JP2010168666A - HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED - Google Patents

HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED Download PDF

Info

Publication number
JP2010168666A
JP2010168666A JP2010099979A JP2010099979A JP2010168666A JP 2010168666 A JP2010168666 A JP 2010168666A JP 2010099979 A JP2010099979 A JP 2010099979A JP 2010099979 A JP2010099979 A JP 2010099979A JP 2010168666 A JP2010168666 A JP 2010168666A
Authority
JP
Japan
Prior art keywords
plating
mass
alloy
concentration
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010099979A
Other languages
Japanese (ja)
Other versions
JP5226032B2 (en
Inventor
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2010099979A priority Critical patent/JP5226032B2/en
Publication of JP2010168666A publication Critical patent/JP2010168666A/en
Application granted granted Critical
Publication of JP5226032B2 publication Critical patent/JP5226032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu/Ni two layered substrate reflow tinned strip of a Cu-Zn alloy in which whisker occurrence is suppressed. <P>SOLUTION: In the tinned strip in which a copper alloy containing 15-40 mass% in an average concentration of Zn is used for a base material and a plated film is formed by each layer of a Sn phase, Sn-Cu alloy phase, and Ni phase, from a surface to the base material, a Zn concentration of a surface layer of the Sn phase is adjusted to 0.1-5.0 mass%. The base material may further contain an optional ingredient selected from Sn, Ag, Pb, Fe, Ni, Mn, Si, Al, and Ti within a range of 0.005-3.0 mass% in total. Moreover, the base material contains 15-40 mass% Zn, 8-20 mass% Ni, 0-0.5 mass% Mn, and the balance may be a copper-based alloy including Cu and unavoidable impurities, and further may contain 0.005-10 mass% the optional ingredient in total. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ウィスカーの発生が抑制されたCu−Zn合金の耐熱Snめっき条に関する。   The present invention relates to a heat-resistant Sn plating strip of a Cu—Zn alloy in which the generation of whiskers is suppressed.

Cu−Zn系合金は、りん青銅、ベリリウム銅、コルソン合金等と比較するとばね性が劣るものの廉価なため、コネクタ、端子、リレー、スイッチ等の電気接点材料として広く使用されている。Cu−Zn系合金として代表的なものは黄銅であり、C2600、C2680等の合金がJIS H3100に規定されている。Cu−Zn系合金を電気接点材料に用いる場合、低い接触抵抗を安定して得るためにSnめっきを施すことが多い。そして、Cu−Zn系合金のSnめっき条は、Snの優れた半田濡れ性、耐食性、電気接続性を生かし、自動車電装用ワイヤーハーネスの端子、印刷回路基板(PCB)の端子、民生用のコネクタ接点等の電気・電子部品に大量に使われている。   Cu-Zn alloys are widely used as electrical contact materials for connectors, terminals, relays, switches and the like because they are less expensive than phosphor bronze, beryllium copper, and Corson alloys, although they are less expensive. A typical Cu—Zn alloy is brass, and alloys such as C2600 and C2680 are defined in JIS H3100. When a Cu—Zn alloy is used as an electrical contact material, Sn plating is often applied in order to stably obtain a low contact resistance. And the Sn-plated strip of Cu-Zn alloy utilizes the excellent solder wettability, corrosion resistance, and electrical connectivity of Sn, and is used for terminals of automobile electrical wiring harnesses, terminals of printed circuit boards (PCBs), and connectors for consumer use. It is used in large quantities for electrical and electronic parts such as contacts.

上記Cu−Zn系合金のSnめっき条は、脱脂及び酸洗の後、電気めっき法により下地めっき層を形成し、次に電気めっき法によりSnめっき層を形成し、最後にリフロー処理を施しSnめっき層を溶融させる工程で製造される。
Cu−Zn系合金のSnめっきでは、通常Snめっきに先立ち下地めっきを施す。これは下地めっきを施さない場合、リフロー処理の際に母材中のZnがSnめっき表面にZn濃化層を形成し、半田濡れ性が低下するためである。即ち、下地めっきは母材のZnのSnめっき表面への拡散を抑制する下地層を得るために行われる。
Snめっきの耐熱性を求める場合、Cu−Zn系合金の下地めっきとして、Cu/Ni二層下地めっきを施す。上記Cu/Ni二層下地めっきとは、Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行った後にリフロー処理を施しためっきであり、リフロー後のめっき皮膜層の構成は表面からSn相、Cu−Sn相、Ni相、母材となる。この技術の詳細は特許文献1〜3等に開示されている。
The Sn-plated strip of the Cu-Zn alloy is degreased and pickled, and then a base plating layer is formed by an electroplating method, then an Sn plating layer is formed by an electroplating method, and finally a reflow treatment is performed. Manufactured in the process of melting the plating layer.
In Sn plating of a Cu—Zn alloy, base plating is usually performed prior to Sn plating. This is because when the base plating is not performed, Zn in the base material forms a Zn-concentrated layer on the Sn plating surface during the reflow process, and solder wettability decreases. That is, the base plating is performed in order to obtain a base layer that suppresses the diffusion of Zn as a base material to the Sn plating surface.
When heat resistance of Sn plating is required, Cu / Ni two-layer base plating is applied as the base plating of the Cu—Zn alloy. The Cu / Ni two-layer undercoating is a plating obtained by performing an electroplating in the order of Ni undercoating, Cu undercoating, and Sn plating, followed by a reflow treatment. The structure of the plated film layer after reflowing is Sn from the surface. Phase, Cu-Sn phase, Ni phase, and base material. Details of this technique are disclosed in Patent Documents 1 to 3 and the like.

Snめっき材を常温に放置すると、Snめっき表面からSnの単結晶が成長することが知られている。このSnの単結晶は、ウィスカーと呼ばれるものであり、電子部品の短絡を引き起こすことがある。ウィスカーは、電着時に生ずるSnめっき皮膜の内部応力が原因で発生する。したがって、リフロー処理でSnを溶融させ皮膜の内部応力を除去することは、ウィスカーの発生を抑制する手段として有効である。Cu−Zn合金のCu/Ni二層下地耐熱Snめっきは、その製造工程でリフローを行うため、耐ウィスカー性が良好とされてきた。   It is known that when a Sn plating material is left at room temperature, a single crystal of Sn grows from the surface of the Sn plating. This single crystal of Sn is called a whisker and may cause a short circuit of an electronic component. Whisker is generated due to the internal stress of the Sn plating film generated during electrodeposition. Therefore, melting Sn by reflow treatment to remove the internal stress of the coating is effective as a means for suppressing the occurrence of whiskers. Cu / Ni bilayer base heat-resistant Sn plating of Cu-Zn alloy has been considered to have good whisker resistance because reflow is performed in the manufacturing process.

