JPS62107084A - Method for coating inside surface of exhaust apparatus - Google Patents

Method for coating inside surface of exhaust apparatus

Info

Publication number
JPS62107084A
JPS62107084A JP24830085A JP24830085A JPS62107084A JP S62107084 A JPS62107084 A JP S62107084A JP 24830085 A JP24830085 A JP 24830085A JP 24830085 A JP24830085 A JP 24830085A JP S62107084 A JPS62107084 A JP S62107084A
Authority
JP
Japan
Prior art keywords
layer
refractory
fireproof
heat insulating
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24830085A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Kimiteru Otsuka
公輝 大塚
Kanesuke Kido
木戸 兼介
Toshiyuki Ochi
越智 淑行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP24830085A priority Critical patent/JPS62107084A/en
Publication of JPS62107084A publication Critical patent/JPS62107084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an inside surface coating layer having excellent heat insulating, refractory and water resistant characteristics by connecting a swiveling feed pipe and suction pipe for raw materials to the apertures at both ends of an exhaust apparatus for an exhaust gas and formed a refractory heat insulating layer consisting of an inorg. binder, refractory heat insulating material, and refractory material, refractory layer and protective layer consisting of a slurry of an inorg. binder and protective material. CONSTITUTION:The swiveling feed pipe and suction pipe are connected to the apertures at both ends of the exhaust manifold of an internal combustion engine and an aq. soln. of 20-60wt% concn. of sodium silicate is swiveled and sucked in the form of a mist to the inside surface of the manifold. Powder of the refractory heat insulating material such as pearlite is blown immediately thereafter and is stuck to the binder layer. The stuck powder is solidified by heating. The refractory layer consisting of the inorg. binder and refractory material such as zirconia is similarly formed thereon and thereafter the slurry consisting of the refractory material powder contg. the above- mentioned inorg. binder is stuck thereon and is solidified by heating to form the protective layer. The layer is heated for 5-120min at 800-1,000 deg.C, by which the inside surface coating layer is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱性、耐火性並びに耐水性に優れた排気系機
器の内面コーティング法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for coating the inner surface of exhaust system equipment with excellent heat insulation, fire resistance, and water resistance.

〔従来の技術〕[Conventional technology]

内燃機関の排気系機器、特にマニホルドは内面がシリン
ダーより排出される高温、高圧の燃焼ガスに接するため
、その影響を強く受け、長時間使用することができない
難点があり、又断熱性が小さい欠点があった。
The internal combustion engine exhaust system equipment, especially the manifold, has the disadvantage that its inner surface is in contact with the high-temperature, high-pressure combustion gas discharged from the cylinder, so it is strongly affected by it and cannot be used for a long time, and it also has poor insulation properties. was there.

