JPS63154815A - Exhaust system equipment - Google Patents

Exhaust system equipment

Info

Publication number
JPS63154815A
JPS63154815A JP13237587A JP13237587A JPS63154815A JP S63154815 A JPS63154815 A JP S63154815A JP 13237587 A JP13237587 A JP 13237587A JP 13237587 A JP13237587 A JP 13237587A JP S63154815 A JPS63154815 A JP S63154815A
Authority
JP
Japan
Prior art keywords
heat insulating
layer
heat
exhaust system
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13237587A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Kimiteru Otsuka
公輝 大塚
Masatoshi Nakamizo
雅敏 中溝
Kenji Ito
賢児 伊藤
Kanesuke Kido
木戸 兼介
Toshiyuki Ochi
越智 淑行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Publication of JPS63154815A publication Critical patent/JPS63154815A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To aim at making improvements in heat-impact resistance, vibro- resistance and distortion proof, by forming a heat insulating layer of exhaust system equipment with insulant powder and inorganic fiber. CONSTITUTION:A heat insulating layer to be formed in an inner surface of exhaust system equipment is made up of mixing inorganic fiber such as glass fiber or the like in insulant powder of hollow ceramic grains or the like. In this connection, the inorganic fiber may be laminated on the top where the insulant powder is stuck to an equipment inner surface. With this constitution, heat-impact resistance, vibro-resistance or the like are improved together with heat resistance and refractoriness and, what is more, separation of the heat insulating layer is preventable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排気マニホルド等の自動車の内燃顆関部品に用
いるのに適した断熱性及び耐火性に優れた排気系機器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to exhaust system equipment with excellent heat insulation and fire resistance suitable for use in internal combustion engine parts of automobiles such as exhaust manifolds.

[従来の技術1 内燃機関の排気系機器、特に排気マニホルドはエンジン
のシリンダから排出される高温高圧の燃焼ガスにさらさ
れるため、高い断熱性及び耐火性を有することが望まれ
る。特に近年エンジン効率を上げるためにエンジン排気
ガスの温度を高くする傾向にあるので、排気マニホルド
等の排気系機器の熱損失を小さくすることが重要になっ
てきた。
[Prior Art 1] Exhaust system equipment of an internal combustion engine, particularly the exhaust manifold, is exposed to high-temperature, high-pressure combustion gas discharged from the cylinders of the engine, and therefore is desired to have high heat insulation properties and fire resistance. In particular, in recent years there has been a trend to increase the temperature of engine exhaust gas in order to improve engine efficiency, so it has become important to reduce heat loss in exhaust system equipment such as exhaust manifolds.

特開昭58−51214号は内面に耐火断熱コーティン
グを施した排気マニホルド等の内燃機関用排気ガス系機
器を開示している。この内燃機関用排気ガス系機器は、
耐火物原料粒子と無機質結合材の混和物よりなる不定形
耐火物の被覆層を高熱の排気ガスに接する金[[器本体
の内面に形成したものである。
JP-A-58-51214 discloses exhaust gas system equipment for internal combustion engines, such as an exhaust manifold, whose inner surface is coated with a fire-resistant and heat-insulating coating. This exhaust gas equipment for internal combustion engines is
A coating layer of an amorphous refractory made of a mixture of refractory raw material particles and an inorganic binder is formed on the inner surface of the gold vessel body in contact with high-temperature exhaust gas.

また特開昭58−99180号は排気マニホルド等の内
燃機関用排気ガス系機器の内面に耐火断熱コーティング
を施す方法を開示している。この方法は、高熱の排気ガ
スに接する金a製機器本体の内面に耐火物原料粒子と無
機質結合材とフリットの混和物よりなる泥漿を付着させ
て耐熱被覆層を形成し、次いで該耐熱被覆層が湿潤状態
にある間にその表面に耐火断熱材粒子を付着させて耐火
断熱層を形成し、次いで前記耐熱被覆層を固化させたう
え該耐火断熱層の表面に耐火物原料粒子と無機質結合材
とフリットの混和物よりなる泥漿を付着させて耐熱被覆
層を形成させることを特徴とし、必要に応じて前記外層
の耐熱被覆層の表面に前記耐火断熱層と同村の耐火断熱
層および前記耐熱被覆層と同材の耐熱被覆層を順次反復
して所要層形成させるものである。この方法により、耐
熱被覆層と耐火断熱層と耐熱被覆層との三層が一体化し
て積層されたコーティングが形成される。
Furthermore, Japanese Patent Application Laid-Open No. 58-99180 discloses a method of applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold. In this method, a heat-resistant coating layer is formed by depositing a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit on the inner surface of a metal a device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is While it is in a wet state, refractory insulation material particles are attached to the surface thereof to form a refractory insulation layer, and then the heat resistant coating layer is solidified, and refractory raw material particles and an inorganic binder are applied to the surface of the refractory insulation layer. A heat-resistant coating layer is formed by adhering a slurry made of a mixture of The required layers are formed by sequentially repeating heat-resistant coating layers made of the same material. By this method, a coating is formed in which the three layers of the heat-resistant coating layer, the fire-resistant heat insulating layer, and the heat-resistant coating layer are integrated and laminated.