特開平6−196349号公報JP-A-6-196349 特開2003−293187号公報JP 2003-293187 A 特開2004−68026号公報JP 2004-68026 A

しかしながら、端子等の電気接点部では、局部的に非常に大きな内部応力が加わるため、耐ウィスカー性が良好とされてきたリフローSnめっき条であっても、微小なウィスカーが発生することがある。近年、コネクタの多極化等により端子間の間隔が狭くなっており、従来は問題にならなかったような微小なウィスカーでも回路の短絡を引き起こす危険性が生じてきた。その結果、耐ウィスカー性が良好とされてきたCu−Zn合金のCu/Ni二層下地耐熱Snめっきに対しても、耐ウィスカー性のさらなる改善が求められるようになった。
本発明の目的は、ウィスカー発生が抑制された、Cu−Zn合金のCu/Ni二層下地リフローSnめっき条を提供することである。
However, since extremely large internal stress is locally applied to the electrical contact portion such as a terminal, even if the reflow Sn plating strip has been considered to have good whisker resistance, fine whiskers may occur. In recent years, the distance between terminals has been narrowed due to the increase in the number of connectors, etc., and there has been a risk of causing a short circuit even with a small whisker that has not been a problem in the past. As a result, further improvement in whisker resistance has been demanded for Cu / Ni bilayer base heat-resistant Sn plating of Cu—Zn alloy, which has been considered to have good whisker resistance.
An object of the present invention is to provide a Cu / Ni bilayer base reflow Sn plating strip of a Cu-Zn alloy in which whisker generation is suppressed.

本発明者等は、Cu−Zn合金のCu/Ni二層下地リフローSnめっき条に対し、ウィスカー発生を抑制する方策を鋭意研究し、Snめっき表面にZnを濃化させるとウィスカーが抑制されることを知見した。しかし、上述したように、Snめっき表面にZnが濃化すると、半田濡れ性が低下する。そこで、本発明者は、ウィスカーの抑制と良好な半田濡れ性が両立するZn濃化状態を探索し、これを見出すことに成功した。同時に、この適度なZn濃化状態を得るための製造条件として、母材表面の性状、Cu下地めっき厚、Ni下地めっき厚、Snめっき厚、リフロー処理での加熱条件を明らかにすることができた。   The present inventors have earnestly studied measures for suppressing the generation of whiskers for Cu / Ni bilayer underlayer reflow Sn plating strips of Cu-Zn alloy, and whisker is suppressed when Zn is concentrated on the Sn plating surface. I found out. However, as described above, when Zn is concentrated on the Sn plating surface, the solder wettability is lowered. Therefore, the present inventor has searched for and found a Zn enriched state in which whisker suppression and good solder wettability are compatible. At the same time, it is possible to clarify the conditions of the base material surface, the Cu base plating thickness, the Ni base plating thickness, the Sn plating thickness, and the heating conditions in the reflow process as the manufacturing conditions for obtaining this appropriate Zn enriched state. It was.

本発明は、この発見に基づき成されたものであり、以下の通りである。
(1)平均濃度で15〜40質量%のZnを含有する銅合金を母材として、表面から母材にかけてSn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、該Sn相の表層のZn濃度が0.1〜5.0質量%であることを特徴とする、ウィスカー発生が抑制されたCu−Zn合金Snめっき条。
(2)15〜40質量%のZnを含有し残部がCu及び不可避的不純物より構成される銅基合金を母材とすることを特徴とする(1)のCu−Zn合金Snめっき条。
(3)母材が更にSn、Ag、Pb、Fe、Ni、Mn、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有することを特徴とする(2)のCu−Zn合金Snめっき条。
(4)15〜40質量%のZn、8〜20質量%のNi、0〜0.5質量%のMnを含有し残部がCu及び不可避的不純物より構成される銅基合金を母材とすることを特徴とする(1)のCu−Zn合金Snめっき条。
(5)母材が更にSn、Ag、Pb、Fe、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有することを特徴とする(4)のCu−Zn合金Snめっき条。
(6)平均濃度で15〜40質量%のZnを含有する銅合金に対し、以下の工程を順次行うことを特徴とする、ウィスカー発生が抑制されたSnめっき条の製造方法:
a.表面研磨により、母材の表層から0.1μmの位置におけるZn濃度を、10〜40質量%の範囲に調整する工程、
b.厚み0.1μm以上のNiめっきを施した後、厚み0.1μm以上のCuめっきを施す工程(ただし、Niめっきの厚さとCuめっきの厚さの合計を0.3〜1.0μmとする)、
c.厚み0.3〜1.0μmのSnめっきを施す工程、及び
d.次の三式で規定される加熱時間t(秒)及び加熱温度T(℃)で、リフロー処理を施す工程。
5≦t≦23、
350≦T≦600、及び
500≦(T+14t)≦670
なお、Cu−Zn系合金のSnめっきは、部品へのプレス加工の前に行う場合(前めっき)とプレス加工後に行う場合(後めっき)があるが、両場合とも、本発明の効果は得られる。
The present invention has been made based on this discovery and is as follows.
(1) Using a copper alloy containing Zn at an average concentration of 15 to 40% by mass as a base material, a plating film is composed of Sn phase, Sn—Cu alloy phase, and Ni phase layers from the surface to the base material. A Cu-Zn alloy Sn plating strip in which whisker generation is suppressed, wherein a Zn concentration of a surface layer of the phase is 0.1 to 5.0 mass%.
(2) The Cu—Zn alloy Sn-plated strip according to (1), wherein the base material is a copper-based alloy containing 15 to 40% by mass of Zn and the balance being made of Cu and inevitable impurities.
(3) The base material further contains at least one element selected from the group consisting of Sn, Ag, Pb, Fe, Ni, Mn, Si, Al and Ti in a total amount of 0.005 to 10% by mass. (2) Cu-Zn alloy Sn plating strip.
(4) 15 to 40% by mass of Zn, 8 to 20% by mass of Ni, and 0 to 0.5% by mass of Mn, with the remainder being a copper base alloy composed of Cu and inevitable impurities (1) Cu-Zn alloy Sn-plated strip.
(5) The base material further contains 0.005 to 10% by mass in total of at least one element selected from the group consisting of Sn, Ag, Pb, Fe, Si, Al and Ti (4) Cu-Zn alloy Sn plating strip.
(6) A method for producing an Sn-plated strip in which whisker generation is suppressed, characterized in that the following steps are sequentially performed on a copper alloy containing 15 to 40% by mass of Zn at an average concentration:
a. A step of adjusting the Zn concentration at a position of 0.1 μm from the surface layer of the base material to a range of 10 to 40% by mass by surface polishing;
b. Step of applying Cu plating with a thickness of 0.1 μm or more after applying Ni plating with a thickness of 0.1 μm or more (however, the sum of the thickness of the Ni plating and the thickness of the Cu plating is 0.3 to 1.0 μm) ,
c. Applying Sn plating with a thickness of 0.3 to 1.0 μm; and d. A step of performing a reflow treatment at a heating time t (second) and a heating temperature T (° C.) defined by the following three formulas.
5 ≦ t ≦ 23,
350 ≦ T ≦ 600, and 500 ≦ (T + 14t) ≦ 670
Note that Sn plating of a Cu—Zn alloy may be performed before pressing a part (pre-plating) or after pressing (post-plating). In both cases, the effect of the present invention is obtained. It is done.

本発明によれば、ウィスカー発生が抑制された、Cu−Zn合金のCu/Ni二層下地リフローSnめっき条を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Cu / Ni bilayer base reflow Sn plating strip of a Cu-Zn alloy with which whisker generation was suppressed can be provided.

