JPS62107079A - Method for coating inside surface of exhaust apparatus - Google Patents

Method for coating inside surface of exhaust apparatus

Info

Publication number
JPS62107079A
JPS62107079A JP24829585A JP24829585A JPS62107079A JP S62107079 A JPS62107079 A JP S62107079A JP 24829585 A JP24829585 A JP 24829585A JP 24829585 A JP24829585 A JP 24829585A JP S62107079 A JPS62107079 A JP S62107079A
Authority
JP
Japan
Prior art keywords
layer
heat insulating
refractory
powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24829585A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Kimiteru Otsuka
公輝 大塚
Kanesuke Kido
木戸 兼介
Toshiyuki Ochi
越智 淑行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP24829585A priority Critical patent/JPS62107079A/en
Publication of JPS62107079A publication Critical patent/JPS62107079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form an inside surface coating having excellent heat insulating and fire resisting characteristics by attaching a swiveling feed pipe to the aperture at one end of an exhaust apparatus for an exhaust gas, blowing an inorg. binder, with fire resisting heat insulating material, fire resisting material, etc. therethrough to form a fire resisting heat insulating layer and fire resisting layers then heating these layers to a high temp. CONSTITUTION:The swiveling feed pipe is connected to the aperture at one end of the exhaust manifold of an internal combustion engine and an aq. soln. of 20-60wt% inorg. binder such as sodium silicate is blown in the formed of a mist to the inside surface of the manifold to form the layer of the aq. binder soln. by centrifugal force. Powder of the refractory heat insulating material such as pearlite is blown immediately thereafter and is stuck to the binder layer. The stuck powder is then dried and solidified by heating to about 300 deg.C. The aq. soln. of the above-mentioned sodium silicate is again swiveled and blown and immediately thereafter, refractory powder of zirconia, etc. is blown and stuck thereto and is solidified by drying at about 300 deg.C. The solidified powder is then heated to 800-1,000 deg.C, by which the inside surface coating layer having the excellent heat insulating and refractory characteristics is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱性並びに耐火性に優れた排気系機器の内面
コーティング法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for coating the inner surface of exhaust system equipment with excellent heat insulation and fire resistance.

〔従来の技術〕[Conventional technology]

内燃機関の排気系機器、特にマニホルドは内面がシリン
ダーより排出される高温、高圧の燃焼ガスに接するため
、その影響を強く受け、長時間使用することができない
難点があり、又断熱性が小さい欠点があった。
The internal combustion engine exhaust system equipment, especially the manifold, has the disadvantage that its inner surface is in contact with the high-temperature, high-pressure combustion gas discharged from the cylinder, so it is strongly affected by it and cannot be used for a long time, and it also has poor insulation properties. was there.

特開昭58−991’80号は排気マニホルド等の内燃
機関用排気ガス系機器の内面に耐火断熱コーティングを
施こす方法を開示している。この方法は、高熱の排気ガ
スに接する金属製機器本体の内面に耐火物原料粒子と無
機質結合材とフリットの混和物よりなる泥漿を付着させ
て耐熱被覆層を形成し、続いて、該耐熱被覆層が湿潤状
態にある間にその表面に耐火断熱材粒子を付着させて耐
火断熱層を形成し、次いで、前記耐熱被覆層を固化させ
たうえ該耐火断熱層の表面に耐火物原料粒子と無機質結
合材とフリットの混和物よりなる泥漿を付着させて耐熱
被覆層を形成させることを特徴とし、必要に応じて前記
外層の耐熱被覆層の表面に前記耐火断熱層と同材の耐火
断熱層および前記耐熱被覆層と同材の耐熱被覆層を順次
反復して所要層形成させるものである。この方法により
、耐熱被覆層と耐火断熱層と耐熱被覆層との三層が一体
化して積層されたコーティングが形成される。
JP-A-58-991'80 discloses a method for applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold. In this method, a heat-resistant coating layer is formed by attaching a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit to the inner surface of a metal device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is formed. While the layer is in a wet state, refractory insulation material particles are attached to the surface thereof to form a refractory insulation layer, and then the heat resistant coating layer is solidified, and refractory raw material particles and inorganic materials are applied to the surface of the refractory insulation layer. A heat-resistant coating layer is formed by adhering a slurry made of a mixture of a binder and a frit, and if necessary, a fire-resistant heat-insulating layer made of the same material as the fire-resistant heat-insulating layer is applied to the surface of the outer heat-resistant coating layer. Heat-resistant coating layers made of the same material as the heat-resistant coating layer are sequentially repeated to form required layers. By this method, a coating is formed in which the three layers of the heat-resistant coating layer, the fire-resistant heat insulating layer, and the heat-resistant coating layer are integrated and laminated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記方法においてはコーティング材料を
泥漿状にしてコーティングするため、被覆層中の水分量
が比較的多くならざるを得ず、乾燥時に亀裂が生じ、ま
た熱処理時の収縮が大きく。
However, in the above method, since the coating material is coated in the form of a slurry, the amount of water in the coating layer must be relatively large, causing cracks during drying and large shrinkage during heat treatment.

