には引張強度や導電率にも優れる電気電子部品用銅合金材を提供するものである。 The present invention has been made in view of the above-mentioned problems, and its purpose is not only reflow resistance required in the manufacturing process of electrical and electronic parts, but also excellent resin burr peelability and bending workability. The present invention provides a copper alloy material for electrical and electronic parts that is excellent in tensile strength and electrical conductivity.
上記の目的を達成するために、本発明(請求項1)に係る電気電子部品用銅合金材は、1.5〜2.0%(質量%、以下同じ)の固溶Niを含み、Niの含有量は1.8〜3.2%であって、更に1.5%以下(0%を含まず)のSiを含み、残部がCu及び不可避的不純物からなるものである。この銅合金材は、更に8.0%以下のSnを含むこと(請求項2)、更に、2.0%以下のZn、0.5%以下のMgの1つあるいは両方を含むことができるし(請求項3)、また更に、0.020%以下のMnを含むことができる(請求項4)。 In order to achieve the above object, a copper alloy material for electrical and electronic parts according to the present invention (Claim 1) contains 1.5 to 2.0 % (mass%, the same applies hereinafter) of solid solution Ni, Ni The content of is 1.8 to 3.2%, and further contains 1.5% or less (not including 0%) of Si, with the balance being Cu and inevitable impurities. The copper alloy material may further contain 8.0% or less of Sn (Claim 2), and may further contain one or both of 2.0% or less of Zn and 0.5% or less of Mg. (Claim 3) and may further contain 0.020% or less of Mn (Claim 4).
本発明に係る電気電子部品用銅合金材によれば、引張強度、導電率等の機械的特性や、樹脂バリ剥離性、曲げ加工性などの電気電子部品用材料、特にはトランジスタ用材料として要求される特性を損なうことなく、近年のPbフリー化に伴う耐リフロー性向上の要求に対応することができる。 According to the copper alloy material for electric and electronic parts according to the present invention, it is required as a material for electric and electronic parts such as mechanical properties such as tensile strength and electrical conductivity, resin burr peelability and bending workability, particularly as a transistor material. It is possible to meet the demand for improvement in reflow resistance accompanying the recent Pb-free operation without impairing the properties to be achieved.
本発明者等は、CDA72500(9%Ni−2.3%Sn)を改良した銅合金材のように固溶したNiを8%以上含むと、リフローはんだ付け性が悪くなる傾向にあることを見出した後、その原因を調査した。その結果、以下のようなことが判明した。即ち、電気電子部品の製造工程におけるはんだ付けは、一般にリフローはんだ付けにより、基板とリードとを接合する。従来のはんだ付けでは、融点の低いSn−Pbはんだを用いたリフロー処理を数回行う程度であった。しかし、近年のPbフリー化及び電気電子部品の小型化に伴い、高温かつ多数回のリフロー処理が行われるようになった。この様な高温かつ多数回のリフロー処理は、はんだと素材との合金化(金属間化合物の生成)を促進させる。この合金化は素材に含まれる固溶Ni量が多いほど促進する傾向にある。 The inventors of the present invention indicate that the reflow solderability tends to be deteriorated when 8% or more of solid solution Ni is contained like a copper alloy material improved by CDA72500 (9% Ni-2.3% Sn). After finding out, the cause was investigated. As a result, the following was found. That is, the soldering in the manufacturing process of the electrical / electronic component generally joins the substrate and the lead by reflow soldering. In the conventional soldering, reflow treatment using Sn—Pb solder having a low melting point was performed several times. However, with the recent trend toward Pb-free and downsizing of electric and electronic parts, high temperature and many reflow processes have been performed. Such reflow treatment at high temperature and many times promotes alloying of solder and material (generation of intermetallic compounds). This alloying tends to accelerate as the amount of dissolved Ni contained in the material increases.