さらに特開昭61−163282号は高温の排気ガスが
通過する排気系機器の内面に無機質結合剤溶液を塗布し
、直ちに前記無n質結合剤溶液の層に耐火断熱材粉末を
付着させ、熱処理により乾燥・固化する工程を含む第一
段階を少くとも1回行うことにより耐火断熱層を形成し
、次いで前記耐火断熱層の表面に無機質結合剤溶液を塗
布し、直ちに前記無n質結合剤溶液の層に耐人材粉末を
付着させ、熱処理により乾燥・固化する工程を含む第二
段階を少なくとも1回行うことにより′t!4*層を形
成することを特徴とする排気系機器の製造方法を開示し
ている。この方法では耐火断熱材粉末又は耐火材粉末と
無機質結合剤溶液との泥漿を利用せずに、無機質結合剤
溶液の塗布層にこれらの粉末を付着させているので、前
二者の方法よりも熱処理により亀裂や剥離の生じにくい
耐火・断熱コーティングが得られる。
Furthermore, JP-A No. 61-163282 discloses that an inorganic binder solution is applied to the inner surface of the exhaust system equipment through which high-temperature exhaust gas passes, and a fireproof insulation material powder is immediately attached to the layer of the nitrogen-free binder solution, followed by heat treatment. A fireproof heat insulating layer is formed by carrying out the first step including drying and solidifying steps at least once, and then an inorganic binder solution is applied to the surface of the fireproof heat insulating layer, and immediately the inorganic binder solution is applied to the surface of the fireproof heat insulating layer. By performing the second step at least once, which includes the step of attaching the human-resistance powder to the layer and drying and solidifying it by heat treatment, 't! Disclosed is a method for manufacturing exhaust system equipment characterized by forming 4* layers. This method does not use refractory insulation powder or a slurry of refractory material powder and inorganic binder solution, but rather adheres these powders to the coated layer of inorganic binder solution, so it is more effective than the former two methods. Heat treatment produces a fire-resistant and heat-insulating coating that is resistant to cracking and peeling.

[発明が解決しようとする問題点] しかしながら、特開昭61−163282号の方法によ
り得られた耐火・断熱コーティングでも、長期間使用し
ているうちに高温の排気ガスによる熱衝撃や振動や歪等
によりコーティングに亀裂が生じたり排気系機器の内面
から剥離するという問題が生じることがわかった。従っ
て本発明の目的は優れた断熱性、耐火性を有するととも
に、長期間の使用によっても亀裂や剥離が生じないセラ
ミック被覆層を有する排気系機器を提供することである
[Problems to be Solved by the Invention] However, even with the fire-resistant and heat-insulating coating obtained by the method of JP-A No. 61-163282, thermal shock, vibration, and distortion due to high-temperature exhaust gas occur after long-term use. It has been found that problems such as cracks in the coating and peeling from the inner surface of exhaust system equipment occur due to such factors. Therefore, an object of the present invention is to provide an exhaust system device having a ceramic coating layer that has excellent heat insulation and fire resistance, and does not crack or peel even after long-term use.

[問題点を解決するための手段1 上記目的に鑑み鋭意研究の結果、本発明者等は、断熱層
に断熱材粉末の他に無機質ファイバーを含有させること
により、耐熱性を損なうことなく耐熱衝撃性ヤ耐振性及
び対歪性を向上させることができることを発見し、本発
明に想到した。
[Means for Solving the Problems 1] In view of the above objectives, as a result of intensive research, the present inventors have found that by incorporating inorganic fibers in addition to heat insulating material powder into the heat insulating layer, thermal shock resistance can be achieved without impairing heat resistance. The inventors have discovered that vibration resistance and distortion resistance can be improved, and have come up with the present invention.

すなわち、本発明の排気系機器は内面に断熱層を有し、
前記断熱層は断熱材粉末と無ぼ賀ファイバーとからなる
ことを特徴とする。無機質ファイバーは断熱材粉末と混
在させても、別々の層として積層してもよい。また断熱
層上に耐火層を設けてもよく、耐火層は同様に無機質フ
ァイバー又はそれより耐火性の優れたセラミックファイ
バーを含有してもよい。
That is, the exhaust system equipment of the present invention has a heat insulating layer on the inner surface,
The heat insulating layer is characterized in that it is made of heat insulating powder and Muboga fiber. The inorganic fibers may be mixed with the heat insulating powder or may be laminated as separate layers. Further, a fire-resistant layer may be provided on the heat-insulating layer, and the fire-resistant layer may similarly contain inorganic fibers or ceramic fibers having better fire resistance.

本発明の排気系機器の内面に形成づる断熱層について詳
述する。
The heat insulating layer formed on the inner surface of the exhaust system equipment of the present invention will be described in detail.

断熱層を構成する断熱材粉末は断熱性の優れた中空状セ
ラミック粒子であるのが好ましく、具体的にはシラスバ
ルーン、発泡シリカ、パーライト等のR橢貿断熱材を使
用することができる。その粉末の粒径は10〜500μ
mの範囲が適当である。10μmより小さいと、収縮に
よる亀裂・剥離を生じるおそれが大きく、500μmよ
り大きいと、平滑な皮膜層を形成しにくい。より好まし
い粒径範囲は20〜200μ乳である。これらの断熱材
粉末は一般的に1000℃以上の耐熱性を有する。
The heat insulating material powder constituting the heat insulating layer is preferably hollow ceramic particles with excellent heat insulating properties, and specifically, R-type heat insulating materials such as glass balloons, foamed silica, and perlite can be used. The particle size of the powder is 10-500μ
A range of m is appropriate. If it is smaller than 10 μm, there is a high risk of cracking or peeling due to shrinkage, and if it is larger than 500 μm, it will be difficult to form a smooth film layer. A more preferred particle size range is 20 to 200 microns. These heat insulating powders generally have a heat resistance of 1000°C or higher.