剥離、破損が起こりがちである。また高温の排気ガスに
より急激に加熱される際にも熱?fr撃により亀裂が生
じるおそれが大きい。
Peeling and breakage are likely to occur. Also, does it generate heat when it is rapidly heated by high-temperature exhaust gas? There is a high possibility that cracks will occur due to the impact.

〔問題点を解決するための手段〕[Means for solving problems]

未発明省等は、これらの欠点にがんかみ種々研究を重ね
た結果、排気系機器の内面に耐火断熱層と耐火層を形成
させ、熱処理を行うことにより亀裂・剥離のない耐火・
断熱コーティングを形成することができることを発見し
、本発明を完成するに至った。
The Ministry of Invention and others has conducted various studies to address these shortcomings, and as a result, they have developed a fireproof and heat-resistant layer that does not crack or peel by forming a fireproof heat insulating layer and a fireproof layer on the inner surface of exhaust system equipment and performing heat treatment.
They discovered that it is possible to form a heat insulating coating, leading to the completion of the present invention.

すなわち、本発明の排気系機器の内面コーティング法は
、排気系機器の内面に耐火断熱層及び耐火層を形成する
排気系機器の内面コーティング法であって、排気系機器
の一端の開口部に粉状或いは霧状の材料を旋回させつつ
送給する旋回送給管を接続し、上記旋回送給管より無機
質結合剤を送給し、直ちに耐火断熱材を送給して耐火断
熱層を形成し、熱処理により乾燥・固化した後、無機質
結合剤を送給し、直ちに耐火材を送給して耐火層を形成
し、熱処理により乾燥・固化し、必要に応じて上記耐火
断熱層と耐火層を所望層形成するものである。
That is, the method for coating the inside surface of exhaust system equipment of the present invention is a method for coating the inside surface of exhaust system equipment that forms a fireproof heat insulating layer and a fireproof layer on the inside surface of the exhaust system equipment, and is a method for coating the inside surface of exhaust system equipment by forming a fireproof heat insulating layer and a fireproof layer on the inside surface of the exhaust system equipment. Connect a swirling feed pipe that feeds the material in the form of a swirl or mist, feed the inorganic binder from the swirl feed pipe, and immediately feed the fireproof heat insulating material to form a fireproof heat insulating layer. , After drying and solidifying by heat treatment, feed an inorganic binder, immediately feed a refractory material to form a fireproof layer, dry and harden by heat treatment, and if necessary, apply the above fireproof insulation layer and fireproof layer. A desired layer is formed.

本発明のコーティング法において接着性を付与するため
に使用する無機質結合剤としては、珪酸ソーダ、珪酸カ
リ、珪酸リチュームなどの珪酸塩結合剤、第一リン酸ア
ルミニュウム、第一リン酸カルシウム、第一リン酸マグ
ネシウム、縮合リン酸塩、リン酸等のリン酸系結合剤、
コロイダルシリカ、コロイダルアルミナ、コロイダルジ
ルコニア等のゾル系結合剤、エチルシリケート等が適当
である。
Inorganic binders used to impart adhesive properties in the coating method of the present invention include silicate binders such as sodium silicate, potassium silicate, lithium silicate, monobasic aluminum phosphate, monobasic calcium phosphate, monobasic phosphoric acid, etc. Phosphate binders such as magnesium, condensed phosphates, phosphoric acid,
Sol binders such as colloidal silica, colloidal alumina, and colloidal zirconia, ethyl silicate, and the like are suitable.

