JPS63129114A - Exhaust system apparatus and manufacture thereof - Google Patents

Exhaust system apparatus and manufacture thereof

Info

Publication number
JPS63129114A
JPS63129114A JP27292986A JP27292986A JPS63129114A JP S63129114 A JPS63129114 A JP S63129114A JP 27292986 A JP27292986 A JP 27292986A JP 27292986 A JP27292986 A JP 27292986A JP S63129114 A JPS63129114 A JP S63129114A
Authority
JP
Japan
Prior art keywords
exhaust system
insulating layer
whiskers
system apparatus
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27292986A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Masatoshi Nakamizo
雅敏 中溝
Kanesuke Kido
木戸 兼介
Katsumi Morikawa
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP27292986A priority Critical patent/JPS63129114A/en
Publication of JPS63129114A publication Critical patent/JPS63129114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make improvements in heat resistance, impact resistance, vibro- proof or the like, by installing a fireproof insulating layer which makes porous grains, made up of granulating a ceramic fiber ad whiskers, stick fast to an inner surface of an exhaust system apparatus where high temperature exhaust gas passes through. CONSTITUTION:In an exhaust system apparatus, for example, an exhaust manifold of an internal combustion engine, a fireproof insulating layer, making porous grains made up of granulating a ceramic fiber and/or whiskers, stick fast to the inner surface is formed. With this formation, heat resistance, impact resistance, vibro-proof, etc., are improved, whereby an increase of service life longevity in the exhaust system apparatus is promoted. At the time of manufacturing the exhaust system apparatus like this, first an inorganic binder solution is uniformly applied to an inner surface of the exhaust system apparatus and then an admixture of the porous grains made up of granulating the ceramic finer and/or whiskers and a little binding assistant consisting of refractory grains at need stuck on top of that. After doing like this, a process of curing, drying and solidification is carried out as much as at least one time and thus fireproof insulating layer is formed up.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用内燃機関部品として用いるのに適した
排気系機器とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to exhaust system equipment suitable for use as internal combustion engine parts for automobiles and a method for manufacturing the same.

従来の技術 内燃機関の排気系機器、特にマニホールドは内面が高温
・高圧の燃焼ガスに接するため、その影響を強く受け、
長期間使用することができない難点があり、また放散熱
が大きく断熱性が小さい欠点があった。
Conventional technology Exhaust system equipment for internal combustion engines, especially manifolds, have their inner surfaces in contact with high-temperature, high-pressure combustion gas, so they are strongly affected by this.
It has the drawback that it cannot be used for a long period of time, and also has the drawbacks of large heat dissipation and poor insulation properties.

特開昭58−51214号には内面に耐火断熱コーティ
ングを施した排気マニホールド等の内燃機関用排気系機
器を開示している。この内燃機関用排気系機器は耐火物
原料粒子と無機質結合剤の混和物よりなる不定形耐火物
の被覆層を高熱の排気ガスに接する金属性曙器本体の内
面に形成したものである。
JP-A No. 58-51214 discloses exhaust system equipment for internal combustion engines, such as an exhaust manifold, whose inner surface is coated with a fire-resistant and heat-insulating coating. This exhaust system equipment for an internal combustion engine has a coating layer of an amorphous refractory made of a mixture of refractory raw material particles and an inorganic binder formed on the inner surface of a metal awning body that is in contact with high-temperature exhaust gas.

また特開昭58−99180号には排気マニホールドな
どの内燃機関用排気ガス系機器の内面に耐火断熱コーテ
ィングを施す方法を開示している。
Furthermore, Japanese Patent Application Laid-Open No. 58-99180 discloses a method of applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold.