断熱層に含有させる無機質ファイバーとしてはガラスフ
ァイバー、炭素質ファイバー、ムライトファイバー、ア
ルミナファイバー、ジルコニアファイバー、炭化珪素質
ファイバー等が使用し得る。
Examples of inorganic fibers that can be used in the heat insulating layer include glass fibers, carbonaceous fibers, mullite fibers, alumina fibers, zirconia fibers, and silicon carbide fibers.

無機質ファイバーの直径は一般に1〜8μm1長さは0
.5〜10II11の範囲である。直径が1μmより小
さいか、長さが0.5mgより短いと収縮による亀裂・
剥離が生じやすく、直径が8μmより大きいか、長さが
10rutより長いと平滑な被膜層を形成しにくい。好
ましい繊維直径は2〜4μm1長さは1〜6 ytnで
ある。これらの無機質ファイバーは一般に900℃以上
の耐熱性を有する。
Inorganic fibers generally have a diameter of 1 to 8 μm and a length of 0.
.. It is in the range of 5 to 10II11. If the diameter is less than 1 μm or the length is less than 0.5 mg, cracks due to shrinkage may occur.
Peeling easily occurs, and if the diameter is larger than 8 μm or the length is longer than 10 ruts, it is difficult to form a smooth coating layer. The preferred fiber diameter is 2 to 4 μm and the length is 1 to 6 ytn. These inorganic fibers generally have a heat resistance of 900°C or higher.

本発明において断熱層に接着性を付与するために使用づ
る無機質結合剤としては、珪酸ソーダ、珪酸カリ、珪酸
リチウムなどの珪酸塩結合剤、第一リン酸アルミニウム
、第一リン酸カルシウム、第一リン酸マグネシウム、結
合リン酸ソーダ、リン酸等のリン酸系結合剤、コロイダ
ルシリカ、コロイダルアルミナ、コロイダルジルコニア
等のゾル系結合剤及びエチルシリケート等が適当である
In the present invention, the inorganic binders used to impart adhesiveness to the heat insulating layer include silicate binders such as sodium silicate, potassium silicate, lithium silicate, monobasic aluminum phosphate, monobasic calcium phosphate, monobasic phosphate, etc. Phosphoric acid binders such as magnesium, bound sodium phosphate, phosphoric acid, sol binders such as colloidal silica, colloidal alumina, colloidal zirconia, and ethyl silicate are suitable.

結合剤は水溶液の形で使用するが、その濃度は20〜6
0重量%が好ましい。20重量%より低いと接着力が小
さく剥離しやすい。また60重量%より高いと塗布作業
が困難となる。より好ましくは25〜55重量%である
The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
0% by weight is preferred. If it is less than 20% by weight, the adhesive strength is low and it is easy to peel off. Moreover, if the content is higher than 60% by weight, the coating operation becomes difficult. More preferably, it is 25 to 55% by weight.

結合剤溶液に、硬化剤を適量添加することもできる。硬
化剤は結合剤の種類によって異なるが、それぞれ公知の
ものが使用できる。例えば、珪酸塩結合剤に対しては珪
化ソーダ、焼成リン酸アルミニウム、ダイカルシウムシ
リケート、タン酸ガス等がある。またリン酸アルミニウ
ムに対してはマグネシア、ライムなどの塩基性酸化物、
カルシウムアルミネート、弗化アンモニウム等がある。
Appropriate amounts of curing agents can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. For example, silicate binders include sodium silicide, calcined aluminum phosphate, dicalcium silicate, tannic acid gas, and the like. In addition, for aluminum phosphate, basic oxides such as magnesia and lime,
Examples include calcium aluminate and ammonium fluoride.

耐熱層の上に必要に応じ耐火層を形成してもよ゛い。耐
火層を構成する耐火材粉末としてはシャモット、耐熱ガ
ラス(パイレックスガラス)、溶融シリカ、コージェラ
イト、ムライト、アルミナ、ジルコン、ジルコニア等を
使用することができるが、特にジルコニアは熱伝導率が
低いので好ましい。耐火材粉末の平均粒度は一般的に1
0〜500μmの範囲である。10μmより小さいと粒
子間の凝集が起こりやすく、平滑な被膜層を形成しにく
いし、高熱の影響を受【ノて収縮しやすい。また500
μmより大きいと、平滑な被膜を形成しにくい。好まし
い粒径範囲は20〜200μmである。
A fire-resistant layer may be formed on the heat-resistant layer if necessary. Chamotte, heat-resistant glass (Pyrex glass), fused silica, cordierite, mullite, alumina, zircon, zirconia, etc. can be used as the refractory material powder constituting the refractory layer, but zirconia in particular has low thermal conductivity. preferable. The average particle size of refractory powder is generally 1
It is in the range of 0 to 500 μm. If the particle diameter is smaller than 10 μm, agglomeration between particles tends to occur, making it difficult to form a smooth coating layer, and easily shrinking due to the influence of high heat. 500 again
If it is larger than μm, it is difficult to form a smooth film. The preferred particle size range is 20-200 μm.