結合剤は水溶液の形で使用するが、その濃度は20〜6
0wt%が好ましい。20%より低いと接着力が小さく
剥離しやすい。また60%より高いと塗布作業が困麺と
なる。より好ましくは25〜55wt%である。
The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
0 wt% is preferred. If it is lower than 20%, the adhesive strength is low and it is easy to peel off. Moreover, if it is higher than 60%, the coating operation becomes difficult. More preferably, it is 25 to 55 wt%.

結合剤溶液に、硬化剤を適量添加することもできる。硬
化剤は結合剤の種類によって異なるがそれぞれ公知のも
のが使用できる。例えば珪酸塩結合剤に対しては珪弗化
ソーダ、焼成リン酸アルミニウム、ダイカルシウムシリ
ケート、炭酸ガスなどがある。また第一リン酸アルミニ
ウムに対してはマグネシア、ライムなどの塩基性酸化物
、カルシウムアルミネート、弗化アンモニウム等がある
Appropriate amounts of curing agents can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. Examples of silicate binders include sodium silicate, calcined aluminum phosphate, dicalcium silicate, and carbon dioxide. For primary aluminum phosphate, there are basic oxides such as magnesia and lime, calcium aluminate, ammonium fluoride, and the like.

断熱性を付与するために使用する耐火断熱材はシラスバ
ルーン、発泡シリカ、パーライト等の無機質断熱材であ
る。その粉末の粒径は一般に10〜500μmの範囲が
適当である。10μmより小さいと、収縮による亀裂・
剥離を生じるし、500μmより大きいと、平滑な皮膜
層を形成しにくい。より好ましい粒径範囲は20〜20
0μmである。耐火材としてはパイレックスガラス、溶
融シリカ、コージェライト、シャモット、ムライト、ア
ルミナ、ジルコン、ジルコニア等の一般的に使用される
ものでよいが、特にジルコニアは熱伝導率が低いので好
ましい。耐火材粉末の粒径は一般に10〜500μmの
範囲が適当である。10μmより小さいと粒子間の凝集
が起こりやすく、平滑な皮膜層を形成しにくいし、高熱
の影響を受けて収縮しやすい。また500μmより大き
いと、平滑な皮膜を形成しにくい。より好ましい粒径範
囲は20〜200μmである。
The fireproof heat insulating material used to provide heat insulation properties is an inorganic heat insulating material such as glass balloon, foamed silica, and perlite. The particle size of the powder is generally in the range of 10 to 500 μm. If it is smaller than 10 μm, cracks and cracks due to shrinkage may occur.
Peeling occurs, and if it is larger than 500 μm, it is difficult to form a smooth film layer. A more preferable particle size range is 20 to 20
It is 0 μm. As the refractory material, commonly used materials such as Pyrex glass, fused silica, cordierite, chamotte, mullite, alumina, zircon, and zirconia may be used, but zirconia is particularly preferred because of its low thermal conductivity. The particle size of the refractory powder is generally in the range of 10 to 500 μm. If it is smaller than 10 μm, agglomeration between particles tends to occur, making it difficult to form a smooth film layer, and easily shrinking under the influence of high heat. Moreover, if it is larger than 500 μm, it is difficult to form a smooth film. A more preferable particle size range is 20 to 200 μm.

本発明のコーティング法は耐火断熱層を形成する段階と
耐状層を形成する段階とを有する。
The coating method of the present invention includes a step of forming a fireproof heat insulating layer and a step of forming a resistant layer.

耐火断熱層を形成する場合、まず排気系機器の内面に無
機質結合剤溶液を旋回送給し塗布する。
When forming a fireproof heat insulating layer, first, an inorganic binder solution is swirled and applied to the inner surface of the exhaust system equipment.