この方法は、高熱の排気ガスに接する金属性機器本体の
内面に耐火物原料粒子と無機質結合剤とフリットの混和
物よりなる泥漿を付着させて耐熱被覆層を形成し、つづ
いて、該耐熱被覆層が湿潤状態にあるあいだにその表面
に耐火断熱材粒子を付着させて耐火断熱層を形成し、次
いで、前記耐熱被覆層を固化させたうえ該耐火断熱層の
表面に耐火物原料粒子と無機質結合剤とフリットの混和
物よりなる泥漿を付着さけて耐熱被覆層を形成させるこ
とを特徴とし、必要に応じて前記外層の耐熱被覆層の表
面に前記耐火断熱層と同材の耐火断熱層および前記耐熱
被覆層と同材の耐熱被覆層を順次反復して所要層形成さ
せるものである。この方法により、耐熱被覆層と耐火断
熱層と耐熱被覆層との三層が一体化して積層されたコー
ティング層が形成される。
In this method, a heat-resistant coating layer is formed by depositing a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit on the inner surface of a metal device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is While the layer is in a wet state, refractory insulation material particles are attached to the surface thereof to form a refractory insulation layer, and then the heat resistant coating layer is solidified, and refractory raw material particles and inorganic materials are applied to the surface of the refractory insulation layer. A heat-resistant coating layer is formed by avoiding adhesion of a slurry made of a mixture of a binder and a frit, and if necessary, a fire-resistant heat-insulating layer made of the same material as the fire-resistant heat-insulating layer and Heat-resistant coating layers made of the same material as the heat-resistant coating layer are sequentially repeated to form required layers. By this method, a coating layer is formed in which the three layers of the heat-resistant coating layer, the fire-resistant heat insulating layer, and the heat-resistant coating layer are integrated and laminated.

発明が解決しようとする問題点 このマニホールドは、耐火物原料粒子と耐熱性無機質結
合剤の混和物よりなる不定形耐火物を内面にコーティン
グしたものであるため被覆層中の水分が比較的多くなら
ざるを得す、乾燥時に亀裂が生ずるばかりでなく、熱処
理時の収縮が大きく剥離・破損が起こりがちである。
Problems to be Solved by the Invention This manifold is coated on the inner surface with an amorphous refractory made of a mixture of refractory raw material particles and a heat-resistant inorganic binder, so if the coating layer contains a relatively large amount of water, Unavoidably, not only cracks occur during drying, but also shrinkage during heat treatment is large and peeling and breakage tend to occur.

また高温の排気ガスにより急激に加熱される際にも熱v
E撃により亀裂や剥離を生じるおそれが大きい。また吸
湿性の少ないマニホールドの内面に不定形耐火物である
泥漿状のコーテイング材を均一な厚さで付着させること
はきわめて困難である。
Also, when rapidly heated by high-temperature exhaust gas, the heat v
There is a high risk of cracking or peeling occurring due to E-blow. Furthermore, it is extremely difficult to apply a slurry-like coating material, which is a monolithic refractory, to the inner surface of a manifold, which has low hygroscopicity, with a uniform thickness.

ざらにまたマニホールドの内面には耐火物の被覆層があ
るため耐熱性は良好であるが断熱性については不十分で
ありマニホールドの外面まで温度が伝わり高温となるた
めマニホールドの寿命が縮減するなど決して好ましい構
造とはいえない。
In addition, the inner surface of the manifold has a coating layer of refractory material, so it has good heat resistance, but the insulation is insufficient, and the temperature is transmitted to the outer surface of the manifold, resulting in high temperatures, which may shorten the life of the manifold. This is not a desirable structure.

問題点を解決するための手段 本発明者らは、これらの欠点に鑑み種々研究をかさねた
結果、排気系機器の内面に耐火断熱層を形成させ、熱処
理を行なうことにより亀裂・剥離のない耐火断熱コーテ
ィングを形成することができることを発見し、本発明を
完成するに至った。
Means for Solving the Problems In view of these shortcomings, the inventors of the present invention have conducted various studies, and as a result, they have created a fireproof insulation layer that does not crack or peel by forming a fireproof heat insulating layer on the inner surface of the exhaust system equipment and performing heat treatment. They discovered that it is possible to form a heat insulating coating, leading to the completion of the present invention.