本発明のリフロー処理条件(温度と時間)を表した図である。It is a figure showing the reflow processing conditions (temperature and time) of this invention. 発明例3及び比較例30の母材表層のZn濃度を示すチャートである。6 is a chart showing Zn concentration in a surface layer of a base material of Invention Example 3 and Comparative Example 30. 発明例8及び比較例33のSnめっき表層のZn濃度を示すチャートである。It is a chart which shows Zn density | concentration of Sn plating surface layer of the example 8 of an invention, and the comparative example 33.

本発明について、以下詳細に説明する。
(1)母材の成分
本発明は15〜40質量%のZnを含有する銅合金を対象とするものであり、Znがこの範囲から外れる銅合金に対しては、発明の作用効果が発現しない。
15〜40質量%のZnを含有する銅合金として黄銅がある。JIS−H3100ではC2600、C2680、C2720等の黄銅が規定されている。本発明の作用効果が発現する合金として黄銅が挙げられる。
15〜40質量%のZnを含有する黄銅以外の銅合金として洋白がある。洋白はZn以外にNiを含有し、少量のMnも含有する。JIS−H3110及びJIS−H3130ではC7521、C7541、C7701等の洋白が規定されている。本発明の作用効果が発現する合金として洋白も挙げられる。
更に、本発明のNiとMnを含有しない銅合金母材は、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更に、Sn、Ag、Pb、Fe、Ni、Mn、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有できる。又、本発明のNiとMnを含有する銅合金母材も同様に、Sn、Ag、Pb、Fe、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有できる。上記濃度範囲であれば本発明の効果は得られる。一方、0.005質量%未満では添加元素の効果が発現せず、10質量%を超えると導電率の低下や製造性が生じる。好ましくは0.05〜5質量%である。
The present invention will be described in detail below.
(1) Ingredients of base material The present invention is intended for copper alloys containing 15 to 40% by mass of Zn, and the effects of the invention do not appear for copper alloys whose Zn is out of this range. .
There is brass as a copper alloy containing 15 to 40% by mass of Zn. JIS-H3100 defines brass such as C2600, C2680, and C2720. An alloy that exhibits the effects of the present invention is brass.
There is a white as a copper alloy other than brass containing 15 to 40% by mass of Zn. Western white contains Ni in addition to Zn, and also contains a small amount of Mn. In JIS-H3110 and JIS-H3130, whites such as C7521, C7541 and C7701 are defined. Examples of alloys exhibiting the effects of the present invention include white.
Furthermore, the copper alloy base material containing no Ni and Mn according to the present invention is intended to improve the strength, heat resistance, stress relaxation resistance, etc. of the alloy, and further Sn, Ag, Pb, Fe, Ni, Mn, Si. In addition, 0.005 to 10% by mass in total of at least one element selected from the group consisting of Al and Ti can be contained. Similarly, in the copper alloy base material containing Ni and Mn of the present invention, at least one element selected from the group consisting of Sn, Ag, Pb, Fe, Si, Al and Ti is added in a total amount of 0.005 to 10. Can be contained by mass%. The effect of the present invention can be obtained within the above concentration range. On the other hand, when the amount is less than 0.005% by mass, the effect of the additive element is not exhibited. Preferably it is 0.05-5 mass%.

(2)めっきの構造
本発明のSnめっきの基本的な構造は、従来のCu/Ni二層下地リフローSnめっきと同様、表面から母材にかけてSn相、Sn−Cu合金相、Ni相の各層で構成される。本発明の特徴は、Sn相の表層に適度な濃度のZnを濃化させることにある。
Snめっき層に局部的な応力が負荷されると、めっき表面にウィスカーが発生する。Snめっき表層のZnには、このウィスカーを抑制する作用がある。これは、ZnがSnめっき層の局部的に応力の高い場所に移動し凝集することで、応力を緩和するためと推測される。
(2) Plating structure The basic structure of the Sn plating of the present invention is the same as in the conventional Cu / Ni double-layer underlayer reflow Sn plating, each layer of Sn phase, Sn-Cu alloy phase and Ni phase from the surface to the base material. Consists of. A feature of the present invention is that Zn having an appropriate concentration is concentrated on the surface layer of the Sn phase.
When local stress is applied to the Sn plating layer, whiskers are generated on the plating surface. Zn on the surface of the Sn plating has the effect of suppressing this whisker. This is presumably because Zn moves to a place where stress is locally high in the Sn plating layer and aggregates, thereby relieving the stress.

ZnのSnめっき層表面への濃化は、リフロー処理での加熱において母材に含まれるZnが拡散することによって生ずる。Cu/Ni二層下地の場合Snめっき表層のZn濃度が0.1質量%以上になると、ウィスカー発生を抑制する効果が発現した。ここで、Snめっき表層のZn濃度は、GDS(グロー放電発光分析)により分析した、表面から深さ方向に0.01μmの位置におけるZn濃度と定義する。上記臨界Zn濃度0.1質量%は、20〜40質量%のZnを含有する銅合金のCu下地めっきにおいて確認された臨界Zn濃度である3質量%(特願2004−358897号明細書)と比較すると、かなり低いものであった。
Cu/Ni二層下地リフローSnめっきは、その良好な耐熱性により、高温環境下で使用されることが多い。したがって、リフロー上がりの状態で良好な半田濡れ性を示すだけでなく、リフロー後に高温環境下に長時間保持しても半田濡れ性が劣化しないこと(以下、耐熱半田濡れ性と称す)が求められる。Snめっき表層のZn濃度が5.0質量%を超えると、耐熱半田濡れ性が劣化した。
以上より、Snめっき表層のZn濃度を0.1〜5.0質量%とする。より好ましいSnめっき表層のZn濃度は0.3〜3.0質量%であり、ウィスカー抑制効果と良好な耐熱半田濡れ性が、より安定して得られる。
なお、本発明の効果は、Sn相表面のZnを上記範囲に濃化させれば発揮されるので、リフロー後のSn相、Sn−Cu合金相、Ni相の厚みは、特に限定されない。
Concentration of Zn on the surface of the Sn plating layer is caused by diffusion of Zn contained in the base material during heating in the reflow process. In the case of a Cu / Ni two-layer base, when the Zn concentration of the Sn plating surface layer was 0.1% by mass or more, the effect of suppressing the generation of whiskers was exhibited. Here, the Zn concentration of the Sn plating surface layer is defined as the Zn concentration at a position of 0.01 μm in the depth direction from the surface, analyzed by GDS (glow discharge emission analysis). The critical Zn concentration of 0.1% by mass is 3% by mass (Japanese Patent Application No. 2004-358897) which is a critical Zn concentration confirmed in Cu underplating of a copper alloy containing 20 to 40% by mass of Zn. In comparison, it was quite low.
Cu / Ni two-layer base reflow Sn plating is often used in a high temperature environment due to its good heat resistance. Therefore, it is required not only to exhibit good solder wettability in a reflow-up state, but also to prevent solder wettability from deteriorating even if kept in a high temperature environment for a long time after reflow (hereinafter referred to as heat resistant solder wettability). . When the Zn concentration of the Sn plating surface layer exceeded 5.0 mass%, the heat-resistant solder wettability deteriorated.
As mentioned above, Zn density | concentration of Sn plating surface layer shall be 0.1-5.0 mass%. A more preferable Zn concentration of the Sn plating surface layer is 0.3 to 3.0% by mass, and a whisker suppressing effect and good heat-resistant solder wettability can be obtained more stably.
In addition, since the effect of this invention will be exhibited if Zn on the surface of Sn phase is concentrated in the said range, the thickness of Sn phase after reflow, Sn-Cu alloy phase, and Ni phase is not specifically limited.