特開昭58−99180号は排気マニホルド等の内燃機
関用排気ガス系機器の内面に耐火断熱コーティングを施
こす方法を開示している。この方法は、高熱の排気ガス
に接する金属製機器本体の内面に耐火物原料粒子と無機
質結合材とフリットの混和物よりなる泥漿を付着させて
耐熱被覆層を形成し、続いて、該耐熱被覆層が湿潤状態
にある間にその表面に耐火断熱材粒子を付着させて耐火
断熱層を形成し、次いで、前記耐熱波rII層を固化さ
せたうえ該耐火断熱層の表面に耐火物原料粒子と無4!
&質結合材とフリットの混和物よりなる泥漿を付着させ
て耐熱被覆層を形成させることを特徴とし、必要に応じ
て前記外層の耐熱被覆層の表面に前記耐火断熱層と同村
の耐火断熱層および前記耐熱被覆層と同材の耐熱被覆層
を順次反復して所要層形成させるものである。この方法
により、耐熱被覆層と耐火断熱層と耐熱被覆層との三層
が一体化して積層されたコーティングが形成される。
JP-A No. 58-99180 discloses a method for applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold. In this method, a heat-resistant coating layer is formed by attaching a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit to the inner surface of a metal device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is formed. While the layer is in a wet state, refractory insulation material particles are attached to the surface thereof to form a refractory insulation layer, and then the heat-resistant wave rII layer is solidified, and refractory raw material particles are applied to the surface of the refractory insulation layer. No 4!
A heat-resistant coating layer is formed by adhering a slurry made of a mixture of a binder and a frit, and if necessary, a fire-resistant heat-insulating layer of the same type as the fire-resistant heat-insulating layer is applied to the surface of the outer heat-resistant coating layer. A heat-resistant coating layer made of the same material as the heat-resistant coating layer is sequentially repeated to form a required layer. By this method, a coating is formed in which the three layers of the heat-resistant coating layer, the fire-resistant heat insulating layer, and the heat-resistant coating layer are integrated and laminated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記方法においてはコーティング材料を
泥漿状にしてコーティングするため、被覆層中の水分量
が比較的多くならざるを得す、乾燥時に亀裂が生じ、ま
た熱処理時の収縮が大きく、剥離、破損が起こりがちで
ある。また高温の排気ガスにより急激に加熱される際に
も熱?ifl’により亀裂が生じるおそれが大きい。
However, in the above method, since the coating material is coated in the form of a slurry, the amount of water in the coating layer must be relatively large, cracks occur during drying, and shrinkage during heat treatment is large, resulting in peeling and breakage. tends to occur. Also, does it generate heat when it is rapidly heated by high-temperature exhaust gas? There is a great possibility that cracks will occur due to ifl'.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、これらの欠点にかんがみ種々研究を重ね
た結果、排気系機器の内面に耐火断熱層と耐火層と保護
層を形成させ、熱処理を行うことにより亀裂・剥離のな
い耐火・断熱・耐水コーティングを形成することができ
ることを発見し、本発明を完成するに至った。
In view of these shortcomings, the inventors of the present invention have repeatedly conducted various studies and found that by forming a fireproof heat insulating layer, a fireproof layer, and a protective layer on the inner surface of exhaust system equipment, and performing heat treatment, a fireproof and heat insulating layer without cracking or peeling can be achieved.・We discovered that it is possible to form a water-resistant coating and completed the present invention.

すなわち、本発明の排気系機器の内面コーティング法は
、排気系機器の内面に耐火断熱層及び耐火層及び保護層
を形成する排気系機器の内面コーティング法であって、
排気系機器の一端の開口部に粉状或いは霧状の材料を旋
回させつつ送給する旋回送給管を接続し、他端の開口部
には吸引管を接続し、上記旋回送給管より無機質結合剤
を送給し、直ちに耐火断熱材を送給して耐火断熱層を形
成し、熱処理により乾燥・固化した後、無機質結合剤を
送給し、直ちに耐火材を送給して耐火層を形成し、熱処
理により乾燥・固化し、必要に応じて上記耐火断熱層と
耐火層を所望層形成し、次いで無機質結合剤を含む保護
材の泥漿を付着して保護層を形成し800〜1,000
℃にて5〜120分間熱処理するものである。
That is, the method for coating the inner surface of exhaust system equipment of the present invention is a method for coating the inner surface of exhaust system equipment, which forms a fireproof heat insulating layer, a fireproof layer, and a protective layer on the inner surface of the exhaust system equipment,
Connect a swirling feed pipe that swirls and feeds powder or mist material to the opening at one end of the exhaust system equipment, connect a suction pipe to the opening at the other end, and connect the swirling feed pipe to the opening at the other end. The inorganic binder is fed, and the refractory insulation material is immediately fed to form a fireproof insulation layer, and after drying and solidification by heat treatment, the inorganic binder is fed, and the refractory material is immediately fed to form the fireproof layer. is formed, dried and solidified by heat treatment, the above-mentioned fireproof insulation layer and fireproof layer are formed as desired, and then a protective layer is formed by adhering a slurry of a protective material containing an inorganic binder. ,000
Heat treatment is performed at ℃ for 5 to 120 minutes.