耐火層にもセラミックファイバーを添加してよいが、こ
のセラミックファイバーは1200℃以上の耐熱性を有
するものが好ましい。具体的にはムライトファイバー、
アルミナファイバー、ジルコニアファイバー、炭素質フ
ァイバー等がある。
Ceramic fibers may also be added to the refractory layer, but the ceramic fibers preferably have a heat resistance of 1200° C. or higher. Specifically, mullite fiber,
There are alumina fibers, zirconia fibers, carbonaceous fibers, etc.

これらのファイバーの直径及び長さは上記無機質ファイ
バーと同じでよい。
The diameter and length of these fibers may be the same as those of the above-mentioned inorganic fibers.

なお耐火層用の無償質結合剤も上記耐熱層用のものと同
じでよい。
Incidentally, the free quality binder for the fire-resistant layer may be the same as that for the above-mentioned heat-resistant layer.

次に本発明の排気系礪器のl!yi熱層及び耐火層の製
造手順について説明する。
Next, l! of the exhaust system cupboard of the present invention! The manufacturing procedure of the yi thermal layer and the fireproof layer will be explained.

まず排気系機器の内面に無機質結合剤溶液をスプレー等
により塗布する。得られた均一な厚さの無機質結合剤溶
液層に断熱材粉末を付着させる。
First, an inorganic binder solution is applied to the inner surface of the exhaust system equipment by spraying or the like. A heat insulating material powder is applied to the resulting uniformly thick inorganic binder solution layer.

断熱材粉末が溶液層に均一に付着する限りいがなる方法
でも使用し得るが、とくに好ましい方法は、無機質結合
剤溶液層上に断熱材粉末を散布する方法である。別法と
しては、内面を塗布した排気系機器内に断熱材粉末を充
満させ、溶液が断熱材粉末に十分浸透した後で付着して
いない断熱材粉末だけ除去することにより、無機質結合
剤溶液が含浸した断熱材粉末層を形成する方法もある。
Although any method can be used as long as the heat insulating material powder is uniformly adhered to the solution layer, a particularly preferred method is a method in which the heat insulating material powder is sprinkled on the inorganic binder solution layer. Alternatively, the inorganic binder solution can be removed by filling the inside of the exhaust system equipment coated with insulation powder and removing only the unattached insulation powder after the solution has sufficiently penetrated the insulation powder. Another method is to form a layer of impregnated insulation powder.

いずれの方法においても、含浸されていない断熱材粉末
を完全に除去するために、エアーブローを行うのが好ま
しい。このようにして得られる断熱層の厚さは無機質結
合剤溶液の濃度及び厚さによるが、一般に100〜15
00μ肌程度である。
In either method, air blowing is preferably performed to completely remove unimpregnated insulation powder. The thickness of the heat insulating layer thus obtained depends on the concentration and thickness of the inorganic binder solution, but is generally 100 to 15
It is about 00μ skin.

次に必要に応じ加湿養生を行う。加湿養生は50〜80
℃の温度、40〜80%相対温度において30〜120
分間保持することにより行う。これにより断熱層が無機
質結合剤溶液により固化さ保持することにより乾燥する
Next, perform humidification as necessary. Humidification regimen is 50-80
℃ temperature, 40-80% relative temperature 30-120
This is done by holding it for a minute. As a result, the heat insulating layer is solidified and held by the inorganic binder solution, thereby drying.

断熱層の形成において、断熱材粉末に無機質ファイバー
を含有させるが、これは無機質ファイバーを混入するか
又は無機質ファイバーの層をa層するかいずれでもよい
。なお無機質ファイバーを積層する場合、上記と同様の
手順により行う。
In forming the heat insulating layer, inorganic fibers are contained in the heat insulating material powder, and the inorganic fibers may be mixed in or the inorganic fiber layer may be a layer. Note that when inorganic fibers are laminated, the same procedure as above is used.

断熱層が十分な断熱性を有するためには少なくとも1.
5iJ1以上の厚さを有する必要があり、そのために上
記工程を複数回繰り返してもよい。その場合、養生後乾
燥することなく無機質結合剤溶液の塗布を行い、所望の
厚さの断熱層が形成された後で乾燥を行うのが能率的で
好ましい。
In order for the heat insulating layer to have sufficient heat insulating properties, at least 1.
It is necessary to have a thickness of 5iJ1 or more, and for that purpose, the above steps may be repeated multiple times. In that case, it is efficient and preferable to apply the inorganic binder solution without drying after curing and dry after a heat insulating layer of desired thickness is formed.

乾燥後断熱層の熱処理を行う。熱処理は約775℃まで
徐々に加熱し、その温度で30〜60分間保持すること
により行う。
After drying, heat-treat the heat insulating layer. The heat treatment is performed by gradually heating to about 775°C and holding at that temperature for 30 to 60 minutes.

次に必要に応じ断熱層の上に耐火層を形成する。Next, if necessary, a fireproof layer is formed on the heat insulating layer.

上記耐火材粉末及びセラミックファイバーを使用する以
外耐火層の製法は断熱層の製法と全く同じでよい。耐火
層の厚さは0.5s以上であるのが好ましいので、耐火
層形成工程を複数回繰り返してもよい。また熱処理を顛
終的に行うが、断熱層形成箋に熱処理を行うことなく、
耐火層形成後に一度に行ってもよい。
The method for manufacturing the refractory layer may be exactly the same as the method for manufacturing the heat insulating layer, except for using the above refractory material powder and ceramic fiber. Since the thickness of the refractory layer is preferably 0.5 seconds or more, the refractory layer forming step may be repeated multiple times. In addition, although heat treatment is performed throughout the process, heat treatment is not performed on the insulation layer forming paper.
It may be carried out all at once after the formation of the refractory layer.