そして、上記の調査結果から、本発明では固溶したNi量を0.5〜3.5%とし、これにより耐リフロー性及び樹脂バリ剥離性を向上させ得たものであって、この固溶Ni量が0.5%未満であると樹脂バリ剥離性が悪く、3.5%を超えると耐リフロー性に悪影響を及ぼす。なお、固溶Ni量が0.5%未満であると樹脂バリ剥離性が悪くなる理由は、明確ではないが次のように考える。即ち、通常、樹脂密着性は、銅合金材が純銅に近い(他元素が入っていない)ほど向上する(樹脂バリ剥離性は悪くなる)。特に固溶Niは、SnやZnに比べ樹脂密着性への寄与が大きいようで、この固溶Niが多く含まれると、前記純銅に比べ加熱した際の酸化膜が薄くなり、この皮膜が薄いことが樹脂との密着性を悪くしている(樹脂バリ剥離性を向上する)ものと考える。 Then, from the above investigation results, the amount of Ni dissolved in the present invention is 0.5 to 3.5%, thereby improving the reflow resistance and the resin burr peelability. If the amount of Ni is less than 0.5%, the resin burr peelability is poor, and if it exceeds 3.5%, the reflow resistance is adversely affected. The reason why the resin burr peelability deteriorates when the solid solution Ni content is less than 0.5% is not clear but is considered as follows. That is, the resin adhesion usually improves as the copper alloy material is closer to pure copper (no other elements are contained) (resin burr peelability is worsened). In particular, solid solution Ni seems to have a larger contribution to resin adhesion than Sn and Zn. If a large amount of this solid solution Ni is contained, the oxide film when heated is thinner than the pure copper, and this film is thin. This is considered to deteriorate the adhesiveness with the resin (improve the resin burr peelability).
以下、固溶Ni以外の成分の含有量の限定理由について説明する。
Siは1.5%以上含有すると、引張強度が高くなりすぎ、このため曲げ加工性に悪影響を与える。
Hereinafter, the reason for limiting the content of components other than solute Ni will be described.
If Si is contained in an amount of 1.5% or more, the tensile strength becomes too high, and this adversely affects bending workability.
Snは耐リフロー性には影響を及ぼさないが、樹脂バリ剥離性を向上させる効果があり、好ましくは8.0%以下添加することが望ましい。このSnは、固溶強化により、引張強度に大きく寄与するが、8.0%を超えると引張強度が高くなりすぎるため、8.0%以下が適する。 Sn does not affect the reflow resistance, but has the effect of improving the resin burr peelability, and is preferably added at 8.0% or less. This Sn greatly contributes to the tensile strength due to solid solution strengthening, but if it exceeds 8.0%, the tensile strength becomes too high, so 8.0% or less is suitable.
Znは、Sn同様に、固溶強化により、引張強度に大きく寄与するが、2.0%を超えると引張強度が高くなりすぎるため、2.0%以下が適する。 Zn, like Sn, greatly contributes to the tensile strength by solid solution strengthening, but if it exceeds 2.0%, the tensile strength becomes too high, so 2.0% or less is suitable.
Mgは0.5%を超える量含まれると熱間加工性に劣るため、0.5%以下が適する。 When Mg is contained in an amount exceeding 0.5%, the hot workability is inferior, so 0.5% or less is suitable.
Mnは、Mg同様に、熱間加工性を向上させるが、0.02%以上含まれると、強度が高くなり、このため曲げ加工性が悪くなる。 Mn, like Mg, improves the hot workability, but if it is contained in an amount of 0.02% or more, the strength increases, and therefore the bending workability deteriorates.
Pbは0.010%以上含まれると、熱間加工時に割れを生じることが懸念され、また所定の強度が得られ難い。 If Pb is contained in an amount of 0.010% or more, there is a concern that cracking may occur during hot working, and it is difficult to obtain a predetermined strength.