(3)製造方法
上記めっき構造は、めっき母材表層のZn濃度、Ni下地めっきの厚み、Cu下地めっきの厚み、Snめっきの厚み及びリフロー条件の5つを適正範囲に調整することにより得られる。
a.めっき母材表層のZn濃度
Cu−Zn系合金をめっき母材としSnめっきした材料では、加熱によりめっき母材中のZnがSnめっき層へ拡散する。後述するリフロー条件で加熱した場合、めっき母材表層のZn濃度が10質量%未満であると、Snめっき表層のZn濃度を0.1質量%以上に調整することが困難になり、母材表層のZn濃度が40質量%を超えると、Snめっき表層のZn濃度を5質量%以下に調整することが困難になる。そこで、めっき母材に用いるCu−Zn合金の表層のZn濃度を10〜40質量%、好ましくは15〜30質量%に調整する。ここで、めっき母材表層のZn濃度は、GDSにより分析した、表層から0.1μmの位置におけるZn濃度と定義する。
一方、めっき母材であるCu−Zn系合金は、溶解・鋳造で製造したインゴットを必要に応じて熱間圧延した後、冷間圧延と焼鈍を繰り返して条に加工される。Cu−Zn系合金の焼鈍では、脱Zn現象が生じることが知られている。脱Zn現象とは、焼鈍においてCu−Zn系合金が高温に熱せられた際に、Znが酸化して気相中に逃散しCu−Zn系合金表面のZn濃度が低下する現象である。したがって、Cu−Zn系合金表面のZn濃度を上記範囲に調整するためには、焼鈍で生じた脱Zn層を除去することが必要である。この除去方法としては、回転式バフを用いる機械研磨、腐食液を用いる化学研磨等がある。
(3) Manufacturing Method The plating structure can be obtained by adjusting the Zn concentration of the plating base material surface layer, the thickness of the Ni undercoat, the thickness of the Cu undercoat, the thickness of the Sn plating, and the reflow conditions within an appropriate range. .
a. Zn concentration in surface layer of plating base material In a material plated with Sn using a Cu-Zn alloy as a plating base material, Zn in the plating base material diffuses into the Sn plating layer by heating. When heated under reflow conditions to be described later, if the Zn concentration of the plating base material surface layer is less than 10% by mass, it becomes difficult to adjust the Zn concentration of the Sn plating surface layer to 0.1% by mass or more. If the Zn concentration exceeds 40% by mass, it is difficult to adjust the Zn concentration of the Sn plating surface layer to 5% by mass or less. Therefore, the Zn concentration of the surface layer of the Cu—Zn alloy used for the plating base material is adjusted to 10 to 40% by mass, preferably 15 to 30% by mass. Here, the Zn concentration of the plating base material surface layer is defined as the Zn concentration at a position of 0.1 μm from the surface layer analyzed by GDS.
On the other hand, a Cu—Zn alloy, which is a plating base material, is hot rolled as necessary to an ingot manufactured by melting and casting, and then processed into a strip by repeatedly performing cold rolling and annealing. It is known that the removal of Zn occurs when annealing Cu—Zn alloys. The Zn removal phenomenon is a phenomenon in which when a Cu—Zn alloy is heated to a high temperature during annealing, Zn is oxidized and escapes into the gas phase, and the Zn concentration on the surface of the Cu—Zn alloy decreases. Therefore, in order to adjust the Zn concentration on the surface of the Cu—Zn-based alloy to the above range, it is necessary to remove the Zn-free layer generated by annealing. As this removal method, there are mechanical polishing using a rotary buff, chemical polishing using a corrosive liquid, and the like.

本発明では、Snめっきに供される直前のCu−Zn系合金表面のZn濃度を、上記範囲に調整することが肝要であり、そのための手段や工程順序は特に限定されない。例えば、コネクタ用のCu−Zn系合金は、焼鈍後に冷間圧延を施した調質状態でSnめっきに供されることが多いが、この場合、脱Zn層除去の研磨は、冷間圧延前(焼鈍直後)に行っても良いし、冷間圧延後(めっき直前)に行っても良い。   In the present invention, it is important to adjust the Zn concentration on the surface of the Cu—Zn-based alloy immediately before being subjected to Sn plating to the above range, and means and process order for that purpose are not particularly limited. For example, a Cu—Zn-based alloy for connectors is often used for Sn plating in a tempered state after cold rolling after annealing. In this case, polishing for removing the Zn-free layer is performed before cold rolling. It may be performed (immediately after annealing) or after cold rolling (immediately before plating).

b.Ni下地めっき厚及びCu下地めっき厚
本発明のリフロー後のめっき層は、表面側よりSn相、Sn−Cu合金相、Ni相の各層で構成される。Ni相は母材成分(Cu、Zn及び合金元素)のSn−Cu合金相中への拡散を抑制する。Sn−Cu合金相は、NiのSn相中への拡散を抑制する。このような拡散バリヤとしてのNi相とSn−Cu合金相の作用により、Cu/Ni二層下地材はCu下地材やNi下地材と比較し良好な耐熱性を示す。
所望の耐熱性を得るために、電着時のNiめっきの厚さを0.1μm以上とする。Niめっきが0.1μm未満になると、母材成分のCu−Sn合金相中への拡散を抑制できない。また、電着時のCuめっきの厚さを0.1μm以上とする。Cuめっきが0.1μm未満になると充分な厚みのSn−Cu合金相が形成されず、NiのSn中への拡散を抑制できない。なお、電着時のNiめっき又はCuめっきの厚さの上限は、下記電着時のCuめっきの厚みと電着時のNiめっきの厚みの合計により規定される。
次に、リフロー上がりのSnめっき表層のZn濃度を0.1〜5.0質量%に調整するために、電着時のCuめっきの厚みと電着時のNiめっきの厚みとの合計(以下、合計厚みとする)を0.3〜1.0μmに規定する。合計厚みが0.3μm未満になると、後述するリフロー条件で加熱した際に、母材のZnがSn相中に過度に拡散し、Snめっき表層のZn濃度が5.0質量%を超える。合計厚みが1.0μmを超えると、後述するリフロー条件で加熱した際に母材中のZnがSn相中に充分に拡散せず、Snめっき表層のZn濃度が0.1質量%未満になる。
より好ましい厚みは、Cuめっき厚みが0.2μm以上、Niめっきが0.2μm以上、合計厚みが0.4〜0.7μmであり、その範囲内であると所望の耐熱性及びSnめっき表層のZn濃度がより安定して得られる。
b. Ni undercoat thickness and Cu undercoat thickness The reflowed plating layer of the present invention is composed of Sn phase, Sn-Cu alloy phase, and Ni phase layers from the surface side. The Ni phase suppresses diffusion of base material components (Cu, Zn and alloy elements) into the Sn—Cu alloy phase. The Sn—Cu alloy phase suppresses diffusion of Ni into the Sn phase. Due to the action of the Ni phase and Sn—Cu alloy phase as the diffusion barrier, the Cu / Ni two-layer base material exhibits better heat resistance than the Cu base material and the Ni base material.
In order to obtain desired heat resistance, the thickness of Ni plating during electrodeposition is set to 0.1 μm or more. When the Ni plating is less than 0.1 μm, diffusion of the base material component into the Cu—Sn alloy phase cannot be suppressed. Moreover, the thickness of Cu plating at the time of electrodeposition shall be 0.1 micrometer or more. If the Cu plating is less than 0.1 μm, a sufficiently thick Sn—Cu alloy phase is not formed, and the diffusion of Ni into Sn cannot be suppressed. In addition, the upper limit of the thickness of Ni plating or Cu plating at the time of electrodeposition is prescribed | regulated by the sum total of the thickness of Cu plating at the time of the following electrodeposition, and the thickness of Ni plating at the time of electrodeposition.
Next, in order to adjust the Zn concentration of the Sn plating surface layer after reflowing to 0.1 to 5.0% by mass, the sum of the thickness of Cu plating during electrodeposition and the thickness of Ni plating during electrodeposition (hereinafter referred to as the following) The total thickness is defined as 0.3 to 1.0 μm. When the total thickness is less than 0.3 μm, when heated under reflow conditions described later, the base material Zn excessively diffuses into the Sn phase, and the Zn concentration of the Sn plating surface layer exceeds 5.0 mass%. When the total thickness exceeds 1.0 μm, Zn in the base material does not sufficiently diffuse into the Sn phase when heated under reflow conditions described later, and the Zn concentration of the Sn plating surface layer becomes less than 0.1 mass%. .
More preferable thicknesses include a Cu plating thickness of 0.2 μm or more, a Ni plating of 0.2 μm or more, and a total thickness of 0.4 to 0.7 μm. Zn concentration can be obtained more stably.