本発明のコーティング法において接着性を付与するため
に使用する無機質結合剤としては、珪酸ソーダ、珪酸カ
リ、珪酸リチュームなどの珪酸塩結合剤、第一リン酸ア
ルミニュウム、第一リン酸カルシウム、第一リン酸マグ
ネシウム、縮合リン酸塩、リン酸等のリン酸系結合剤、
コロイダルシリカ、コロイダルアルミナ、コロイダルジ
ルコニアである。
Inorganic binders used to impart adhesive properties in the coating method of the present invention include silicate binders such as sodium silicate, potassium silicate, lithium silicate, monobasic aluminum phosphate, monobasic calcium phosphate, monobasic phosphoric acid, etc. Phosphate binders such as magnesium, condensed phosphates, phosphoric acid,
These are colloidal silica, colloidal alumina, and colloidal zirconia.

結合剤は水溶液の形で使用するが,その濃度は20〜6
0wt%が好ましい。20%より低いと接着力が小さく
剥離しやすい。また60%より高いと塗布作業が困難と
なる。より好ましくは25〜55wt%である。
The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
0 wt% is preferred. If it is lower than 20%, the adhesive strength is low and it is easy to peel off. Moreover, if it is higher than 60%, the coating operation becomes difficult. More preferably, it is 25 to 55 wt%.

結合剤溶液に、硬化剤を適量添加することもできる。硬
化剤は、結合剤の種類によって異なるがそれぞれ公知の
ものが使用できる。例えば、珪酸塩結合剤に対しては珪
弗化ソーダ、焼成リン酸アルミニウム、ダイカルシウム
シリケート、炭酸ガスなどがある。またリン酸アルミニ
ウムに対してはマグネシア、ライムなどの塩基性酸化物
、カルシウムアルミネート、弗化アンモニウム等がある
Appropriate amounts of curing agents can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. For example, silicate binders include sodium silicate, calcined aluminum phosphate, dicalcium silicate, carbon dioxide, and the like. For aluminum phosphate, there are basic oxides such as magnesia and lime, calcium aluminate, ammonium fluoride, and the like.

断熱性を付与するために使用する耐火断熱材はシラスバ
ルーン、発泡シリカ、パーライト等の無機質断熱材であ
る。その粉末の粒径は一般に10〜500μmの範囲が
適当である。10μmより小さいと、収縮による亀裂・
剥離を生じるし、500μmより大きいと、平滑な皮膜
層を形成しにくい。より好ましい粒径範囲は20〜20
0μmである。耐火材としてはパイレックスガラス、溶
融シリカ、コージェライト、シャモット、ムライト、ア
ルミナ、ジルコン、ジルコニア等の一般的に使用される
ものでよいが,特にジルコニアは熱伝導率が低いので好
ましい。耐火材粉末の粒径は一般に10〜E100μm
の範囲が適当である。10μmより小さいと粒子間の′
M集が起こりやすく、平滑な皮膜層を形成しにくいし、
高熱の影響を受けて収縮しやすい。また500μmより
大きいと、平滑な皮膜を形成しにくい。より好ましい粒
径範囲は20〜200μmである。
The fireproof heat insulating material used to provide heat insulation properties is an inorganic heat insulating material such as glass balloon, foamed silica, and perlite. The particle size of the powder is generally in the range of 10 to 500 μm. If it is smaller than 10 μm, cracks and cracks due to shrinkage may occur.
Peeling occurs, and if it is larger than 500 μm, it is difficult to form a smooth film layer. A more preferable particle size range is 20 to 20
It is 0 μm. As the refractory material, commonly used materials such as Pyrex glass, fused silica, cordierite, chamotte, mullite, alumina, zircon, and zirconia may be used, but zirconia is particularly preferred because of its low thermal conductivity. The particle size of refractory material powder is generally 10 to E100 μm.
A range of is appropriate. If it is smaller than 10 μm, the distance between particles is
M collection tends to occur, making it difficult to form a smooth film layer,
Easily shrinks under the influence of high heat. Moreover, if it is larger than 500 μm, it is difficult to form a smooth film. A more preferable particle size range is 20 to 200 μm.

保護材としては、前記の耐火材の1種或いは2種以上が
使用され粒径は20μm以下が適当である。
As the protective material, one or more of the above-mentioned refractory materials are used, and the particle size is suitably 20 μm or less.

耐水性をさらに強化するために、フリットを少量添加し
てもよい。
To further enhance water resistance, a small amount of frit may be added.