なお、一般的なことではあるが、引張強度は高くなると曲げ加工性を損なうことが知られている。そこで、本発明の場合、特に限定するものではないが、引張強度を560〜620N/mm2となるように製造することが好ましく、引張強度が560N/mm2以下では成形性が悪くなり、620N/mm2を超えると曲げ加工性を劣化させることが懸念される。また、導電率も電気電子部品製造の際の抵抗溶接性に影響を及ぼすため35%IACS以下となるように製造することが好ましく、導電率が35%IACSを超えると抵抗溶接性を劣化させることが懸念される。 In general, it is known that bending workability is impaired when the tensile strength increases. Therefore, in the present invention is not particularly limited, tensile preferably be prepared so that 560~620N / mm 2 strength, tensile strength formability deteriorates at 560N / mm 2 or less, 620N When it exceeds / mm 2 , there is a concern that the bending workability is deteriorated. In addition, since the electrical conductivity also affects the resistance weldability when manufacturing electrical and electronic parts, it is preferable that the electrical conductivity be 35% IACS or less. If the electrical conductivity exceeds 35% IACS, the resistance weldability is deteriorated. Is concerned.
次に、本発明の実施例について、比較例と比較して説明する。
小型電気炉を使用して表1に示す本発明例No.1〜8(但し、No.2、3は参考例)及び比較例No.9〜18の各成分組成の銅合金を大気中にて木炭被覆下で溶解し、その溶湯を鋳造して、厚さ50mm、幅80mm、長さ180mmの鋳塊を作製した。作製した鋳塊の表、裏面を各5mm面削し、No.1、4、6、7、8、14、15、16、17、18については950℃、No.2、10、12については900℃、No.3については800℃、No.5、9については930℃、No.11については965℃、No.13については725℃でそれぞれ熱間圧延を行い、厚さ15mmの板材とした。
Next, examples of the present invention will be described in comparison with comparative examples.
Example No. of the present invention shown in Table 1 using a small electric furnace. 1-8 (however, No. 2 , 3 are reference examples) and comparative example No. Copper alloys having respective component compositions of 9 to 18 were melted in the atmosphere under charcoal coating, and the molten metal was cast to produce an ingot having a thickness of 50 mm, a width of 80 mm, and a length of 180 mm. Each of the front and back surfaces of the ingot produced was chamfered by 5 mm. Nos. 1, 4, 6, 7, 8, 14, 15, 16, 17, 18 are 950 ° C. Nos. 2, 10 and 12 are 900 ° C. No. 3 is 800 ° C. For Nos. 5 and 9, 930 ° C. No. 11 is 965 ° C. No. 13 was each hot-rolled at 725 ° C. to obtain a plate material having a thickness of 15 mm.
上記で得た厚さ15mmの板材を、更に板材の表、裏面を面削し、それぞれ下記の処理を施し、冷間圧延して厚さ0.25mmの板材とした。 The plate material having a thickness of 15 mm obtained above was further chamfered on the front and back surfaces of the plate material, respectively subjected to the following treatment, and cold-rolled to obtain a plate material having a thickness of 0.25 mm.
本発明のNo.1、4〜8と比較例9、14〜18は、冷間圧延前に750℃の溶体化処理を施した。なお、溶体化処理に代えてバッチ焼鈍を行いNi固溶量を制御した後冷間圧延してもよい。溶体化処理及びバッチ焼鈍を施した場合、表面の酸化スケールを25%硫酸+2.8%過酸化水素+フッ素量が8000〜10000ppmのKFHF(フッ化水素カリウム)を2倍に希釈した水溶液にて酸洗、研磨により除去する必要がある。 No. of the present invention. 1, 4 to 8 and Comparative Examples 9 and 14 to 18 were subjected to a solution treatment at 750 ° C. before cold rolling. Incidentally, cold may be rolled after controlling the Ni solid solution amount perform batch annealing instead of the solution treatment. When solution treatment and batch annealing are performed, the surface oxidation scale is 25% sulfuric acid + 2.8% hydrogen peroxide + fluorine solution of 8000-10000ppm KFHF (potassium hydrogen fluoride) in an aqueous solution diluted twice. It must be removed by pickling and polishing.