[実施例] 本発明を以下の実施例によりさらに詳細に説明覆るが、
本発明はそれらに限定されるものではない。
[Examples] The present invention will be explained in more detail by the following examples.
The present invention is not limited thereto.

実施例1 予めP H10〜11のアルカリ性溶液で脱脂処理を施
した酸化皮膜を有する球状黒鉛鋳FQ製マニホルドの内
面に、第一段階として珪曹比2.9、濃度36重量%の
珪酸ソーダ水溶液に硬イヒ剤として焼成リン酸アルミニ
ウム(ヘキスト社VH,Bハードナー)を10重量%添
加したものをスプレーで塗布した。直ちに、断熱材粉末
としてカサ比重0.2)粒径44〜150μ乳のシラス
バルーン(アルミナ・シリカ質中空球状粒子)を散布し
た。
Example 1 As a first step, a sodium silicate aqueous solution with a silica ratio of 2.9 and a concentration of 36% by weight was applied to the inner surface of a manifold made of spheroidal graphite cast FQ having an oxide film that had been previously degreased with an alkaline solution of pH 10 to 11. 10% by weight of calcined aluminum phosphate (Hoechst VH, B hardener) was added as a hardening agent and applied by spraying. Immediately, Shirasu balloons (alumina-siliceous hollow spherical particles) having a bulk specific gravity of 0.2 and a particle size of 44 to 150 μm were sprinkled as a heat insulating material powder.

再び上記無機質結合剤溶液をスプレーにより塗布した後
、セラミックファイバーとして直径2〜4μm1長さ2
〜4闇のアルミナファイバーを散布した。
After applying the above inorganic binder solution again by spraying, a ceramic fiber with a diameter of 2 to 4 μm and a length of 2
~4 Dark alumina fiber was sprayed.

ついで室温で1時間保持し、つぎに50℃に昇温して1
時間保持し、さらに100℃に押湯して1時間保持し、
Rv!!に300℃に昇温して1時間保持した。この熱
処理により断熱層を完全に固化した。このプロセスを繰
り返すことにより、厚さ3111#Iの断熱層を得た。
Then, it was kept at room temperature for 1 hour, and then heated to 50°C for 1 hour.
Hold for 1 hour, further heat to 100℃ and hold for 1 hour,
Rv! ! The temperature was raised to 300°C and held for 1 hour. This heat treatment completely solidified the heat insulating layer. By repeating this process, a heat insulating layer with a thickness of 3111 #I was obtained.

断熱層中のセラミックファイバーの割合は約25重量%
であった。
The proportion of ceramic fiber in the insulation layer is approximately 25% by weight.
Met.

第二段階として上記の断熱層の上に上記と同一の無機質
結合剤溶液をスプレーにより塗布し、さらに粒径44〜
150μmの安定化ジルコニア粒子を散布した。このジ
ルコニア粒子層を所望層積層した後、上記と同一の熱処
理を行い、厚さ0゜5闇の耐火層を形成した。
As a second step, the same inorganic binder solution as above is applied on the heat insulating layer by spraying, and the particle size is 44~
Stabilized zirconia particles of 150 μm were sprinkled. After laminating the desired zirconia particle layers, the same heat treatment as above was performed to form a fireproof layer with a thickness of 0.5 degrees.

本実施例によって得られたマニホルドについて下記の試
験を実施したが、良好な結果を青だ。
The following tests were conducted on the manifold obtained in this example, and the results were good.

(1)耐熱試験 マニホルドの内部に850°Cの熱風を連続して100
時間送風した後、常温に冷却したが、コーティング層の
破損や亀裂及び剥離は全く見られなかった。
(1) Heat resistance test Continuously blow hot air at 850°C into the inside of the manifold for 100°C.
After blowing air for a time, it was cooled to room temperature, but no damage, cracks, or peeling of the coating layer was observed.

(2)F’!l、iii撃試験 マニホルドの内部に850℃の熱風を30分間送風した
後、100℃まで放冷するサイクルを150回繰り返し
たが、コーティング層の破損や亀裂及び剥離は全く見ら
れなかった。
(2) F'! I, III Impact Test A cycle of blowing hot air at 850° C. into the manifold for 30 minutes and then allowing it to cool to 100° C. was repeated 150 times, but no damage, cracks, or peeling of the coating layer was observed.

(3)断熱試験 マニホルドの内部にi、ooo℃の熱風を連続して30
分間送給した後、外面の温度を測定したところ、内面に
コーティングしていないマニホルドの外面温度は800
〜850℃であるが、本発明のマニホルドの外面温度は
550〜600”Cであり、優れた断熱性を有すること
が認められた。
(3) Continuously blow hot air at i, ooo ℃ into the inside of the insulation test manifold for 30
After feeding for 1 minute, the temperature of the outside surface of the manifold without coating was 800%.
˜850° C., but the outer surface temperature of the manifold of the present invention was 550-600″C, and was found to have excellent heat insulation properties.

(4)振動試験 20GX280ヘルツの加振条件で200時間連続して
加振したが、コーティング層の破損や亀裂及び剥離は全
く見られなかった。
(4) Vibration test Although the product was continuously vibrated for 200 hours under the conditions of 20G x 280 Hz, no damage, cracks, or peeling of the coating layer was observed.