本発明のコーティング法は耐火断熱層を形成する段階と
耐火層を形成する段階と保護層を形成する段階とを有す
る。
The coating method of the present invention includes a step of forming a fireproof heat insulating layer, a step of forming a fireproof layer, and a step of forming a protective layer.

耐火断熱層を形成する場合、まず排気系機器の内面に無
機質結合剤溶液を旋回送給し塗布する。
When forming a fireproof heat insulating layer, first, an inorganic binder solution is swirled and applied to the inner surface of the exhaust system equipment.

これにより排気系機器の内面は一様に結合剤溶液で濡れ
る。これ(こ耐火断熱材粉末を旋回送給すると遠心力に
より無機質結合剤溶液に強固に付着し。
As a result, the inner surface of the exhaust system equipment is uniformly wetted with the binder solution. When this refractory insulation powder is fed in a swirling manner, it firmly adheres to the inorganic binder solution due to centrifugal force.

付着の不充分な粉末は旋回気流によって吹き飛ばし、均
一な耐火断熱層が形成される。この層の厚さは結合剤溶
液の濃度および厚さにより異なるが、一般に0.1〜1
.5mmである。
The insufficiently adhered powder is blown away by the swirling airflow, and a uniform fireproof insulation layer is formed. The thickness of this layer varies depending on the concentration and thickness of the binder solution, but is generally between 0.1 and 1
.. It is 5mm.

以上の方法により形成した結合剤溶液含浸耐火断熱材粉
末層は、泥漿状にして塗布した層と比較して、水分が非
常に少ない。これは本発明の著しい特徴である。かかる
特徴により、次の熱処理による乾燥・固化工程において
断熱層に亀裂が生じたり層が剥離したりすることはない
The binder solution-impregnated refractory insulation powder layer formed by the above method has a significantly lower moisture content than a layer applied in the form of a slurry. This is a significant feature of the invention. Due to these characteristics, the heat insulating layer will not crack or the layer will peel off during the subsequent drying and solidification process by heat treatment.

上記層の熱処理は約300℃まで除々に加熱することに
より行なう。急激な加熱は層の亀裂や剥離を引き起こす
おそれがあるので、避けるべきである。好ましくは、層
を室温で自然乾燥し、しかる後陣々に温度を上げる。例
えば自然乾燥後、50℃に1時間保持し、次に100℃
に1時間保持する。さらに安定性向上のためには、30
0℃まで加熱することが望ましい。
The heat treatment of the layer is carried out by gradually heating it to about 300°C. Rapid heating should be avoided as this may cause cracking and delamination of the layers. Preferably, the layer is allowed to air dry at room temperature, with subsequent increases in temperature. For example, after air drying, hold at 50℃ for 1 hour, then 100℃
Hold for 1 hour. To further improve stability, 30
It is desirable to heat to 0°C.

次に、必要とあらば、上記の耐火断熱材層の上にさらに
同一の方法により結合剤溶液を塗布し、耐火断熱材粉末
を付着させ、熱処理により#J燥・固化させる。比較的
厚い耐火断熱層を得るためには、このサイクルを数回繰
り返す。充分な断熱性を確保するためには、耐火断熱層
は1.5mm以上必要である。
Next, if necessary, a binder solution is further applied on the above-mentioned refractory heat insulating material layer by the same method, and the refractory heat insulating material powder is adhered thereto, followed by #J drying and solidification by heat treatment. This cycle is repeated several times to obtain a relatively thick refractory insulation layer. In order to ensure sufficient heat insulation properties, the fireproof heat insulation layer needs to be 1.5 mm or more.

このようにして形成された耐火断熱層の上に耐火層を形
成する必要がある。耐火層はまず無機質結合剤溶液を旋
回送給管より送給して付着させ、直ちに耐火材粉末を旋
回送給管より送給し、熱処理により乾燥・固化する工程
を含む方法により形成する。
It is necessary to form a refractory layer on the refractory heat insulating layer thus formed. The refractory layer is formed by a method including the steps of first feeding an inorganic binder solution through a rotating feed pipe to deposit it, immediately feeding refractory material powder through a rotating feed pipe, and drying and solidifying it by heat treatment.