c.Snめっき厚
Snめっきの厚みが0.3μm未満では、後述するリフロー条件で加熱した場合、Snめっき表層のZn濃度が5.0質量%を超える。Snめっきの厚みが1.0μmを超えると、後述するリフロー条件で加熱した場合、Snめっき表層のZn濃度が0.1質量%に満たない。したがって、Snめっきの厚みは0.3〜1.0μmとする。より好ましいSnめっきの厚みは0.6〜0.8μmである。
c. Sn plating thickness When the thickness of the Sn plating is less than 0.3 μm, the Zn concentration of the Sn plating surface layer exceeds 5.0 mass% when heated under reflow conditions described later. When the thickness of the Sn plating exceeds 1.0 μm, the Zn concentration of the Sn plating surface layer is less than 0.1% by mass when heated under reflow conditions described later. Therefore, the thickness of Sn plating shall be 0.3-1.0 micrometer. A more preferable thickness of Sn plating is 0.6 to 0.8 μm.

d.リフロー条件
Snめっき表層のZn濃度が本発明の範囲となるリフロー条件を以下に示す。加熱時間が5秒未満では、Snめっき層へのZnの拡散が充分でなく、Snめっき表面のZn濃度が0.1質量%に満たない。加熱時間が23秒を超えると、Znの拡散が著しくなるため、Snめっき表面のZn濃度が5.0質量%を超える。したがって、リフロー処理での加熱時間は5〜23秒とする(5≦t≦23、但し、tは加熱時間を表し、単位は秒である)。好ましくは加熱時間は5〜15秒である。
また、加熱温度が350℃未満では、母材からSnめっき層へのZnの拡散が充分でなく、Snめっき表層のZn濃度が0.1質量%に満たない。加熱温度が600℃を超えると、Znの拡散が著しくなるため、Snめっき表層のZn濃度が5.0質量%を超えるばかりでなく、めっき母材が再結晶し軟化するため、コネクタ等の用途として必要な機械的強度が得られない。したがって、リフロー処理での加熱温度は350〜600℃とする。(350≦T≦600、但し、Tは加熱温度を表し、単位は℃である)。好ましくは加熱温度は400〜550℃である。
更に、Snめっき層へのZnの拡散は温度と時間の両因子の関係によって決定される。そこで、この関係を次式で規定する。
500≦(T+14t)≦670
(T+14t)が500未満であるとSnめっき表層のZn濃度が0.1質量%未満となり、ウィスカーが発生する。一方、670を超えるとSnめっき表層のZn濃度が5.0質量%を超え耐熱半田濡れ性が劣化する。(T+14t)は好ましくは550〜650である。
d. Reflow conditions The reflow conditions under which the Zn concentration of the Sn plating surface layer falls within the scope of the present invention are shown below. When the heating time is less than 5 seconds, the diffusion of Zn into the Sn plating layer is not sufficient, and the Zn concentration on the Sn plating surface is less than 0.1% by mass. When the heating time exceeds 23 seconds, the diffusion of Zn becomes remarkable, so that the Zn concentration on the Sn plating surface exceeds 5.0% by mass. Therefore, the heating time in the reflow process is 5 to 23 seconds (5 ≦ t ≦ 23, where t represents the heating time and the unit is seconds). Preferably the heating time is 5 to 15 seconds.
Moreover, if heating temperature is less than 350 degreeC, the spreading | diffusion of Zn from a base material to Sn plating layer is not enough, and Zn density | concentration of Sn plating surface layer is less than 0.1 mass%. When the heating temperature exceeds 600 ° C., the diffusion of Zn becomes remarkable, so that not only the Zn concentration of the Sn plating surface layer exceeds 5.0% by mass, but also the plating base material is recrystallized and softens. As a result, the required mechanical strength cannot be obtained. Therefore, the heating temperature in the reflow process is set to 350 to 600 ° C. (350 ≦ T ≦ 600, where T represents the heating temperature and the unit is ° C.). The heating temperature is preferably 400 to 550 ° C.
Furthermore, the diffusion of Zn into the Sn plating layer is determined by the relationship between both temperature and time factors. Therefore, this relationship is defined by the following equation.
500 ≦ (T + 14t) ≦ 670
When (T + 14t) is less than 500, the Zn concentration of the Sn plating surface layer is less than 0.1% by mass, and whiskers are generated. On the other hand, if it exceeds 670, the Zn concentration of the Sn plating surface layer exceeds 5.0% by mass and the heat-resistant solder wettability deteriorates. (T + 14t) is preferably 550 to 650.