本発明の排気系機器は、高温排気ガスが通過する排気系
機器の内面にセラミック繊維および又はウィスカを造粒
してなる多孔質粒子を固着させた耐火断熱層を有するこ
とを特徴とするものである。
The exhaust system equipment of the present invention is characterized by having a fireproof heat insulating layer in which porous particles made of granulated ceramic fibers and/or whiskers are fixed to the inner surface of the exhaust system equipment through which high-temperature exhaust gas passes. be.

また、本発明の排気系機器の製造方法は、■ 排気系機
器の内面に無機質結合剤溶液を均一に塗布し、 ■ ただちに前記無機質結合剤溶液の層にセラミック繊
維および又はウィスカを造粒してなる多孔質粒子および
必要に応じて耐火物微粉末からなる少量の結合助剤との
混和物を付着させ、さらに ■ 熱処理により養生・乾燥・固化する工程を少なくと
も1回行なうことにより耐火断熱層を形成するものであ
る。
Further, the method for manufacturing exhaust system equipment of the present invention includes: (1) uniformly applying an inorganic binder solution to the inner surface of the exhaust system equipment, and (2) immediately granulating ceramic fibers and/or whiskers on the layer of the inorganic binder solution. A refractory heat insulating layer is created by adhering a mixture of porous particles and, if necessary, a small amount of a binding agent made of fine refractory powder, and then performing at least one step of curing, drying, and solidifying by heat treatment. It is something that forms.

本発明の排気系機器の製造方法において接着性を付与す
るために使用する無機質係合剤としては、珪酸ナトリウ
ム、珪酸カリウム、珪酸リチウム、などの珪酸塩結合剤
、第一リン酸アルミニウム、第一リン酸カルシウム、第
一リン酸マグネシウム、縮合リン酸ソーダ、リン酸など
のリン酸系結合剤、コロイダルシリカ、コロイダルアル
ミナダルジルコニアなどのゾル系結合剤およびエチルシ
リケートなどが適当である。
Examples of the inorganic binder used to impart adhesiveness in the manufacturing method of exhaust system equipment of the present invention include silicate binders such as sodium silicate, potassium silicate, and lithium silicate, monobasic aluminum phosphate, monobasic Phosphoric acid binders such as calcium phosphate, monobasic magnesium phosphate, condensed sodium phosphate, phosphoric acid, sol binders such as colloidal silica, colloidal alumina zirconia, and ethyl silicate are suitable.

結合剤は水溶液の形で使用するが、その濃度は20〜6
0wt%が好ましい。20wt%より低いと接着力が小
さく剥離しやすい。また5Qwt%を越えると塗布作業
が困難となる。より好ましくは25〜55wt%である
The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
0 wt% is preferred. If it is lower than 20 wt%, the adhesive force is small and peeling is likely to occur. Moreover, if it exceeds 5Qwt%, coating work becomes difficult. More preferably, it is 25 to 55 wt%.

結合剤溶液に硬化剤を適金添加することもできる。硬化
剤は、結合剤の種類によって異なるがそれぞれ公知のも
のが使用できる。例えば、珪酸塩結合剤に対しては珪弗
化ソーダ、焼成リン酸アルミニウム、ダイカルシウムシ
リケート、炭酸ガス等がある。またリン酸アルミニウム
にたいしては、マグネシア、ライムなどの塩基性酸化物
、カルシウムアルミネート、弗化アンモニウム等である
Hardeners can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. For example, silicate binders include sodium silicate, calcined aluminum phosphate, dicalcium silicate, carbon dioxide, and the like. Examples of aluminum phosphate include basic oxides such as magnesia and lime, calcium aluminate, and ammonium fluoride.