具体的な条件は、耐火材粉末を使用すること以外耐火断
熱層の形成条件と実質的に同一である。
The specific conditions are substantially the same as the conditions for forming the fireproof heat insulating layer except for using the fireproof material powder.

耐火層は上記工程からなるーサイクルのみで形成するこ
とができるが、必要とあらば数回繰り返してもよい。か
かる方法により0 、5 m m以上の耐火層を形成す
る。
The refractory layer can be formed only by a cycle consisting of the above steps, but the steps may be repeated several times if necessary. By this method, a refractory layer of 0.5 mm or more is formed.

この耐火層の上に最終層である保護層を形成するもので
あるが、保護層は無機質結合剤溶液を含む保護材粉末の
泥漿を付着させ、熱処理により乾燥・固化して保護層を
形成する。
A protective layer, which is the final layer, is formed on top of this fireproof layer, and the protective layer is formed by attaching a slurry of protective material powder containing an inorganic binder solution, and drying and solidifying it by heat treatment to form the protective layer. .

このように耐火断熱層と耐火層と保護層とからなるコー
ティング層を形成した排気系機器を炉内で800〜1,
000℃にて5〜120分間熱処理してコーティング作
業を完了するものである。
The exhaust system equipment on which the coating layer consisting of the refractory insulation layer, the refractory layer, and the protective layer was formed was heated in the furnace at
The coating process is completed by heat treatment at 000°C for 5 to 120 minutes.

このfi800℃より低いと水ガラスがガラス化しない
ため完全な保護層が形成されず、1,000℃を超えて
も何等の効果も期待できず熱エネルギー的に不利である
。最も好ましい温度は850〜970℃である。
If the fi is lower than 800°C, the water glass will not vitrify and a complete protective layer will not be formed, and if it exceeds 1,000°C, no effect can be expected and it is disadvantageous in terms of thermal energy. The most preferred temperature is 850-970°C.

この熱処理は炉内で加熱する他、排気系機器内に熱風を
通過させる方法でもよい。
This heat treatment may be performed by heating in a furnace or by passing hot air through exhaust system equipment.

また排気系機器の内面が狭く短かい場合には旋回送給管
あるいは吸引管の何れか一方を用いてもコーティングし
得るが、排気系機器の内面が広く長い場合には旋回送給
管と吸引管の両方を用いると均一なコーテイング面を得
ることができる。
Also, if the inside surface of the exhaust system equipment is narrow and short, coating can be done using either the swirling feed pipe or the suction pipe, but if the inside surface of the exhaust system equipment is wide and long, the swirling feed pipe and the suction pipe can be used for coating. A uniform coating surface can be obtained using both tubes.

〔実施例〕〔Example〕

本発明を以下の実施例によりさらに詳細に説明する。 The present invention will be explained in further detail by the following examples.

実施例1 予めPHIO〜11のアルカリ性溶液で脱脂処理を施し
た酸化皮膜を有する鋳鉄製マニホルドの内面に、第一段
階として珪曹比2.9、濃度45wt%の珪酸ソーダ水
溶液に硬化剤として焼成リン酸アルミニウム(ヘキスト
社製H,Bハードナー)を10wt%添加したものを5
kg/cm2の空気とともに噴霧状として旋回送給管よ
り送給した。
Example 1 The inner surface of a cast iron manifold having an oxide film that had been previously degreased with an alkaline solution of PHIO to 11 was baked as a hardening agent in a sodium silicate aqueous solution with a silica ratio of 2.9 and a concentration of 45 wt% as a first step. 5 to which 10 wt% of aluminum phosphate (H, B hardener manufactured by Hoechst) was added.
It was delivered in the form of a spray along with air at a concentration of kg/cm2 from a rotating feed pipe.

直ちに断熱材として嵩比重0.2、粒径44〜1’50
μmのシラスバルーンを旋回送給管より送給した。
Immediately used as a heat insulating material with a bulk specific gravity of 0.2 and a particle size of 44 to 1'50.
A μm shirasu balloon was delivered through a rotating feed tube.