(5)定歪試験 マニホルドの一端を固定して、他端に上下方向の荷車を
加え、±2簡の歪みを与える試験を100回繰り返した
が、コーティング層の破損や亀裂及び剥離は全く見られ
なかった。
(5) Constant strain test The test was repeated 100 times by fixing one end of the manifold and adding a cart in the vertical direction to the other end, giving a strain of ±2 degrees, but no damage, cracks, or peeling of the coating layer was observed. I couldn't.

(6)また、単一のマニホルドに上記試験を組合せて実
施した場合でも、コーティング層の破損や亀裂及び剥離
は全く見られなかった。
(6) Furthermore, even when the above tests were conducted in combination on a single manifold, no damage, cracking, or peeling of the coating layer was observed.

実施例2 予めPH10〜11のアルカリ性溶液で脱脂処理を施し
た酸化皮膜を有する球状黒鉛鋳鉄製マニホルドの内面に
、第一段階として実施例1と同じ無[T結合剤溶液を噴
霧状として塗布した。直ちに断熱材粉末として嵩比重0
.2)粒径44〜150μmのアルミナ・シリカ質中空
粒子(シラスバルーン)を散布して付着させ、乾燥した
Example 2 As a first step, the same non-[T binder solution as in Example 1] was applied as a spray onto the inner surface of a spheroidal graphite cast iron manifold having an oxide film that had been previously degreased with an alkaline solution with a pH of 10 to 11. . Bulk specific gravity is 0 immediately as insulation powder
.. 2) Alumina-siliceous hollow particles (shirasu balloons) having a particle size of 44 to 150 μm were scattered and adhered, and dried.

再び上記噴霧状の無機質結合剤溶液を塗布した後、直径
2〜4μm1長さ2〜4顛のムライト質ファイバーを散
布した。上記断熱材粉末層とムライト質ファイバ一層を
所望層給層して厚さ3 ratrの断熱層を得た。断熱
層の熱処理は180℃で3時間行った。断熱層中のムラ
イト質ファイバーの割合は約30重量%であった。
After applying the atomized inorganic binder solution again, mullite fibers having a diameter of 2 to 4 μm and a length of 2 to 4 pieces were sprinkled. A heat insulating layer having a thickness of 3 ratr was obtained by layering the above heat insulating powder layer and one layer of mullite fiber as desired. The heat treatment of the heat insulating layer was performed at 180° C. for 3 hours. The proportion of mullite fibers in the heat insulating layer was about 30% by weight.

得られた断熱マニホルドにって実施例1と同じ試験を行
ったが、コーティング層の破損や亀裂及び剥離は全く見
られなかった。
The obtained heat insulating manifold was subjected to the same test as in Example 1, but no damage, cracks or peeling of the coating layer was observed.

友i旦ユ 予めPH10〜11のアルカリ性溶液で脱脂処理を施し
た酸化皮膜を有する球状黒鉛坊鉄製マニホルドの内面に
、第一段階として実施例1と同じ無機質結合剤溶液を噴
霧状として塗布した。直ちに断熱材粉末として嵩比重0
.2)粒径44〜150μmのアルミナ・シリカ質中空
粒子(シラスバルーン)を散布して付着させ、乾燥した
As a first step, the same inorganic binder solution as in Example 1 was applied in the form of a spray onto the inner surface of a manifold made of spherical graphite iron having an oxide film that had been previously degreased with an alkaline solution having a pH of 10 to 11. Bulk specific gravity is 0 immediately as insulation powder
.. 2) Alumina-siliceous hollow particles (shirasu balloons) having a particle size of 44 to 150 μm were scattered and adhered, and dried.

再び上記噴霧状の照n質結合剤溶液を塗布した後、直径
2〜4μm1長さ2〜4闇のムライト質ファイバーを散
布した。上記断熱材粉末層とムライト質ファイバ一層を
所望[11ffffLで厚さ3順の断熱層を青た。これ
を180℃で3時間熱処理した。断熱層中のムライト質
ファイバーの割合は約30重量%であった。
After applying the atomized atomized binder solution again, mullite fibers having a diameter of 2 to 4 μm and a length of 2 to 4 μm were sprinkled. The above-mentioned heat insulating powder layer and one layer of mullite fiber were combined to form a heat insulating layer of three thicknesses at the desired thickness of 11ffffL. This was heat treated at 180°C for 3 hours. The proportion of mullite fibers in the heat insulating layer was about 30% by weight.

第二段階として上記の断熱層の上に上記と同一の無機質
結合剤溶液を塗布し、さらに直径2〜4μm1長さ2〜
4Mのジルコニアファイバーを散布した。このジルコニ
アファイバ一層を所望層積層した後、上記と同一の熱処
理を行い、厚さ0゜5闇の耐火層を形成した。
As a second step, the same inorganic binder solution as above is applied on top of the above heat insulating layer, and the diameter is 2 to 4 μm and the length is 2 to 4 μm.
4M zirconia fiber was sprayed. After a desired layer of this zirconia fiber was laminated, the same heat treatment as above was performed to form a refractory layer with a thickness of 0.5 degrees.

得られた断熱マニホルドについて実施例1と同じ試験を
行ったが、コーディング層の破損や亀裂及び剥離は全く
見られなかった。
The obtained heat insulating manifold was subjected to the same test as in Example 1, but no damage, cracks or peeling of the coating layer was observed.