断熱性を付与するために使用する耐火断熱材はセラミッ
ク!lNおよび又はウィスカを造粒してなる多孔質粒子
であり、特殊な材料である。
The fireproof insulation material used to provide insulation is ceramic! It is a porous particle made by granulating IN and/or whiskers, and is a special material.

このセラミックtINおよび又はウィスカを造粒してな
る多孔質粒子はコランダム質、ムライト買、ジルコニア
質などの結晶質tUtおよびチタン酸カリウム、炭化珪
素、窒化珪素などのウィスカの1種類または2種類以上
の併用からなっており、その粒径は30〜2000μm
の範囲が適当である。
The porous particles formed by granulating ceramic tIN and/or whiskers contain one or more types of crystalline tUT such as corundum, mullite, and zirconia, and whiskers such as potassium titanate, silicon carbide, and silicon nitride. The particle size is 30 to 2000 μm.
A range of is appropriate.

粒径を30μm以上に限定する理由は30μmより小さ
いと収縮による亀裂や゛剥離を生じる。また粒径を20
00μm以下に限定する理由は2000μmより大きい
と、平滑な被覆層を形成しにくい。
The reason why the particle size is limited to 30 μm or more is that if it is smaller than 30 μm, cracks and peeling occur due to shrinkage. Also, the particle size was increased to 20
The reason why the thickness is limited to 00 μm or less is that if it is larger than 2000 μm, it is difficult to form a smooth coating layer.

耐火物微粉末からなる結合助剤はセラミック繊維および
又はウィスカを造粒してなる多孔質粒子間を充填しその
結合を補強するために用いるものである。耐火物微粉末
としては用いる繊維と同材質のもので、粒径44μm以
下のものが適当である。
A bonding agent made of fine refractory powder is used to fill in spaces between porous particles formed by granulating ceramic fibers and/or whiskers, and to reinforce the bond. The fine refractory powder is suitably made of the same material as the fibers used and has a particle size of 44 μm or less.

耐火断熱層を形成する場合、まず排気系様器の内面に無
機質結合剤溶液を均一に塗布し、ただちに結合剤溶液塗
布表面にセラミック41維および又はウィスカを造粒し
てなる多孔質粒子および必要に応じて耐火物微粉末から
なる少量の結合助剤との混和物を散布する。
When forming a fireproof heat insulating layer, first, an inorganic binder solution is uniformly applied to the inner surface of the exhaust system-like vessel, and porous particles made by granulating ceramic 41 fibers and/or whiskers are immediately applied to the surface to which the binder solution is applied. Sprinkle a mixture of refractory fine powder with a small amount of bonding aid according to the requirements.

結合剤溶液は多孔質粒子間及び結合助剤間に浸透し耐火
断熱層を形成する。この層の厚さは結合剤の濃度、塗布
厚さ及び多孔質粒子の粒径によって異なるが、100〜
3000μmである。
The binder solution permeates between the porous particles and between the binding aids to form a fireproof insulation layer. The thickness of this layer varies depending on the concentration of the binder, the coating thickness, and the particle size of the porous particles;
It is 3000 μm.

以上の方法により形成した耐火断熱層は泥漿状にして塗
布した層と比較して、水分が非常に少ないのが本発明の
著しい特徴である。かかる特徴により、次の熱処理によ
る乾燥・固化工程において脱水による収縮が小さくなり
耐火断熱層に亀裂や剥離の発生を防止することができる
A remarkable feature of the present invention is that the fireproof heat insulating layer formed by the above method has a much lower moisture content than a layer coated in the form of a slurry. Due to this feature, shrinkage due to dehydration is reduced in the subsequent drying/solidification process by heat treatment, and the occurrence of cracks and peeling in the fireproof heat insulating layer can be prevented.

上記耐火断熱層の熱処理は約300℃まで徐々に加熱す
ることにより行う。@激な加熱は亀裂や剥離の原因とな
るので、避けるべきである。
The heat treatment of the fireproof heat insulating layer is carried out by gradually heating it to about 300°C. @ Vigorous heating should be avoided as it may cause cracking and peeling.