これにより排気系機器の内面は一様に結合剤溶液で濡れ
る。これに耐火断熱材粉末を旋回送給すると遠心力によ
り無機質結合剤溶液に強固に付着し、付着の不充分な粉
末は旋回気流によって吹き飛ばし、均一な耐火断熱層が
形成される。この層の厚さは結合剤溶液の濃度および厚
さにより異なるが、一般に0.1〜1゜5mmである。
As a result, the inner surface of the exhaust system equipment is uniformly wetted with the binder solution. When the refractory heat insulating material powder is fed in a swirling manner, it firmly adheres to the inorganic binder solution due to centrifugal force, and powder that is insufficiently adhered is blown away by the swirling airflow, forming a uniform fireproof heat insulating layer. The thickness of this layer varies depending on the concentration and thickness of the binder solution, but is generally between 0.1 and 1.5 mm.

以上の方法により形成した結合剤溶液含浸耐火断熱材粉
末層は、泥漿状にして塗布した層と比較して、水分が非
常に少ない。これは本発明の著しい特徴である。かかる
特徴により、次の熱処理による乾燥・固化工程において
断熱層に亀裂が生じたり層が剥離したりすることはない
The binder solution-impregnated refractory insulation powder layer formed by the above method has a significantly lower moisture content than a layer applied in the form of a slurry. This is a significant feature of the invention. Due to these characteristics, the heat insulating layer will not crack or the layer will peel off during the subsequent drying and solidification process by heat treatment.

上記層の熱処理は約300℃まで除々に加熱することに
より行なう。急激な加熱は層の亀裂や剥離を引き起こす
おそれがあるので、避けるべきである。好ましくは、層
を室温で自然乾燥し、しかる後陣々に温度を上げる。例
えば自然乾燥後、50℃に1時間保持し、次に100℃
に1時間保持する。さらに安定性向上のためには、30
0℃まで加熱することが望ましい。
The heat treatment of the layer is carried out by gradually heating it to about 300°C. Rapid heating should be avoided as this may cause cracking and delamination of the layers. Preferably, the layer is allowed to air dry at room temperature, with subsequent increases in temperature. For example, after air drying, hold at 50℃ for 1 hour, then 100℃
Hold for 1 hour. To further improve stability, 30
It is desirable to heat to 0°C.

次に、必要とあらば、上記の耐火断熱材層の上にさらに
同様の方法により結合剤溶液を塗布し、耐火断熱材粉末
を付着させ、熱処理により乾燥・固化させる。比較的厚
い耐火断熱層を得るためには、このサイクルを数回繰り
返す。充分な断熱性を確保するためには、耐火断熱層は
1.5mm以上必要である。
Next, if necessary, a binder solution is further applied on the above-described refractory heat insulating material layer by the same method, and the refractory heat insulating material powder is adhered thereto, followed by drying and solidification by heat treatment. This cycle is repeated several times to obtain a relatively thick refractory insulation layer. In order to ensure sufficient heat insulation properties, the fireproof heat insulation layer needs to be 1.5 mm or more.

このようにして形成された耐火断熱層の上に耐火層を形
成する必要がある。耐火層はまず無機質結合剤溶液を旋
回送給管より送給して付着させ、直ちに耐火材粉末を旋
回送給管より送給し、熱処理により乾燥・固化する工程
を含む方法により形成する。
It is necessary to form a refractory layer on the refractory heat insulating layer thus formed. The refractory layer is formed by a method including the steps of first feeding an inorganic binder solution through a rotating feed pipe to deposit it, immediately feeding refractory material powder through a rotating feed pipe, and drying and solidifying it by heat treatment.

具体的な条件は、耐火材粉末を使用すること以外耐火断
熱層の形成条件と実質的に同一である。
The specific conditions are substantially the same as the conditions for forming the fireproof heat insulating layer except for using the fireproof material powder.