参考例のNo.2、3と比較例の10〜13は、冷間圧延前に500℃〜900℃の範囲の適正な処理温度で20秒の焼鈍を行った後、20vol%硫酸水にて、酸洗、研磨し表面の酸化スケールを除去した。 Reference Example No. 2, 3 and Comparative Examples 10 to 13 were annealed for 20 seconds at an appropriate treatment temperature in the range of 500 ° C. to 900 ° C. before cold rolling, and then pickled and polished with 20 vol% sulfuric acid water. The surface oxide scale was removed.
上記のようにして板厚0.25mmに作製した各供試材をさらに350℃×20秒にて低温焼鈍を施した後、それぞれ25%硫酸+2.8%過酸化水素+フッ素量が8000〜10000ppmのKFHFを2倍に希釈した水溶液および20vol%硫酸水を用いて酸洗、研磨することで表面の酸化スケールを除去した。なお、No.11については、低温焼鈍は省略した。 Each specimen prepared as described above with a plate thickness of 0.25 mm was further subjected to low-temperature annealing at 350 ° C. for 20 seconds, and then 25% sulfuric acid + 2.8% hydrogen peroxide + fluorine content was 8000 to 8000, respectively. The oxidized scale on the surface was removed by pickling and polishing using an aqueous solution obtained by diluting 10000 ppm KFHF twice and 20 vol% sulfuric acid water. In addition, No. For No. 11, low temperature annealing was omitted.
次に、上記で得た板厚0.25mmの各供試材を基に下記の要領でNi固溶量、引張強度、導電率、耐リフロー性、樹脂バリ剥離性、曲げ加工性について調査した。 Next, the Ni solid solution amount, tensile strength, electrical conductivity, reflow resistance, resin burr peelability, and bending workability were investigated in the following manner based on each specimen having a thickness of 0.25 mm obtained above. .
Ni固溶量は、上記で得た板材を25vol%HNO3水溶液にて溶解させ、析出物であるNi−Si化合物をろ紙にて除去した後、ICP発光分析にてNi量を分析して求めた。 The amount of Ni solid solution is obtained by dissolving the plate material obtained above in 25 vol% HNO 3 aqueous solution, removing Ni-Si compounds as precipitates with filter paper, and then analyzing the Ni amount by ICP emission analysis. It was.
引張強度と導電率は、上記で得た板材の長手方向を圧延方向に平行とし、JIS5号試験片にて圧延平行方向の引張強度を測定した。また、導電率はJISH0505に基づいて測定した。 Tensile strength and electrical conductivity were measured by measuring the tensile strength in the rolling parallel direction with a JIS No. 5 test piece with the longitudinal direction of the plate material obtained above being parallel to the rolling direction. The conductivity was measured based on JISH0505.
耐リフロー性は、上記で得た板材を100mm×100mmに切断後、電解脱脂(4A/dm2×60秒)、20%硫酸酸洗を5秒することで表面を清浄にした後、PbフリーはんだめっきであるSn−Biめっきを6μm程度施した。その後、N2ガス雰囲気中にて250℃×75秒加熱し、断面をミクロトームにて切断後、切断面を表面SEMにて観察し、生成されたSn−Cu合金層の厚さを観察した。合金層の平均厚さが6μmまで到達した材料は×、3μm〜6μmのものを△、3μm以下のものを○として評価した。 Reflow resistance is Pb-free after the surface of the plate obtained above is cut to 100 mm x 100 mm, the surface is cleaned by electrolytic degreasing (4 A / dm 2 x 60 seconds) and 20% sulfuric acid pickling for 5 seconds. About 6 μm of Sn—Bi plating, which is solder plating, was applied. Then, the mixture was heated 250 ° C. × 75 seconds at an N 2 gas atmosphere, after cutting a section with a microtome, the cut surface was observed by a surface SEM, it is observed the thickness of the resulting Sn-Cu alloy layer. The materials having an average thickness of the alloy layer of up to 6 μm were evaluated as “x” when the material was 3 μm to 6 μm, and “◯” when the material was 3 μm or less.