次に必要とあらば、上記の耐火断熱層の上に更に同様の
方法により結合剤溶液を塗布し、セラミック繊維および
又はウィスカを造粒してなる多孔質粒子を付着させ、熱
処理により乾燥・固化させる。比較的厚い耐火断熱層を
得るためには、このサイクルを数回繰り返す。充分な断
熱性を確保するためには、耐火断熱層は1.0〜5.□
mmであることが望ましい。耐火断熱層が1.OIIl
mより小さいと断熱効果が少なく、耐火断熱層が5.O
mmより大ぎいと断熱効果は大きくなるが剥離傾向が強
くなる。より好ましくは1.0〜3.Ommの範囲が適
当である。
Next, if necessary, a binder solution is further applied on the above fireproof insulation layer by the same method, porous particles made of ceramic fibers and/or whiskers are attached, and then dried and solidified by heat treatment. let This cycle is repeated several times to obtain a relatively thick refractory insulation layer. In order to ensure sufficient heat insulation, the fireproof insulation layer should have a rating of 1.0 to 5. □
It is desirable that it is mm. The fireproof insulation layer is 1. OIIl
If it is smaller than 5.0 m, the insulation effect will be low, and the fireproof insulation layer will be less than 5.m. O
If it is larger than mm, the heat insulation effect will be large, but the tendency for peeling will be strong. More preferably 1.0 to 3. A range of Omm is appropriate.

このように耐火断熱層を形成した排気系機器を炉内で8
00〜1000℃に加熱し15〜60分間保持してコー
ティング作業を完了するものである。
The exhaust system equipment with the refractory heat insulating layer formed in this way is placed in the furnace for 8
The coating process is completed by heating to 00 to 1000°C and holding for 15 to 60 minutes.

この熱処理は炉内で加熱する他、ボート内に熱風を通過
させる方法でも良い。
This heat treatment may be performed by heating in a furnace or by passing hot air through the boat.

実施例 本発明を以下の実施例により更に詳細に説明する。Example The present invention will be explained in more detail by the following examples.

実施例1゜ 酸化皮膜を有する内径40IIll厚さ5mmの鋳鉄製
排気マニホールドの内面をあらかじめPI−110のア
ルカリ溶液で脱脂処理を施し、珪曹比2.9゜濃度45
wt%の珪酸ソーダ水溶液100重は部に対し、硬化剤
として焼成リン酸アルミニウム(ヘキスト社%HBハー
ドナー)を10@1部添加したものを塗布し、ただちに
チタン酸カリウム(K2 T i 6013)ウィスカ
を造粒してなる粒径210〜44μm1タツプ充填かさ
比10.3の多孔質粒子を旋回気流によって散布し、乾
燥固化した。この操作を5回繰り返すことにより厚さ3
mmの耐火断熱層を形成した。
Example 1 The inner surface of a cast iron exhaust manifold with an inner diameter of 40mm and a thickness of 5mm having an oxide film was degreased in advance with an alkaline solution of PI-110, and the silica ratio was 2.9° and the concentration was 45.
To 100 parts by weight of a wt% sodium silicate aqueous solution, 10@1 part of calcined aluminum phosphate (Hoechst %HB hardener) was added as a hardening agent, and immediately potassium titanate (K2 Ti 6013) whiskers were applied. Porous particles having a particle diameter of 210 to 44 μm and a bulk ratio of 10.3 were dispersed by a swirling air current and dried and solidified. By repeating this operation 5 times, the thickness becomes 3
A fireproof heat insulating layer of mm was formed.

最後に800℃で30分の熱処理を行ない内面に耐火断
熱層を有する鋳鉄製排気マニホールドを完成した。
Finally, heat treatment was performed at 800°C for 30 minutes to complete a cast iron exhaust manifold with a fireproof heat insulating layer on the inner surface.