本発明のリフロー処理条件(温度と時間)を表した図1において、リフロー処理条件は斜線の範囲で示される。ここで、Tは加熱温度(℃)、tは加熱時間(秒)を表す。
母材表面のGDS分析データの一例として、図2に後述する発明例3及び比較例30で使用した母材表面のGDSチャートを示す。評価点は表面から0.1μmの深さである。分析条件は以下の通りである。
・試料の前処理:アセトン中で超音波脱脂。
・装置:JOBIN YBON社製 JY5000RF-PSS型。
・Current Method Program:CNBinteel-12aa-0。
・Mode:Constant Electric Power=40W。
・Ar-Presser:775Pa。
・Current Value:40mA(700V)。
・Flush Time:20sec。
・Preburn Time:2sec。
・Determination Time:Analysis Time=30sec、Sampling Time=0.020sec/point。
In FIG. 1 showing the reflow processing conditions (temperature and time) of the present invention, the reflow processing conditions are indicated by hatching. Here, T represents the heating temperature (° C.), and t represents the heating time (seconds).
As an example of GDS analysis data on the surface of the base material, FIG. 2 shows a GDS chart of the surface of the base material used in Invention Example 3 and Comparative Example 30 described later. The evaluation point is a depth of 0.1 μm from the surface. The analysis conditions are as follows.
Sample pretreatment: ultrasonic degreasing in acetone.
・ Equipment: JOBIN YBON JY5000RF-PSS type.
・ Current Method Program: CNBinteel-12aa-0.
・ Mode: Constant Electric Power = 40W.
・ Ar-Presser: 775Pa.
・ Current Value: 40mA (700V).
・ Flush Time: 20sec.
・ Preburn Time: 2sec.
-Determination Time: Analysis Time = 30sec, Sampling Time = 0.020sec / point.

表1に示されるCu−Zn系合金(厚さ0.2mm)を試料として用いた。表1には母材の組成として、母材の平均Zn濃度を示してある。また、母材表層のZn濃度として、GDS(グロー放電発光分光分析装置)で分析した表面から深さ方向に0.1μmの位置でのZn濃度(質量%)を示してある。
表層Zn濃度は焼鈍条件と研磨条件により調整している。表2は、表1の比較例30、発明例1、2、3、23及び比較例31の製造条件を示したものである。厚さ0.25mmにおいて種々の条件で再結晶焼鈍を行った後、20質量%H2SO4−1質量%H22水溶液を用いて表面を化学研磨し、その後0.2mmまで冷間圧延している。表2より次のことがわかる。
(1)燃焼ガス中(弱酸化性雰囲気)で焼鈍する場合、CO濃度を高くしO2濃度を低くすると、表層Zn濃度が高くなる。また、研磨量を増やすと、表層Zn濃度が高くなる。
(2)低温長時間焼鈍で得られる表層Zn濃度は、高温短時間焼鈍で得られる表層Zn濃度より高い。
(3)低露点に調整した水素中(強還元性雰囲気)で焼鈍すると、Znの酸化(気相中への逃散)が生じないため、表層Zn濃度が増加する。
A Cu—Zn alloy (thickness 0.2 mm) shown in Table 1 was used as a sample. Table 1 shows the average Zn concentration of the base material as the composition of the base material. Further, the Zn concentration (mass%) at a position of 0.1 μm in the depth direction from the surface analyzed by GDS (glow discharge optical emission spectrometer) is shown as the Zn concentration of the base material surface layer.
The surface layer Zn concentration is adjusted by annealing conditions and polishing conditions. Table 2 shows the manufacturing conditions of Comparative Example 30, Invention Examples 1, 2, 3, 23 and Comparative Example 31 of Table 1. After recrystallization annealing under various conditions at a thickness of 0.25 mm, the surface is chemically polished with a 20 mass% H 2 SO 4 −1 mass% H 2 O 2 aqueous solution, and then cold-cooled to 0.2 mm It is rolling. Table 2 shows the following.
(1) When annealing in combustion gas (weakly oxidizing atmosphere), increasing the CO concentration and decreasing the O 2 concentration increases the surface Zn concentration. Further, when the polishing amount is increased, the surface layer Zn concentration is increased.
(2) The surface Zn concentration obtained by low-temperature and long-term annealing is higher than the surface Zn concentration obtained by high-temperature and short-time annealing.
(3) When annealing is performed in hydrogen adjusted to a low dew point (strongly reducing atmosphere), Zn oxidation (escape into the gas phase) does not occur, so the surface Zn concentration increases.

表1の各試料につき、次の工程でめっきを行った。
(工程1)アルカリ水溶液中で試料をカソードとして次の条件で電解脱脂を行った。
電流密度:3A/dm2。脱脂剤:ユケン工業(株)製商標「パクナP105」。脱脂剤濃度:40g/L。温度:50℃。時間30秒。電流密度:3A/dm2
(工程2)10質量%硫酸水溶液を用いて酸洗した。
(工程3)次の条件でNi下地めっきを施した。
・めっき浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸30g/L。
・めっき浴温度:50℃。
・電流密度:5A/dm2
・Niめっき厚みは、電着時間により調整。
(工程4)次の条件でCu下地めっきを施した。
・めっき浴組成:硫酸銅200g/L、硫酸60g/L。
・めっき浴温度:25℃。
・電流密度:5A/dm2
・Cuめっき厚みは、電着時間により調整。
(工程5)次の条件でSnめっきを施した。
・めっき浴組成:酸化第1錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L。
・めっき浴温度:50℃。
・電流密度:9A/dm2
・Snめっき厚みは、電着時間により調整。
(工程6)リフロー処理として、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に試料を挿入して加熱し、加熱後水冷した。加熱炉の温度(リフロー温度)及び加熱炉への挿入時間(リフロー時間)は表1に示した。
Each sample in Table 1 was plated in the following step.
(Step 1) Electrolytic degreasing was carried out in an alkaline aqueous solution using the sample as a cathode under the following conditions.
Current density: 3 A / dm 2 . Degreasing agent: Trademark “Pakuna P105” manufactured by Yuken Industry Co., Ltd. Degreasing agent concentration: 40 g / L. Temperature: 50 ° C. Time 30 seconds. Current density: 3 A / dm 2 .
(Step 2) Pickling was performed using a 10% by mass sulfuric acid aqueous solution.
(Step 3) Ni base plating was performed under the following conditions.
-Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L.
-Plating bath temperature: 50 ° C.
Current density: 5A / dm 2.
・ Ni plating thickness is adjusted by electrodeposition time.
(Step 4) Cu base plating was performed under the following conditions.
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L.
-Plating bath temperature: 25 ° C.
Current density: 5A / dm 2.
・ Cu plating thickness is adjusted by electrodeposition time.
(Step 5) Sn plating was performed under the following conditions.
-Plating bath composition: stannous oxide 41 g / L, phenolsulfonic acid 268 g / L, surfactant 5 g / L.
-Plating bath temperature: 50 ° C.
Current density: 9A / dm 2.
・ Sn plating thickness is adjusted by electrodeposition time.
(Step 6) As a reflow treatment, the sample was inserted into a heating furnace adjusted to nitrogen (oxygen 1 vol% or less) and heated, and then water-cooled after heating. The temperature of the heating furnace (reflow temperature) and the insertion time into the heating furnace (reflow time) are shown in Table 1.

リフロー後の各試料について、Snめっき表層のZn濃度を、GDSを用い上記条件で分析した。Snめっき表層のGDS分析データの一例として、図3に発明例8及び比較例33のチャートを示す。めっき表面から深さ0.01μmを評価点とし、その位置でのZn濃度をチャートより読み取り表1に記した。   About each sample after reflow, the Zn density | concentration of Sn plating surface layer was analyzed on the said conditions using GDS. As an example of the GDS analysis data of the Sn plating surface layer, FIG. 3 shows a chart of Invention Example 8 and Comparative Example 33. The depth of 0.01 μm from the plating surface was taken as the evaluation point, and the Zn concentration at that position was read from the chart and listed in Table 1.