シラスバルーンが充分に付着した後、室温で1時間保持
し、次に50℃に昇温しで1時間保持し、さらに100
℃に昇温しで1時間保持し、最後に300℃に昇温しで
1時間保持した。この熱処理により耐火断熱層を完全に
固化した。このプロセスをさらに2回繰り返し、厚さ3
mmの耐火断熱層を形成した。
After the Shirasu balloon was sufficiently attached, it was kept at room temperature for 1 hour, then raised to 50℃ and kept for 1 hour, and then heated to 50℃ for 1 hour.
The temperature was raised to 300°C and held for 1 hour, and finally to 300°C and held for 1 hour. This heat treatment completely solidified the fireproof heat insulating layer. Repeat this process two more times until thickness 3
A fireproof heat insulating layer of mm was formed.

第二段階として上記の耐火断熱層の上に上記と同一の無
機質結合剤を送給塗布し、さらに粒径44〜150μm
の安定化ジルコニア粒子を散布した後、上記と同一の熱
処理を行ない、厚さ0.5mmの耐火層を形成した。
In the second step, the same inorganic binder as above is applied on top of the fireproof heat insulating layer, and the particle size is 44 to 150 μm.
After scattering the stabilized zirconia particles, the same heat treatment as above was performed to form a fireproof layer with a thickness of 0.5 mm.

第三段階として上記耐火層の上に粒径2〜6μmのアル
ミナに珪酸ソーダ水溶液(珪曹比2.8゜濃度42wt
%)を1:1の重量比で加えた泥漿を流すことによって
0.2mmの保護層を形成した。このように耐火断熱層
と耐火層と保護層を形成せるマニホルドを炉内で950
℃にてし16.5時間熱処理してコーティング作業を完
了した。
As a third step, a sodium silicate aqueous solution (silicate ratio: 2.8°, concentration: 42 wt.
%) in a weight ratio of 1:1 was poured to form a 0.2 mm protective layer. In this way, a manifold that forms a fireproof insulation layer, a fireproof layer, and a protective layer is made in a furnace at 950°C.
The coating process was completed by heat treatment at ℃ for 16.5 hours.

得られたマニホルドのコーティング層には全く亀裂は見
られず、またマニホルドに対して1,000℃の燃焼ガ
スによる加熱と大気による冷却を100回繰り返したが
コーティング層の亀裂や剥離は全く見られなかった。
No cracks were observed in the coating layer of the obtained manifold, and even though the manifold was heated with combustion gas at 1,000°C and cooled with air 100 times, no cracks or peeling of the coating layer were observed. There wasn't.

実施例2 あらかじめPHIO〜11のアルカリ性溶液で脱脂処理
を施した酸化皮膜を有する鋳鉄製マニホルドの内面に第
一段階として珪曹比3.0.濃度40wt%の珪酸ソー
ダ水溶液に硬化剤として焼成リン酸アルミニウム(ヘキ
スト社製H,Bハードナー)を8wt%添加したものを
旋回送給管より送給した。直ちに断熱材として嵩比重0
.22、粒径44〜150μmのパーライトを旋回送給
管より送給した。実施例1と同じ方法により熱処理を施
し、耐火断熱層を完全に固化した。このプロセスをさら
に2回繰り返し厚さ3mmの耐火断熱層を形成した。
Example 2 As a first step, a silica ratio of 3.0. A sodium silicate aqueous solution having a concentration of 40 wt % and 8 wt % of calcined aluminum phosphate (H, B hardener manufactured by Hoechst Co., Ltd.) added thereto as a hardening agent was fed through a rotating feed pipe. Bulk specific gravity 0 immediately as insulation material
.. 22. Pearlite with a particle size of 44 to 150 μm was fed from a rotating feed pipe. Heat treatment was performed in the same manner as in Example 1 to completely solidify the fireproof heat insulating layer. This process was repeated two more times to form a fireproof heat insulating layer with a thickness of 3 mm.