得られたマニホールドのコーティング層には全く亀裂は
みられなかった。
No cracks were observed in the coating layer of the obtained manifold.

実施例1によって得られたマニホールドについて下記の
試験を実施し良好な結果をえた。
The following tests were conducted on the manifold obtained in Example 1 and good results were obtained.

(1)耐熱試験 マニホールドの内部にi ooo℃の熱風を連続して1
00時間送風した後、常温に冷Inしたがコーティング
層の破損や剥離は全くなかった。
(1) Heat resistance test Continuously blow hot air at i ooo℃ into the inside of the manifold.
After blowing air for 00 hours, the coating layer was cooled to room temperature, but there was no damage or peeling of the coating layer.

(2)熱衝撃試験 マニホールドの内部に1000℃の熱風を30分間送風
した後、100℃まで放冷するサイクルを150回繰り
返したがコーティング層の破損や剥離はまったくみられ
なかった。
(2) Thermal Shock Test A cycle of blowing hot air at 1000°C into the manifold for 30 minutes and then allowing it to cool to 100°C was repeated 150 times, but no damage or peeling of the coating layer was observed.

(3)断熱試験 マニホールドの内部に1ooo℃の熱風を30分間送風
した後、外面の温度を測定したところ、内面コーティン
グをしていないマニホールドの外面温度は805℃であ
るが、本発明のマニホールドの外面温度は440℃とな
り優れた断熱性を有することが認知された。
(3) Heat insulation test After blowing hot air at 100°C into the inside of the manifold for 30 minutes, the outside surface temperature was measured. The outside surface temperature of the manifold without inner coating was 805°C, but the temperature of the outside surface of the manifold without inner coating was 805°C. The outer surface temperature was 440°C, and it was recognized that it had excellent heat insulation properties.

(4)振動試験 20GX280ヘルツの加振条件で200時間連続して
加振したがコーティング層の破損や剥離はまったくみら
れなかった。
(4) Vibration test Vibration was continued for 200 hours under the conditions of 20G x 280 Hz, but no damage or peeling of the coating layer was observed.

(5)定歪み試験 マニホールドの一端を固定して、他端に上下方向の荷重
を加え、±2mraの歪を与える試験を100回繰り返
したが、コーティング層の破損や剥離はまったくみられ
なかった。
(5) Constant strain test The test was repeated 100 times by fixing one end of the manifold and applying a vertical load to the other end to give a strain of ±2 mra, but no damage or peeling of the coating layer was observed. .

(6)また上記5種類の単独試験完了品について更に他
の試験を実施したマニホールドについてもコーティング
層の破損や剥離はまったくみられなかった。
(6) Furthermore, no damage or peeling of the coating layer was observed in the manifolds that were subjected to other tests for the above-mentioned five types of individual test completed products.

実施例2゜ 実施例1と同一の鋳鉄製マニホールドの内面をあらかじ
めPHIOのアルカリ溶液で脱脂処理を施し、珪曹比2
.9.濃度45wt%の珪酸ソーダ水溶液100重母部
に対し、硬化剤として焼成リン酸アルミニウム(ヘキス
ト社wAHBハードナー)を10重負部添加したものを
塗布し、ただちに充填かさ比重0.41粒計500〜1
000μmのムライト質繊維(A1203 ;80%)
造粒子ioomm部と結合助剤として0.044μm以
下のアルミナ2Offl□□□部の混合物を付着させ、
実施例1と同一の方法で厚さ3mmの耐火断熱層を形成
し、実施例1と同一の熱処理を行なった。
Example 2゜The inner surface of the same cast iron manifold as in Example 1 was degreased in advance with an alkaline solution of PHIO, and the silica ratio was 2.
.. 9. To 100 parts of sodium silicate aqueous solution with a concentration of 45 wt%, 10 parts of calcined aluminum phosphate (wAHB hardener from Hoechst Co., Ltd.) was added as a hardening agent and immediately filled with a bulk specific gravity of 0.41 grains totaling 500 to 1.
000μm mullite fiber (A1203; 80%)
A mixture of a particulate ioomm part and a 2Offl part of alumina of 0.044 μm or less as a binding agent is attached,
A fireproof heat insulating layer with a thickness of 3 mm was formed by the same method as in Example 1, and the same heat treatment as in Example 1 was performed.