耐火層は上記工程からなるーサイクルのみで形成するこ
とができるが、必要とあらば数回繰り返してもよい。か
かる方法により0.5mm以上の耐火層を形成する。
The refractory layer can be formed only by a cycle consisting of the above steps, but the steps may be repeated several times if necessary. By this method, a refractory layer of 0.5 mm or more is formed.

このように耐火断熱層と耐火層とからなるコーティング
層を形成した排気系機器を炉内で800〜1,000℃
にて5〜120分間熱処理してコーティング作業を完了
するものである。
The exhaust system equipment on which the coating layer consisting of the refractory heat insulating layer and the refractory layer has been formed is heated to 800 to 1,000°C in a furnace.
The coating process is completed by heat treatment for 5 to 120 minutes.

この際800℃より低いと水ガラスがガラス化しないた
め完全なコーティング層が形成されず、1゜000℃を
超えても何等の効果も期待できず熱エネルギー的に不利
である。最も好ましい温度は850〜970℃である。
In this case, if the temperature is lower than 800°C, the water glass will not vitrify and a complete coating layer will not be formed, and if the temperature exceeds 1°000°C, no effect can be expected and it is disadvantageous in terms of thermal energy. The most preferred temperature is 850-970°C.

この熱処理は炉内で加熱する他、排気系機器内に熱風を
通過させる方法でもよい。
This heat treatment may be performed by heating in a furnace or by passing hot air through exhaust system equipment.

〔実施例〕〔Example〕

本発明を以下の実施例により詳細に説明する。 The present invention will be explained in detail by the following examples.

実施例1 予めPHIO〜11のアルカリ性溶液で脱脂処理を施し
た酸化皮膜を有する鋳鉄製マニホルドの内面に、第一段
階として珪曹比2.9、濃度45wt%の珪酸ソーダ水
溶液に硬化剤として焼成リン酸アルミニウム(ヘキスト
社製H,Bハードナー)を10wt%添加したものを5
 k g/ c m”の空気とともに噴霧状として旋回
送給管より送給した。
Example 1 The inner surface of a cast iron manifold having an oxide film that had been previously degreased with an alkaline solution of PHIO to 11 was baked as a hardening agent in a sodium silicate aqueous solution with a silica ratio of 2.9 and a concentration of 45 wt% as a first step. 5 to which 10 wt% of aluminum phosphate (H, B hardener manufactured by Hoechst) was added.
It was delivered in the form of a spray along with 1 kg/cm" of air through a rotating feed pipe.

直ちに断熱材として嵩比重0.2、粒径44〜150μ
mのシラスバルーンを旋回送給管より送給した6 シラスバルーンが充分に付着した後、室温で1時間保持
し、次に50℃に昇温しで1時間保持し、さらに100
℃に昇温しで1時間保持し、最後に300℃に昇温しで
1時間保持した。この熱処理により耐火断熱層を完全に
固化した。このプロセスをさらに2回繰り返し、厚さ3
mmの耐火断熱層を形成した。
Immediately used as a heat insulating material with a bulk specific gravity of 0.2 and a particle size of 44 to 150μ
After the 6-m whitebait balloons were fed from the rotating feed pipe and the whitebait balloons were sufficiently attached, the temperature was raised to 50°C and held for 1 hour, and then the temperature was raised to 50°C and held for 1 hour.
The temperature was raised to 300°C and held for 1 hour, and finally to 300°C and held for 1 hour. This heat treatment completely solidified the fireproof heat insulating layer. Repeat this process two more times until thickness 3
A fireproof heat insulating layer of mm was formed.

第二段階として上記の耐火断熱層の上に上記と同一の無
機質結合剤を送給塗布し、さらに粒径44〜150μm
の安定化ジルコニア粒子を散布した後、上記と同一の熱
処理を行ない、厚さ0.5mmの耐火層を形成した。
In the second step, the same inorganic binder as above is applied on top of the fireproof heat insulating layer, and the particle size is 44 to 150 μm.
After scattering the stabilized zirconia particles, the same heat treatment as above was performed to form a fireproof layer with a thickness of 0.5 mm.