実施例4 予めP Hi o〜11のアルカリ性溶液で脱脂処理を
施した酸化皮膜を有する球状黒鉛鋳鉄製マニホルドの内
面に、第一段階として実施例1と同じ無n質結合剤溶液
を噴霧状として塗布した。直ちに断熱材粉末として嵩比
重0.2)粒径44〜150μmのアルミナ・シリカ質
中空粒子(シラスバルーン)と、無鍬賀ファイバーとし
て直径2〜4μm、長さ2〜10μmのミルドファイバ
ーとの混合物(重量比25 : 75)を送給し、無機
11結合剤溶液の塗膜に付着させた後、乾燥した。上記
断熱材粉末とミルドファイバーとの混合物の層を所望層
積層して、厚さ3順の断熱層を形成した。
Example 4 As a first step, the same n-free binder solution as in Example 1 was sprayed onto the inner surface of a spheroidal graphite cast iron manifold having an oxide film that had been previously degreased with an alkaline solution of P Hi o to 11. Coated. A mixture of alumina-siliceous hollow particles (shirasu balloons) with a bulk specific gravity of 0.2) particle size of 44 to 150 μm immediately as a heat insulating material powder and milled fibers with a diameter of 2 to 4 μm and a length of 2 to 10 μm as Mujiga fiber. (weight ratio 25:75) was applied to the coating film of the inorganic 11 binder solution and then dried. Desired layers of the mixture of the above heat insulating material powder and milled fiber were laminated to form heat insulating layers of three thicknesses.

これを180℃で3時間熱処理した。This was heat treated at 180°C for 3 hours.

青られた断熱マニホルドについて実施例1と同じ試験を
行ったが、コーティング層の破損や亀裂及び剥離は全く
見られなかった。
The same test as in Example 1 was conducted on the blued insulation manifold, but no damage, cracking, or peeling of the coating layer was observed.

X1■1 予めPH10〜11のアルカリ性溶液で脱脂処理を施し
た酸化皮膜を有する球状黒鉛鋳鉄製マニホルドの内面に
、第一段階として実施例1と同じ無機質結合剤溶液を噴
霧状として塗布した。直ちに断熱材粉末として嵩比重0
.2)粒径44〜150μmのアルミナ・シリカ質中空
粒子(シラスバルーン)と、無R質ファイバーとして直
径2〜4μm1長さ2〜10μmのミルドファイバーと
の混合物(重量化25ニア5)を送給し、無別賀結合剤
溶液の塗膜に何者させた後、乾燥した。上記断熱材粉末
とミルドファイバーとの混合物の層を所望層積層して厚
さ3闇の断熱層を得た。これを180℃で3時間熱処理
した。
X1■1 As a first step, the same inorganic binder solution as in Example 1 was applied in the form of a spray onto the inner surface of a spheroidal graphite cast iron manifold having an oxide film that had been previously degreased with an alkaline solution having a pH of 10 to 11. Bulk specific gravity is 0 immediately as insulation powder
.. 2) Feed a mixture of alumina-siliceous hollow particles (shirasu balloon) with a particle size of 44 to 150 μm and milled fibers with a diameter of 2 to 4 μm and a length of 2 to 10 μm (weighting: 25 near 5) as R-free fibers. Then, the coated film of Mubetsu binder solution was applied and dried. Desired layers of the mixture of the above heat insulating material powder and milled fiber were laminated to obtain a heat insulating layer with a thickness of 3 mm. This was heat treated at 180°C for 3 hours.

第二段階として上記の断熱層の上に上記と同一の無門質
結合剤溶液を塗布し、さらに粒径44〜150μmの安
定化ジルコニア粒子を散布した。
As a second step, the same aporous binder solution as above was applied onto the heat insulating layer, and stabilized zirconia particles having a particle size of 44 to 150 μm were further sprinkled thereon.

このジルコニア粒子層を所望層積層した後、上記と同一
の熱処理を行い、厚さ0.5穎の耐火層を形成した。
After laminating the desired zirconia particle layers, the same heat treatment as above was performed to form a fireproof layer with a thickness of 0.5 mm.

青られた断熱マニホルドについて実施例1と同じ試験を
行ったが、コーティング層の破損や亀裂及び剥離は全く
見られなかった。
The same test as in Example 1 was conducted on the blued insulation manifold, but no damage, cracking, or peeling of the coating layer was observed.

[発明の効果1 本発明の排気系機器においては断熱層及び/又は耐火層
に無りa質ファイバーを含有させであるので、優れた耐
熱性及び耐火性を有するのみならず、耐熱衝撃性、耐振
動性及び耐歪性も侵れている。
[Effect of the invention 1] Since the exhaust system equipment of the present invention contains A-quality fibers in the heat insulating layer and/or the fireproof layer, it not only has excellent heat resistance and fire resistance, but also has excellent thermal shock resistance, Vibration resistance and distortion resistance are also affected.

従って、実際の排気ガス条件下でも亀裂や剥離を生じる
ことなく、茗しく長い耐用寿命を有する。
Therefore, it has a long service life without cracking or peeling even under actual exhaust gas conditions.