第二段階として、上記耐火断熱層の上に上記と同一の無
機質結合剤を旋回送給管より送給しさらに粒径44〜1
50μmの安定化ジルコニア粒を散布した後、上記と同
一の熱処理を行ない厚さ0゜5mmの耐火層を形成した
As a second step, the same inorganic binder as above is fed from the swirling feed pipe onto the fireproof heat insulating layer, and the particle size is 44 to 1.
After scattering stabilized zirconia grains of 50 .mu.m, the same heat treatment as above was carried out to form a refractory layer with a thickness of 0.5 mm.

第三段階として、上記耐火層の上に粒径2〜6μmのア
ルミナに珪酸ソーダ水溶液(珪曹比2.8、濃度42w
t%)を1:1の重量比で加えた泥漿を流すことにより
0 、2 m mの保護層を形成した。
As a third step, a sodium silicate aqueous solution (silicate ratio 2.8, concentration 42W) is applied to alumina with a particle size of 2 to 6 μm on the fireproof layer.
A protective layer with a thickness of 0.2 mm was formed by pouring a slurry containing 1:1 weight ratio of 1:1 wt%).

このように耐火断熱層と耐火層と保護層を形成せるマニ
ホルドを実施例1と同一方法で加熱処理してコーティン
グ作業を完了した。
The manifold on which the fireproof heat insulating layer, fireproof layer, and protective layer were formed was heat-treated in the same manner as in Example 1 to complete the coating process.

得られたマニホルドのコーティング層には全く亀裂は見
られず、またマニホルドに対して1,000℃の燃焼ガ
スによる加熱と大気による冷却を100回繰り返したが
コーティング層の亀裂や剥離は全く見られなかった。
No cracks were observed in the coating layer of the obtained manifold, and even though the manifold was heated with combustion gas at 1,000°C and cooled with air 100 times, no cracks or peeling of the coating layer were observed. There wasn't.

本実施例はマニホルドについて述べたが、本発明はこれ
に限定されるものではなく、ボートライナー、タービン
ハウジングなど排気系機器のコーティング層形成に応用
できるものである。
Although this embodiment describes a manifold, the present invention is not limited thereto, and can be applied to forming a coating layer on exhaust system equipment such as boat liners and turbine housings.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は結合剤溶液に耐火断熱材粉末や耐火材粉
末を旋回気流とともに送給して付着させることにより、
耐火断熱層及び耐火層を形成するので、乾燥・固化後も
亀裂や剥離が生ぜず、また高温ガスによる加熱と冷却の
サイクルを繰り返しても亀裂や剥離を起さない。
The method of the present invention involves feeding a refractory insulation powder or a refractory material powder to a binder solution with a swirling air flow to make it adhere to the binder solution.
Since it forms a fireproof heat insulating layer and a fireproof layer, no cracking or peeling occurs even after drying and solidification, and no cracking or peeling occurs even after repeated cycles of heating and cooling with high-temperature gas.

最終層である保護層は粒径が20μm以下と微細なため
緻密質となり燃料であるガソリンが燃焼した際に分解生
成される水分が寒冷地などで凝縮し耐火層、断熱層への
浸透を防止する他、マニホルドの内面を滑らかにし流気
抵抗を減少せしめるために設けた層であり、泥漿により
薄く施工する。
The protective layer, which is the final layer, has a fine particle size of 20 μm or less, so it is dense and prevents moisture generated by decomposition when the fuel gasoline is combusted from condensing in cold regions and penetrating into the fireproof layer and heat insulation layer. In addition, it is a layer provided to smooth the inner surface of the manifold and reduce airflow resistance, and is applied thinly using slurry.