このように耐火断熱層と耐火層とを形成せるマニホルド
を炉内で950℃にて1.5時間熱処理してコーティン
グ作業を完了した。
The manifold on which the refractory heat insulating layer and the refractory layer were formed was heat treated in a furnace at 950° C. for 1.5 hours to complete the coating operation.

得られたマニホルドのコーティング層には全く亀裂は見
られず、またマニホルドに対して1,000℃の燃焼ガ
スによる加熱と大気による冷却を100回繰り返したが
コーティング層の亀裂や剥離は全く見られなかった。
No cracks were observed in the coating layer of the obtained manifold, and even though the manifold was heated with combustion gas at 1,000°C and cooled with air 100 times, no cracks or peeling of the coating layer were observed. There wasn't.

実施例2 あらかじめPHIO〜11のアルカリ性溶液で脱脂処理
を施した酸化皮膜を有する鋳鉄製マニホルドの内面に第
一段階として珪曹比3.0. ′a度40 w t%の
珪酸ソーダ水溶液に硬化剤として焼成リン酸アルミニウ
ム(ヘキスト社製H,Bハードナー)を8wt%添加し
たものを旋回送給管より送給した。直ちに断熱材として
嵩比重o、22、粒径44〜150μmのパーライトを
旋回送給管より送給した。実施例1と同じ方法により熱
処理を施し、耐火断熱層を完全に固化した。このプロセ
スをさらに2回繰り返し厚さ3mmの耐火断熱層を形成
した。
Example 2 As a first step, a silica ratio of 3.0. A sodium silicate aqueous solution having a degree of 40 wt % and 8 wt % of calcined aluminum phosphate (H, B hardener manufactured by Hoechst Co., Ltd.) added as a hardening agent was fed through a rotating feed pipe. Immediately, pearlite having a bulk specific gravity of 0, 22 and a particle size of 44 to 150 μm was fed as a heat insulating material through a rotating feed pipe. Heat treatment was performed in the same manner as in Example 1 to completely solidify the fireproof heat insulating layer. This process was repeated two more times to form a fireproof heat insulating layer with a thickness of 3 mm.

第二段階として、上記耐火断熱層の上に上記と同一の無
機質結合剤を旋回送給管より送給しさらに粒径44〜1
50μmの安定化ジルコニア粒を散布した後、上記と同
一の熱処理を行ない厚さ0゜5mmの耐火層を形成した
As a second step, the same inorganic binder as above is fed from the swirling feed pipe onto the fireproof heat insulating layer, and the particle size is 44 to 1.
After scattering stabilized zirconia grains of 50 .mu.m, the same heat treatment as above was carried out to form a refractory layer with a thickness of 0.5 mm.

このように耐火断熱層と耐火層とを形成せるマニホルド
を実施例1と同一方法で加熱処理してコーティング作業
を完了した。
The manifold on which the fireproof heat insulating layer and the fireproof layer were formed was heat treated in the same manner as in Example 1 to complete the coating operation.

得られたマニホルドのコーティング層には全く亀裂は見
られず、またマニホルドに対して1,000℃の燃焼ガ
スによる加熱と大気による冷却を100回繰り返したが
コーティング層の亀裂や剥離は全く見られなかった。
No cracks were observed in the coating layer of the obtained manifold, and even though the manifold was heated with combustion gas at 1,000°C and cooled with air 100 times, no cracks or peeling of the coating layer were observed. There wasn't.

本実施例はマニホルドについて述へたが、本発明はこれ
に限定されるものではなく、ボートライナー、タービン
ハウジングなど排気系機器のコーティング層形成に応用
できるものである。
Although this embodiment has been described with respect to a manifold, the present invention is not limited thereto, and can be applied to forming a coating layer on exhaust system equipment such as boat liners and turbine housings.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は結合剤溶液に耐火断熱材粉末や耐火材粉
末を旋回気流とともに送給して付着させることにより、
耐火断熱層、耐火層を形成するので、乾燥・固化後も亀
裂や剥離が生ぜず、また高温ガスによる加熱と冷却のサ
イクルを繰り返しても亀裂や剥離を起さない。
The method of the present invention involves feeding a refractory insulation powder or a refractory material powder to a binder solution with a swirling air flow to make it adhere to the binder solution.
Since it forms a fireproof heat insulating layer and a refractory layer, it does not crack or peel even after drying and solidifying, and it does not crack or peel even after repeated cycles of heating and cooling with high-temperature gas.