得られたマニホールドのコーティング層には全く亀裂は
みられなかった。
No cracks were observed in the coating layer of the obtained manifold.

実施例2によって得られたマニホールドについて下記の
試験を実施し良好な結果をえた。
The following tests were conducted on the manifold obtained in Example 2 and good results were obtained.

(1)耐熱試験 マニホールドの内部に1000℃の熱風を連続して10
0時間送風した後、常温に冷却したがコーティング層の
破損や剥離は全くなかった。
(1) Heat resistance test Continuously blow hot air at 1000℃ into the inside of the manifold for 10 days.
After blowing air for 0 hours, it was cooled to room temperature, but there was no damage or peeling of the coating layer.

(2)熱衝撃試験 マニホールドの内部に1000℃の熱風を30分間送風
した後、100℃まで放冷するサイクルを150回繰り
返したがコーティング層の破損や剥離はまったくみられ
なかった。
(2) Thermal Shock Test A cycle of blowing hot air at 1000°C into the manifold for 30 minutes and then allowing it to cool to 100°C was repeated 150 times, but no damage or peeling of the coating layer was observed.

(3)断熱試験 マニホールドの内部に1000℃の熱風を30分間送風
した後、外面の温度を測定したところ、内面コーティン
グをしていないマニホールドの外面温度は805℃であ
るが、本発明のマニホールドの外面温度は560℃とな
り優れた断熱性を有することが認知された。
(3) Insulation test After blowing hot air at 1000°C into the inside of the manifold for 30 minutes, the outside surface temperature was measured. The outside temperature of the manifold without inner coating was 805°C, but the temperature of the outside surface of the manifold of the present invention was 805°C. The outer surface temperature was 560°C, and it was recognized that it had excellent heat insulation properties.

(4)振動試験 20GX280ヘルツの加振条件で200時間連続して
加振したがコーティング層の破損や剥離はまったくみら
れなかった。
(4) Vibration test Vibration was continued for 200 hours under the conditions of 20G x 280 Hz, but no damage or peeling of the coating layer was observed.

(5)定歪み試験 マニホールドの一端を固定して、他端に上下方向の荷重
を加え、±2uの歪を与える試験を100回繰り返した
が、コーティング層の破損や剥離はまったくみられなか
った。
(5) Constant strain test The test was repeated 100 times by fixing one end of the manifold and applying a vertical load to the other end to give a strain of ±2u, but no damage or peeling of the coating layer was observed. .

(6)また上記5種類の単独試験完了品について更に他
の試験を実施したマニホールドについてもコーティング
層の破損や剥離はまったくみられなかった。
(6) Furthermore, no damage or peeling of the coating layer was observed in the manifolds that were subjected to other tests for the above-mentioned five types of individual test completed products.

本実験例はマニホールドについて述べたが、本発明はこ
れに限定されるものではなく、ボートライナー、タービ
ンハウジングなどの排気系機器のコーティング層の形成
にも応用できものである。
Although this experimental example describes a manifold, the present invention is not limited thereto, and can also be applied to the formation of coating layers for exhaust system equipment such as boat liners and turbine housings.