各試料について、ウィスカーの長さ及び半田濡れ性を、次の方法で評価した。
(1)ウィスカー長さ
試料表面に、直径が0.7mmの球状の圧子(ステンレス製)を150gの荷重で負荷したまま室温で7日間放置し、めっき表面の圧子接点部にウィスカーを発生させた。発生したウィスカーを電子顕微鏡で観察し、各試料で最も長く成長したウィスカーの長さが、10μm以下に収まった場合を○と評価し、10μmを超えた場合を×と評価した。
(2)耐熱半田濡れ性
高温で保持した後の試料に対し、鉛フリー半田との濡れ性を評価した。具体的には、試料をアセトンで脱脂後、大気中、145℃で500時間加熱した。加熱後の試料に、フラックスとして25質量%ロジン−75質量%エタノールを塗布後、260℃のSn−3.0質量%Ag−0.5質量%Cu半田浴に10秒間浸漬した。浸漬部の表面積は10mm×10mmとし、半田浴から引き上げ後、半田が付着した部分の面積率を測定した。半田の付着面積率が80%以上の場合を○と評価し、付着面積率が80%未満の場合を×と評価した。
発明例及び比較例の評価結果を表1に示す。
About each sample, the length of a whisker and solder wettability were evaluated by the following method.
(1) Whisker length A spherical indenter (made of stainless steel) having a diameter of 0.7 mm was left on the sample surface with a load of 150 g for 7 days at room temperature to generate whiskers at the indenter contact portion on the plating surface. . The generated whisker was observed with an electron microscope, and the case where the length of the whisker that had grown the longest in each sample was within 10 μm was evaluated as ◯, and the case where it exceeded 10 μm was evaluated as x.
(2) Heat-resistant solder wettability The sample after being held at high temperature was evaluated for wettability with lead-free solder. Specifically, the sample was degreased with acetone and then heated in air at 145 ° C. for 500 hours. After applying 25 mass% rosin-75 mass% ethanol as a flux to the heated sample, it was immersed in a Sn-3.0 mass% Ag-0.5 mass% Cu solder bath at 260 ° C. for 10 seconds. The surface area of the immersion part was 10 mm × 10 mm, and after pulling up from the solder bath, the area ratio of the part where the solder adhered was measured. A case where the adhesion area ratio of the solder was 80% or more was evaluated as ◯, and a case where the adhesion area ratio was less than 80% was evaluated as x.
Table 1 shows the evaluation results of the invention examples and comparative examples.

Figure 2010168666
Figure 2010168666

Figure 2010168666
Figure 2010168666

本発明例1〜29は、いずれもSnめっき表層のZn濃度が本発明の範囲内であるため、ウィスカーの長さが10μm以下であり、また鉛フリー半田に対して良好な耐熱半田濡れ性を示した。
比較例30は母材表面のZn濃度が10質量%を下回ったため、母材組成と製造条件が同様の発明例1〜3に対し、Snめっき表層のZn濃度が低下して0.1質量%未満となり、10μmを超えるウィスカーが発生した。また、比較例31は母材表面のZn濃度が40質量%を超えたため、母材組成と製造条件が同様の発明例23に対し、Snめっき表層のZn濃度が上昇して5.0質量%を超え、耐熱半田濡れ性が劣化した。
In each of the inventive examples 1 to 29, since the Zn concentration of the Sn plating surface layer is within the range of the present invention, the whisker length is 10 μm or less, and good heat resistance solder wettability with respect to lead-free solder. Indicated.
In Comparative Example 30, since the Zn concentration on the surface of the base material was less than 10% by mass, the Zn concentration of the Sn plating surface layer decreased to 0.1% by mass with respect to Inventive Examples 1 to 3 having the same base material composition and manufacturing conditions. The whisker exceeding 10 μm was generated. Further, in Comparative Example 31, the Zn concentration on the surface of the base material exceeded 40% by mass, so that the Zn concentration of the Sn plating surface layer increased to 5.0% by mass with respect to Invention Example 23 having the same base material composition and manufacturing conditions. The heat resistance solder wettability deteriorated.

発明例4〜9及び比較例32〜35は、同様の組成の母材について、Ni及びCu下地めっきの厚さを変え、その他の製造条件は合わせたものである。NiめっきとCuめっきの合計の厚みが大きくなると、Snめっき表層のZn濃度が低下する傾向が認められる。NiめっきとCuめっきの合計の厚みが0.3μmを下回った比較例32では、Snめっき表層のZn濃度が5.0質量%を超え耐熱半田濡れ性が劣化した。また、合計の厚みが1.0μmを超えた比較例33では、Snめっき表層のZn濃度が0.1質量%未満となり、10μmを超えるウィスカーが発生した。比較例34及び35は、それぞれNi及びCuが0.1μmを下回ったため、Cu/Ni二層下地リフローSnめっきの特徴である良好な耐熱性が失われ、耐熱半田濡れ性が劣化した。   Inventive Examples 4 to 9 and Comparative Examples 32 to 35 are obtained by changing the thicknesses of the Ni and Cu undercoats for the base materials having the same composition and other manufacturing conditions. When the total thickness of the Ni plating and the Cu plating increases, a tendency that the Zn concentration of the Sn plating surface layer decreases is recognized. In Comparative Example 32 in which the total thickness of Ni plating and Cu plating was less than 0.3 μm, the Zn concentration of the Sn plating surface layer exceeded 5.0 mass%, and the heat resistance solder wettability deteriorated. Moreover, in the comparative example 33 whose total thickness exceeded 1.0 micrometer, Zn density | concentration of Sn plating surface layer became less than 0.1 mass%, and the whisker exceeding 10 micrometers was generated. In Comparative Examples 34 and 35, since Ni and Cu were less than 0.1 μm, respectively, the good heat resistance characteristic of the Cu / Ni two-layer underlayer reflow Sn plating was lost, and the heat resistant solder wettability was deteriorated.

発明例10〜16及び比較例36〜37は、同様の組成の母材について、Snめっき厚を変え、その他の製造条件は合わせたものである。Snめっき厚が大きくなると、Snめっき表層のZn濃度が低下する傾向が認められる。Snめっき厚が0.3μmを下回った比較例36では、Snめっき表層のZn濃度が5.0質量%を超え耐熱半田濡れ性が劣化した。また、Snめっき厚が1.0μmを超えた比較例37では、Snめっき表層のZn濃度が0.1質量%未満となり、10μmを超えるウィスカーが発生した。   Inventive Examples 10 to 16 and Comparative Examples 36 to 37 are obtained by changing the Sn plating thickness and other manufacturing conditions for the base material having the same composition. When Sn plating thickness becomes large, the tendency for the Zn density | concentration of Sn plating surface layer to fall is recognized. In Comparative Example 36, in which the Sn plating thickness was less than 0.3 μm, the Zn concentration of the Sn plating surface layer exceeded 5.0 mass%, and the heat resistance solder wettability deteriorated. Further, in Comparative Example 37 in which the Sn plating thickness exceeded 1.0 μm, the Zn concentration of the Sn plating surface layer was less than 0.1 mass%, and whiskers exceeding 10 μm were generated.