Claims (8)

【特許請求の範囲】[Claims] (1)内面に断熱層を有する排気系機器において、前記
断熱層が断熱材粉末と無機質ファイバーとからなること
を特徴とする排気系機器。
(1) An exhaust system device having a heat insulating layer on its inner surface, wherein the heat insulating layer is made of heat insulating powder and inorganic fiber.
(2)特許請求の範囲第1項に記載の排気系機器におい
て、前記断熱層は前記断熱材粉末と前記無機質ファイバ
ーとが混在してなることを特徴とする排気系機器。
(2) The exhaust system equipment according to claim 1, wherein the heat insulating layer is made of a mixture of the heat insulating material powder and the inorganic fiber.
(3)特許請求の範囲第1項に記載の排気系機器におい
て、前記断熱層は前記断熱材粉末からなる層と前記無機
質ファイバーからなる層とが積層してなることを特徴と
する排気系機器。
(3) The exhaust system equipment according to claim 1, wherein the heat insulating layer is formed by laminating a layer made of the heat insulating material powder and a layer made of the inorganic fiber. .
(4)特許請求の範囲第1項乃至第3項のいずれかに記
載の排気系機器において、前記断熱層の上に耐火材粉末
を主体とする耐火層を有することを特徴とする排気系機
器。
(4) The exhaust system equipment according to any one of claims 1 to 3, characterized in that the exhaust system equipment has a fire-resistant layer mainly made of fire-resistant material powder on the heat-insulating layer. .
(5)特許請求の範囲第4項に記載の排気系機器におい
て、前記耐火層が前記無機質ファイバー又は、前記無機
質ファイバーより耐火性の優れたセラミックファイバー
を含有することを特徴とする排気系機器。
(5) The exhaust system device according to claim 4, wherein the fireproof layer contains the inorganic fiber or a ceramic fiber that has better fire resistance than the inorganic fiber.
(6)特許請求の範囲第5項に記載の排気系機器におい
て、前記無機質ファイバー又は前記セラミックファイバ
ーが前記耐火材粉末と混在していることを特徴とする排
気系機器。
(6) The exhaust system equipment according to claim 5, wherein the inorganic fiber or the ceramic fiber is mixed with the refractory material powder.
(7)特許請求の範囲第5項に記載の排気系機器におい
て、前記無機質ファイバー又は前記セラミックファイバ
ーの層が前記耐火材粉末の層と積層して前記耐火層を構
成していることを特徴とする排気系機器。
(7) The exhaust system equipment according to claim 5, characterized in that the layer of the inorganic fiber or the ceramic fiber is laminated with the layer of the refractory material powder to constitute the refractory layer. exhaust system equipment.
(8)内面に断熱層を有する排気系機器において、前記
断熱層が無機質ファイバーのみからなることを特徴とす
る排気系機器。
(8) An exhaust system device having a heat insulating layer on its inner surface, wherein the heat insulating layer is made only of inorganic fibers.
JP13237587A 1986-06-26 1987-05-28 Exhaust system equipment Pending JPS63154815A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP14827886 1986-06-26
JP61-148278 1986-06-26
JP61-168123 1986-07-18
JP61-168122 1986-07-18
JP61-168121 1986-07-18
JP61-168124 1986-07-18

Publications (1)

Publication Number Publication Date
JPS63154815A true JPS63154815A (en) 1988-06-28

Family

ID=15449187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13237587A Pending JPS63154815A (en) 1986-06-26 1987-05-28 Exhaust system equipment

Country Status (1)

Country Link
JP (1) JPS63154815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105901A (en) * 2006-10-25 2008-05-08 Shinei Sangyo Kk Heat insulating material and method of producing the heat insulating material
JP2012167543A (en) * 2011-02-09 2012-09-06 Ibiden Co Ltd Structure, and method of manufacturing the same
US9074705B2 (en) 2011-03-28 2015-07-07 Ibiden Co., Ltd. Exhaust pipe and method for manufacturing exhaust pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105901A (en) * 2006-10-25 2008-05-08 Shinei Sangyo Kk Heat insulating material and method of producing the heat insulating material
JP2012167543A (en) * 2011-02-09 2012-09-06 Ibiden Co Ltd Structure, and method of manufacturing the same
US9074705B2 (en) 2011-03-28 2015-07-07 Ibiden Co., Ltd. Exhaust pipe and method for manufacturing exhaust pipe

Similar Documents

Publication Publication Date Title
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
US4975314A (en) Ceramic coating bonded to metal member
CN113004029B (en) High-temperature-resistant ceramic coating with double-layer structure and preparation method and application thereof
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
JPS63154815A (en) Exhaust system equipment
US5167988A (en) Ceramic coating bonded to iron member
JPS62211138A (en) Heat-insulating member
JP4297204B2 (en) Inorganic fiber molded body coating material and coated inorganic fiber molded body
JPS62107075A (en) Method for coating inside surface of exhaust apparatus
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS62107076A (en) Production of heat insulating metallic member
JPH0250994B2 (en)
JPS62107079A (en) Method for coating inside surface of exhaust apparatus
JPS62107086A (en) Production of heat insulating metallic member
JPS62107077A (en) Method for coating inside surface of exhaust apparatus
JPS61163282A (en) Production of heat insulating metallic member
JPS61244817A (en) Manufacture of heat insulating manifold
JPS62107078A (en) Method for coating inside surface of exhaust apparatus
JPS62107085A (en) Method for coating inside surface of exhaust apparatus
JPS5899180A (en) Manufacture of exhaust gas instrument for internal combustion engine
JPS61244818A (en) Heat insulating manifold
KR20220000443A (en) Method of manufacturing molded composite and molded composite manufactured by the method
JPS61244819A (en) Heat insulating manifold
JPS63129114A (en) Exhaust system apparatus and manufacture thereof