発明の効果 本発明の排気系機器は、セラミック繊維およびまたはウ
ィスカを造粒してなる多孔質粒子を内面に固着させた耐
火断熱層を有するので、断熱性、耐熱性、熱衝撃性、耐
振性および可撓性等がきわめて優れており、排気系機器
の耐用寿命の増大、自動車エンジンの燃費の低減および
高出力化などに著しい効果をもたらすものである。
Effects of the Invention The exhaust system equipment of the present invention has a fireproof heat insulating layer in which porous particles formed by granulating ceramic fibers and/or whiskers are fixed to the inner surface, so it has excellent heat insulation, heat resistance, thermal shock resistance, and vibration resistance. It has extremely excellent flexibility, etc., and has a remarkable effect on increasing the useful life of exhaust system equipment, reducing fuel consumption, and increasing output of automobile engines.

Claims (2)

【特許請求の範囲】[Claims] (1)高温排気ガスが通過する排気系機器の内面にセラ
ミック繊維および又はウイスカを造粒してなる多孔質粒
子を固着させた耐火断熱層を有することを特徴とする排
気系機器。
(1) An exhaust system device characterized by having a fireproof heat insulating layer in which porous particles made of granulated ceramic fibers and/or whiskers are fixed to the inner surface of the exhaust system device through which high-temperature exhaust gas passes.
(2)排気系機器を製造する方法において [1]排気系機器の内面に無機質結合剤溶液を均一に塗
布し、 [2]ただちに前記無機質結合剤溶液の層にセラミック
繊維および又はウイスカを造粒し てなる多孔質粒子および必要に応じて耐火 物微粉末からなる少量の結合助剤との混和 物を付着させ、さらに [3]熱処理により養生・乾燥・固化する 工程を少なくとも1回行なうことにより耐火断熱層を形
成することを特徴とする排気系機器の製造方法。
(2) In the method of manufacturing exhaust system equipment, [1] uniformly apply an inorganic binder solution to the inner surface of the exhaust system equipment, and [2] immediately granulate ceramic fibers and/or whiskers on the layer of the inorganic binder solution. By adhering a mixture of porous particles made of polyurethane and a small amount of a binding agent made of fine refractory powder as needed, and performing the steps of [3] curing, drying, and solidifying by heat treatment at least once. A method for manufacturing exhaust system equipment, characterized by forming a fireproof heat insulating layer.
JP27292986A 1986-11-18 1986-11-18 Exhaust system apparatus and manufacture thereof Pending JPS63129114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27292986A JPS63129114A (en) 1986-11-18 1986-11-18 Exhaust system apparatus and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27292986A JPS63129114A (en) 1986-11-18 1986-11-18 Exhaust system apparatus and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63129114A true JPS63129114A (en) 1988-06-01

Family

ID=17520725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27292986A Pending JPS63129114A (en) 1986-11-18 1986-11-18 Exhaust system apparatus and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63129114A (en)

Similar Documents

Publication Publication Date Title
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
US4975314A (en) Ceramic coating bonded to metal member
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JPS62211138A (en) Heat-insulating member
JPS63129114A (en) Exhaust system apparatus and manufacture thereof
JPH02102171A (en) Refractory for ceramic calcination
JPS5899180A (en) Manufacture of exhaust gas instrument for internal combustion engine
JPS63154815A (en) Exhaust system equipment
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JPS62107086A (en) Production of heat insulating metallic member
JPS62107076A (en) Production of heat insulating metallic member
JPS61163282A (en) Production of heat insulating metallic member
JPS61244817A (en) Manufacture of heat insulating manifold
CN111233502B (en) Light heat-insulating high-strength mullite material and preparation method thereof
JP3953151B2 (en) Ceramic bonding composition and bonding method
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS6140874A (en) Adhesive for ceramic member and bonding method
JPS62107075A (en) Method for coating inside surface of exhaust apparatus
JP3039269B2 (en) Method of forming thermal insulation film
JPH075393B2 (en) Method for manufacturing ceramic / metal bonded body
JPH02258983A (en) Ceramic-metal joined body and production thereof
JPS6232275B2 (en)
JPS63295209A (en) Preparation of ceramic-coated tube-like body
JP3936007B2 (en) Firing jig