発明例17〜22及び比較例38〜43は、同様の組成の母材について、リフロー条件を変え、その他の製造条件は合わせたものである。(T+14t)が670を超えた比較例38〜40では、Snめっき表層のZn濃度が5.0質量%を超え耐熱半田濡れ性が劣化した。(T+14t)が500を下回った比較例41では、Snめっき表層のZn濃度が0.1質量%未満となり、10μmを超えるウィスカーが発生した。時間が5秒未満の比較例42及び温度が350℃未満の比較例43では、Snめっき表層のZn濃度が0.1質量%未満となり、10μmを超えるウィスカーが発生した。   Inventive Examples 17 to 22 and Comparative Examples 38 to 43 are obtained by changing the reflow conditions and combining other manufacturing conditions for the base material having the same composition. In Comparative Examples 38 to 40 where (T + 14t) exceeded 670, the Zn concentration of the Sn plating surface layer exceeded 5.0 mass%, and the heat-resistant solder wettability deteriorated. In Comparative Example 41 in which (T + 14t) was less than 500, the Zn concentration of the Sn plating surface layer was less than 0.1% by mass, and whiskers exceeding 10 μm were generated. In Comparative Example 42 in which the time was less than 5 seconds and Comparative Example 43 in which the temperature was less than 350 ° C., the Zn concentration of the Sn plating surface layer was less than 0.1 mass%, and whiskers exceeding 10 μm were generated.

Claims (5)

平均濃度で15〜40質量%のZnを含有する銅合金を母材として、表面から母材にかけてSn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、該Sn相の表層のZn濃度が0.1〜5.0質量%であることを特徴とする、ウィスカー発生が抑制されたCu−Zn合金Snめっき条。   A copper alloy containing 15 to 40% by mass of Zn at an average concentration is used as a base material, and a plating film is composed of each layer of Sn phase, Sn—Cu alloy phase, and Ni phase from the surface to the base material. A Cu-Zn alloy Sn-plated strip in which whisker generation is suppressed, wherein the Zn concentration of the alloy is 0.1 to 5.0% by mass. 15〜40質量%のZnを含有し残部がCu及び不可避的不純物より構成される銅基合金を母材とすることを特徴とする請求項1のCu−Zn合金Snめっき条。   2. The Cu—Zn alloy Sn-plated strip according to claim 1, wherein the base material is a copper-based alloy containing 15 to 40% by mass of Zn and the balance of Cu and inevitable impurities. 母材が更にSn、Ag、Pb、Fe、Ni、Mn、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有することを特徴とする請求項2のCu−Zn合金Snめっき条。   The base material further contains at least one element selected from the group consisting of Sn, Ag, Pb, Fe, Ni, Mn, Si, Al, and Ti in a total amount of 0.005 to 10% by mass. 2 Cu—Zn alloy Sn plating strip. 15〜40質量%のZn、8〜20質量%のNi、0〜0.5質量%のMnを含有し残部がCu及び不可避的不純物より構成される銅基合金を母材とすることを特徴とする請求項1のCu−Zn合金Snめっき条。   The base material is a copper-based alloy containing 15 to 40% by mass of Zn, 8 to 20% by mass of Ni, and 0 to 0.5% by mass of Mn, with the balance being Cu and inevitable impurities. The Cu—Zn alloy Sn plating strip according to claim 1. 母材が更にSn、Ag、Pb、Fe、Si、Al及びTiの群から選ばれた少なくとも一種の元素を合計で0.005〜10質量%含有することを特徴とする請求項4のCu−Zn合金Snめっき条。   The Cu- of claim 4, wherein the base material further contains 0.005 to 10 mass% in total of at least one element selected from the group consisting of Sn, Ag, Pb, Fe, Si, Al and Ti. Zn alloy Sn plating strip.
JP2010099979A 2010-04-23 2010-04-23 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker Active JP5226032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099979A JP5226032B2 (en) 2010-04-23 2010-04-23 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099979A JP5226032B2 (en) 2010-04-23 2010-04-23 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006121836A Division JP4522970B2 (en) 2006-04-26 2006-04-26 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker

Publications (2)

Publication Number Publication Date
JP2010168666A true JP2010168666A (en) 2010-08-05
JP5226032B2 JP5226032B2 (en) 2013-07-03

Family

ID=42701063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099979A Active JP5226032B2 (en) 2010-04-23 2010-04-23 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker

Country Status (1)

Country Link
JP (1) JP5226032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062975A (en) * 2012-09-20 2014-04-10 Dainippon Printing Co Ltd Leaf spring for camera module drive mechanism and manufacturing method for the same
JP2016518528A (en) * 2013-05-03 2016-06-23 デルフィ・テクノロジーズ・インコーポレイテッド Electrical terminal element
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
WO2003092911A1 (en) * 2002-04-30 2003-11-13 Technic, Inc. Minimizing whisker growth in tin electrodeposits
JP2004263291A (en) * 2002-09-13 2004-09-24 Rohm & Haas Electronic Materials Llc Tin plating method
JP2005154819A (en) * 2003-11-25 2005-06-16 Kobe Steel Ltd Fitting type connection terminal
JP2005350774A (en) * 2005-06-13 2005-12-22 Dowa Mining Co Ltd Film, its production method and electric and electronic components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
WO2003092911A1 (en) * 2002-04-30 2003-11-13 Technic, Inc. Minimizing whisker growth in tin electrodeposits
JP2004263291A (en) * 2002-09-13 2004-09-24 Rohm & Haas Electronic Materials Llc Tin plating method
JP2005154819A (en) * 2003-11-25 2005-06-16 Kobe Steel Ltd Fitting type connection terminal
JP2005350774A (en) * 2005-06-13 2005-12-22 Dowa Mining Co Ltd Film, its production method and electric and electronic components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062975A (en) * 2012-09-20 2014-04-10 Dainippon Printing Co Ltd Leaf spring for camera module drive mechanism and manufacturing method for the same
JP2016518528A (en) * 2013-05-03 2016-06-23 デルフィ・テクノロジーズ・インコーポレイテッド Electrical terminal element
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure
JPWO2018139628A1 (en) * 2017-01-30 2019-01-31 三菱マテリアル株式会社 Terminal material and terminal for connector and wire terminal structure
US11211729B2 (en) 2017-01-30 2021-12-28 Mitsubishi Materials Corporation Terminal material for connectors, terminal, and electric wire termination structure

Also Published As

Publication number Publication date
JP5226032B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
US9616639B2 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
US7972709B2 (en) Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2008248332A (en) Tin-plated strip and its production method
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2005226097A (en) Tinned copper alloy material for electrical/electronic component, and its production method
JP2007262458A (en) WHISKER RESISTANT REFLOW Sn PLATING MATERIAL
JP4699252B2 (en) Titanium copper
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JP2007291459A (en) TINNED STRIP OF Cu-Sn-P-BASED ALLOY
JP4964795B2 (en) Copper alloy tin plating strip with excellent wear resistance
JP7060514B2 (en) Conductive strip
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP2007262523A (en) Cu-Zn-Sn BASED ALLOY TIN-PLATED STRIP
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP2020190007A (en) Method of producing plated laminate, and plated laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R150 Certificate of patent or registration of utility model

Ref document number: 5226032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250