また結合剤溶液、耐火断熱材、耐火材は旋回送給管によ
り旋回気流で送給されるので、むらのない均一なコーテ
ィング層を得ることができ数回のコーティングを繰り返
すことにより所望厚さのコーティング層を得ることがで
きるものである。
In addition, since the binder solution, fireproof insulation material, and refractory material are fed by swirling airflow through the swirling feed pipe, it is possible to obtain an even and uniform coating layer, and by repeating coating several times, the desired thickness can be achieved. A coating layer can be obtained.

□゛′1−12□゛′1-12

Claims (1)

【特許請求の範囲】[Claims] 排気系機器の内面に耐火断熱層及び耐火層を形成する排
気系機器の内面コーティング法において、排気系機器の
一端の開口部に粉状或いは霧状の材料を旋回させつつ送
給する旋回送給管を接続し、上記旋回送給管より無機質
結合剤を送給し、直ちに耐火断熱材を送給して耐火断熱
層を形成し、熱処理により乾燥・固化した後、無機質結
合剤を送給し、直ちに耐火材を送給して耐火層を形成し
、熱処理により乾燥・固化し、必要に応じて上記耐火断
熱層と耐火層を所望層形成することを特徴とする排気系
機器の内面コーティング法。
In the internal coating method for exhaust system equipment that forms a fireproof heat insulating layer and a refractory layer on the inside surface of the exhaust system equipment, swirling feeding is used to swirl and feed a powder or mist material to an opening at one end of the exhaust system equipment. Connect the pipes, feed the inorganic binder from the above-mentioned swirl feed pipe, immediately feed the fireproof heat insulating material to form a fireproof heat insulating layer, dry and solidify by heat treatment, and then feed the inorganic binder. A method for coating the inner surface of exhaust system equipment, characterized by immediately feeding a refractory material to form a refractory layer, drying and solidifying it by heat treatment, and optionally forming the above-mentioned refractory heat insulating layer and refractory layer as desired. .
JP24829585A 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus Pending JPS62107079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24829585A JPS62107079A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24829585A JPS62107079A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Publications (1)

Publication Number Publication Date
JPS62107079A true JPS62107079A (en) 1987-05-18

Family

ID=17175959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24829585A Pending JPS62107079A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Country Status (1)

Country Link
JP (1) JPS62107079A (en)

Similar Documents

Publication Publication Date Title
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
JPH01145383A (en) Ceramic and metal conjugate and production thereof
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
JPS61111973A (en) Spray method for refractory spray material
JPS62107075A (en) Method for coating inside surface of exhaust apparatus
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS62107079A (en) Method for coating inside surface of exhaust apparatus
JPS62107076A (en) Production of heat insulating metallic member
JPS62107085A (en) Method for coating inside surface of exhaust apparatus
JPS63154815A (en) Exhaust system equipment
JPS62107078A (en) Method for coating inside surface of exhaust apparatus
JPS62107077A (en) Method for coating inside surface of exhaust apparatus
JPH11222564A (en) Oxidationproof coating composition for steel material
JPS62107086A (en) Production of heat insulating metallic member
JPS62107081A (en) Method for coating inside surface of exhaust apparatus
JPS62107080A (en) Method for coating inside surface of exhaust apparatus
CN109553424A (en) A kind of fiber reinforced high-temperature-resistant lightweight alumina-silica foaming coating
JPS61163282A (en) Production of heat insulating metallic member
JPS62211138A (en) Heat-insulating member
JPS61244819A (en) Heat insulating manifold
JPS62107083A (en) Exhaust apparatus
JPS61244817A (en) Manufacture of heat insulating manifold
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JPS62107082A (en) Exhaust apparatus
JPS62107087A (en) Exhaust apparatus