また結合剤溶液、耐火断熱材、耐火材は旋回送給管およ
び吸引管により旋回気流で送給、吸引されるので、むら
のない均一なコーティング層を得ることができ数回のコ
ーティングを繰り返すことにより所望厚さのコーティン
グ層を得ることができるものである。
In addition, the binder solution, fireproof insulation material, and fireproofing material are fed and sucked in by the swirling airflow through the swirling feed pipe and suction pipe, so it is possible to obtain a uniform coating layer without any unevenness, and coating can be repeated several times. Accordingly, a coating layer of desired thickness can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 排気系機器の内面に耐火断熱層及び耐火層及び保護層を
形成する排気系機器の内面コーティング法において、排
気系機器の一端の開口部に粉状或いは霧状の材料を旋回
させつつ送給する旋回送給管を接続し、他端の開口部に
は吸引管を接続し、上記旋回送給管より無機質結合剤を
送給し、直ちに耐火断熱材を送給して耐火断熱層を形成
し、熱処理により乾燥・固化した後、無機質結合剤を送
給し、直ちに耐火材を送給して耐火層を形成し、熱処理
により乾燥・固化し、必要に応じて上記耐火断熱層と耐
火層を所望層形成し、次いで無機質結合剤を含む保護材
の泥漿を付着して保護層を形成し800〜1,000℃
にて5〜120分間熱処理することを特徴とする排気系
機器の内面コーティング法。
In an internal coating method for exhaust system equipment that forms a fireproof heat insulating layer, a fireproof layer, and a protective layer on the inside surface of exhaust system equipment, a powder or mist material is fed into an opening at one end of the exhaust system equipment while swirling it. Connect the swirl feed pipe, connect the suction pipe to the opening at the other end, feed the inorganic binder from the swirl feed pipe, and immediately feed the fireproof insulation material to form a fireproof heat insulation layer. , After drying and solidifying by heat treatment, feed an inorganic binder, immediately feed a refractory material to form a fireproof layer, dry and harden by heat treatment, and if necessary, apply the above fireproof insulation layer and fireproof layer. A desired layer is formed, and then a protective slurry containing an inorganic binder is applied to form a protective layer, and heated at 800 to 1,000°C.
A method for coating the inner surface of exhaust system equipment, characterized by heat treatment for 5 to 120 minutes.
JP24830085A 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus Pending JPS62107084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24830085A JPS62107084A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24830085A JPS62107084A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Publications (1)

Publication Number Publication Date
JPS62107084A true JPS62107084A (en) 1987-05-18

Family

ID=17176026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24830085A Pending JPS62107084A (en) 1985-11-06 1985-11-06 Method for coating inside surface of exhaust apparatus

Country Status (1)

Country Link
JP (1) JPS62107084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498835U (en) * 1990-06-19 1992-08-26
EP0781862A1 (en) * 1995-12-11 1997-07-02 General Motors Corporation Ceramic coated exhaust manifold and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498835U (en) * 1990-06-19 1992-08-26
EP0781862A1 (en) * 1995-12-11 1997-07-02 General Motors Corporation Ceramic coated exhaust manifold and method
US5718046A (en) * 1995-12-11 1998-02-17 General Motors Corporation Method of making a ceramic coated exhaust manifold and method
US5937643A (en) * 1995-12-11 1999-08-17 General Motors Corporation Ceramic coated exhaust manifold and method

Similar Documents

Publication Publication Date Title
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
US4975314A (en) Ceramic coating bonded to metal member
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS62107075A (en) Method for coating inside surface of exhaust apparatus
JPS62107076A (en) Production of heat insulating metallic member
JPS62107077A (en) Method for coating inside surface of exhaust apparatus
JPS62107085A (en) Method for coating inside surface of exhaust apparatus
JPS62107078A (en) Method for coating inside surface of exhaust apparatus
JPS62107079A (en) Method for coating inside surface of exhaust apparatus
JPS62107086A (en) Production of heat insulating metallic member
JPS62107080A (en) Method for coating inside surface of exhaust apparatus
CN109553424A (en) A kind of fiber reinforced high-temperature-resistant lightweight alumina-silica foaming coating
JPS63154815A (en) Exhaust system equipment
JPS62107081A (en) Method for coating inside surface of exhaust apparatus
JPS61163282A (en) Production of heat insulating metallic member
JPS5899180A (en) Manufacture of exhaust gas instrument for internal combustion engine
JPS62211138A (en) Heat-insulating member
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JPS61244819A (en) Heat insulating manifold
JPS62107087A (en) Exhaust apparatus
JPS62107082A (en) Exhaust apparatus
JPS62107083A (en) Exhaust apparatus
JPS61244817A (en) Manufacture of heat insulating manifold
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JPS61244818A (en) Heat insulating manifold