樹脂バリ剥離性は、上記で得た板材の表面を清浄化し、その各板材をホットプレートにて280℃×10秒加熱した後、モールドプレス金型180℃、樹脂注入圧力6.8MPa、注入時間20秒の条件にて樹脂モールドを行った。樹脂は市販の半導体モールディング用樹脂を使用した。このモールディングした材料についてシェアテスターでシェア強度を測定し素材と樹脂との剥離性を評価した。樹脂剥離強度が0.5〜3.0kgfを○、3.0〜4.0kgfを△、4.0kgf以上を×として評価した。 The resin burr peelability was obtained by cleaning the surface of the plate material obtained above, heating each plate material at 280 ° C. for 10 seconds with a hot plate, mold mold 180 ° C., resin injection pressure 6.8 MPa, injection time Resin molding was performed under the condition of 20 seconds. As the resin, a commercially available resin for semiconductor molding was used. The shear strength of the molded material was measured with a shear tester to evaluate the peelability between the material and the resin. The resin peel strength was evaluated with 0.5 to 3.0 kgf as ◯, 3.0 to 4.0 kgf as Δ, and 4.0 kgf or more as x.
曲げ加工性は、幅10mmの短冊試験片を用いW曲げ試験により評価した。曲げ半径R、板厚tとし、R/t=2で評価した際に、良好なもの(クラックおよび大きな肌荒れがないもの)を○、肌荒れの大きなものを△、肌荒れが大きくクラックの発生しているものを×として評価した。 The bending workability was evaluated by a W bending test using a strip test piece having a width of 10 mm. When the bending radius is R and the plate thickness is t, and R / t = 2, evaluation is good (no cracks and no rough skin), good skin is △, rough skin is large and cracks are generated. What was present was evaluated as x.
上記要領で調査した結果について、Ni固溶量は表1に、その他は表2にそれぞれ示す。
上記表1及び表2より明らかなように、本発明例No.1〜8(但し、No.2、3は参考例)の合金は機械的特性である、引張強度560〜620N/mm2、導電率:35%IACS以下を満足している。また更に、耐リフロー性、樹脂バリ剥離性及び曲げ加工性にも優れる。
As is clear from Table 1 and Table 2 above, Example No. of the present invention. The alloys of Nos. 1 to 8 (Nos. 2 and 3 are reference examples) satisfy the mechanical properties of a tensile strength of 560 to 620 N / mm 2 and an electrical conductivity of 35% IACS or less. Furthermore, it is also excellent in reflow resistance, resin burr peelability and bending workability.
比較例No.9、10、12は、固溶Ni量が0.5%未満(0.4%、0.22%)と少なく、このため樹脂バリ剥離性が劣る。また、比較例No.11は、固溶Ni量が4%と多く含まれているため、はんだ付け時の合金層成長が早く耐リフロー性が悪い。また、比較例No.13は、Snが9.0%と多く含まれているため、引張強度が高くなりすぎ、曲げ加工性にも劣る。 Comparative Example No. Nos. 9, 10, and 12 have a small amount of solid solution Ni of less than 0.5% (0.4%, 0.22%), and therefore the resin burr peelability is poor. Comparative Example No. No. 11 contains a large amount of solute Ni as 4%, so that the alloy layer grows quickly during soldering and the reflow resistance is poor. Comparative Example No. No. 13 contains a large amount of Sn at 9.0%, so that the tensile strength becomes too high and the bending workability is also inferior.
比較例No.14〜18は、固溶Ni量は本発明を満たすものの、比較例No.14はSiが2.0%、比較例No.15はZnが2.0%、比較例No.16はMgが0.7%、比較例No.17はMnが0.10%、比較例No.18はPbが0.10%とそれぞれ多く含まれているため、引張強度が高く、またこのように引張強度が高いため十分に曲げ加工性が得られない。なお、比較例No.16についてはMgが0.7%と多く含まれているため、熱間加工性も劣ることになる。
Comparative Example No. Nos. 14 to 18 are comparative example No. 14 although the solid solution Ni amount satisfies the present invention. No. 14 is 2.0% Si, Comparative Example No. 15 is 2.0% Zn, Comparative Example No. 16 is 0.7% Mg, Comparative Example No. No. 17 has Mn of 0.10%, Comparative Example No. No. 18 contains a large amount of Pb of 0.10%, so that the tensile strength is high. Further, since the tensile strength is high, bending workability cannot be obtained sufficiently. Comparative Example No. Since No. 16 contains a large amount of Mg as 0.7%, the hot workability is also inferior.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098921A JP4838524B2 (en) | 2005-03-30 | 2005-03-30 | Copper alloy material for electrical and electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098921A JP4838524B2 (en) | 2005-03-30 | 2005-03-30 | Copper alloy material for electrical and electronic parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006274416A JP2006274416A (en) | 2006-10-12 |
JP4838524B2 true JP4838524B2 (en) | 2011-12-14 |
Family
ID=37209448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005098921A Expired - Fee Related JP4838524B2 (en) | 2005-03-30 | 2005-03-30 | Copper alloy material for electrical and electronic parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4838524B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5657311B2 (en) * | 2010-08-30 | 2015-01-21 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211124A (en) * | 1975-07-18 | 1977-01-27 | Furukawa Electric Co Ltd:The | Electroconductive cu alloy of excellent soldering property |
JP3824884B2 (en) * | 2001-05-17 | 2006-09-20 | 古河電気工業株式会社 | Copper alloy material for terminals or connectors |
JP2004315940A (en) * | 2003-04-18 | 2004-11-11 | Nikko Metal Manufacturing Co Ltd | Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD |
-
2005
- 2005-03-30 JP JP2005098921A patent/JP4838524B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006274416A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI316554B (en) | ||
JP4439447B2 (en) | Manufacturing method of irregular cross-section copper alloy sheet | |
WO2008041584A1 (en) | Copper alloy plate for electrical and electronic components | |
TWI323287B (en) | ||
JP7116870B2 (en) | Copper alloy sheet, copper alloy sheet with plating film, and method for producing the same | |
JP2007039804A (en) | Copper alloy for electronic apparatus and method of producing the same | |
JP5950499B2 (en) | Copper alloy for electrical and electronic parts and copper alloy material with Sn plating | |
WO2007126010A1 (en) | HEAT-RESISTANT Sn-PLATED Cu-Zn ALLOY STRIP SUPPRESSED IN WHISKERING | |
US11781234B2 (en) | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products | |
JP4699252B2 (en) | Titanium copper | |
JP4489738B2 (en) | Cu-Ni-Si-Zn alloy tin plating strip | |
JP3800269B2 (en) | High strength copper alloy with excellent stamping workability and silver plating | |
JP2009068114A (en) | Copper alloy excellent in press-punching property and its production method | |
JP3056394B2 (en) | Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same | |
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
JP4838524B2 (en) | Copper alloy material for electrical and electronic parts | |
JP2007084921A (en) | Cu-Zn-Sn BASED ALLOY TIN PLATED STRIP | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
TWI828828B (en) | Copper alloy plates, copper alloy plates with plating coatings and their manufacturing methods | |
JP2004232049A (en) | Cu PLATING TITANIUM COPPER | |
JP5334648B2 (en) | Copper alloy sheet with excellent heat resistance for tin plating | |
JP4642701B2 (en) | Cu-Ni-Si alloy strips with excellent plating adhesion | |
JP2021025131A (en) | Copper alloy sheet, copper alloy sheet having plating film and method for manufacturing them | |
JP2010168666A (en) | HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED | |
JP7537643B2 (en) | Copper alloy material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110330 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110930 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4838524 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |