JPS61163282A - Production of heat insulating metallic member - Google Patents

Production of heat insulating metallic member

Info

Publication number
JPS61163282A
JPS61163282A JP272285A JP272285A JPS61163282A JP S61163282 A JPS61163282 A JP S61163282A JP 272285 A JP272285 A JP 272285A JP 272285 A JP272285 A JP 272285A JP S61163282 A JPS61163282 A JP S61163282A
Authority
JP
Japan
Prior art keywords
refractory
layer
heat insulating
heat
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP272285A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Kanesuke Kido
木戸 兼介
Toshiyuki Ochi
越智 淑行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP272285A priority Critical patent/JPS61163282A/en
Priority to US06/817,687 priority patent/US4680239A/en
Priority to DE19863600574 priority patent/DE3600574A1/en
Publication of JPS61163282A publication Critical patent/JPS61163282A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a refractory heat insulating coating having no crack and peeling by coating an inorganic binder on the inside surface of a metallic member, sticking a refractory heat insulating material thereon, heat-treating it and thereafter coating the inorganic binder again to stick the powder of the refractory material thereon. CONSTITUTION:After subjecting the inside surface of a metallic member to the degreasing treatment, a soln. of an inorganic binder such as sodium silicate is coated thereon and immediately the powder of a refractory heat insulating material such as 'SHIRASU' (volcanic glass) balloon is stuck and thereafter heat-treated to dry and solidify it. The refractory adiabatic layer is formed by performing this process in one and more times. A soln. of the inorganic binder is coated on the surface of this heat insulating layer and immediately the powder of the refractory this heat insulating layer and immediately the powder of the refractory material such as zirconia is stuck and heat-treated to dry and solidify it. The refractory layer is formed by performing this process of the second in one and more times. By this method, the refractory heat insulating coating having a required thickness can be formed in the excellent operation efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱性並びに耐久性に優れた断熱金属部材の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a heat insulating metal member having excellent heat insulating properties and durability.

〔従来の技術〕[Conventional technology]

内燃機関の排気系機器、特にマニホルドの内面はシリン
ダーより排出される高温・高圧の燃焼ガスに接するため
、その影響を強く受け、長時間使用することができない
難点があり、又断熱性が小さい欠点がある。
Exhaust system equipment of internal combustion engines, especially the inner surface of the manifold, is in contact with the high temperature and high pressure combustion gas discharged from the cylinder, so it is strongly affected by it, making it difficult to use for a long time, and also has the disadvantage of poor insulation properties. There is.

特開昭58−99180号は排気マニホルド等の内燃機
関用排気ガス系機器の内面に耐火断熱コーティングを施
こす方法を開示している。この方法は、高熱の排気ガス
に接する金属製機器本体の内面に耐火物原料粒子と無機
質結合材とフリットの混和物よりなる泥漿を付着させて
耐熱被覆層を形成し、続いて、該耐熱被覆層が温調状態
にある間にその表面に耐火断熱材粒子を付着させて耐火
断熱層を形成し、次いで、前記耐熱被覆層を固化させた
うえ該耐火断熱層の表面に耐火物原料粒子と無機質結合
材とフリットの混和物よりなる泥漿を付着させて耐熱被
覆層を形成させることを特徴とし、必要に応じ前記・外
層の耐熱被覆層の表面に前記耐火断熱層と同材の耐火断
熱層および前記耐熱被覆層と同材の耐熱被覆層を順次反
復して所要層形成させるものである。この方法により、
耐熱被MNと耐火断熱層と耐熱被覆層との三層が一体化
して積層されたコーティングが形成される。
Japanese Patent Application Laid-Open No. 58-99180 discloses a method for applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold. In this method, a heat-resistant coating layer is formed by attaching a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit to the inner surface of a metal device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is formed. While the layer is in a temperature controlled state, refractory insulation material particles are attached to the surface of the layer to form a refractory insulation layer, and then the heat resistant coating layer is solidified and refractory raw material particles are applied to the surface of the refractory insulation layer. A heat-resistant coating layer is formed by adhering a slurry made of a mixture of an inorganic binder and a frit, and if necessary, a fire-resistant heat-insulating layer made of the same material as the fire-resistant heat-insulating layer is applied to the surface of the outer heat-resistant coating layer. A heat-resistant coating layer made of the same material as the heat-resistant coating layer is sequentially repeated to form a required layer. With this method,
A coating is formed by integrating and laminating three layers: the heat-resistant covering MN, the fire-resistant heat insulating layer, and the heat-resistant coating layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記方法においてはコーティング材料を
泥漿状にしてコーティングするため、被覆層中の水分量
が比較的多くならざるを得す、乾燥時に亀裂が生じ、ま
た熱処理時の収縮が大きく、剥離・破損が起こりがちで
ある。また高温の排気ガスにより急激に加熱される際に
も熱衝撃により亀裂が生ずるおそれが大きい。
However, in the above method, since the coating material is coated in the form of a slurry, the amount of water in the coating layer must be relatively large, cracks occur during drying, and shrinkage during heat treatment is large, resulting in peeling and breakage. tends to occur. Furthermore, there is a high possibility that cracks will occur due to thermal shock when the material is rapidly heated by high-temperature exhaust gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、これらの欠点にかんがみ種々研究を重ねた
結果、金属部ヰ4の内面に結合剤を塗布した後コーティ
ング材料の粉末を付着さ一辻、熱処理を行うことにより
亀裂・剥離のない耐火・断熱コーティングを形成するこ
とができることを発見し、本発明を完成するに至った。
In view of these drawbacks, the inventor has conducted various studies and found that after applying a bonding agent to the inner surface of the metal part 4, the powder of the coating material is applied, and heat treatment is performed to prevent cracking and peeling. The inventors discovered that it is possible to form a fire-resistant and heat-insulating coating, leading to the completion of the present invention.

すなわち、本発明の断熱金属部)Aの製造方法は、(a
l金属部材の内面に無機質結合剤溶液を塗布し、(b)
直ちに前記溶液層に耐火断熱材粉末を付着させ、(c+
熱処理により乾燥・固化する工程を含む第一段階を少な
くとも1回行うことにより耐火断熱層を形成し、次いで
+di耐火断熱層の表面に無機質結合剤溶液を塗布し、
te+直ちに無機質結合剤溶液の層に耐火材粉末を(=
J着させ、((l i)処理により乾燥・固化する工程
を含む第二段階を少な(とも1回行うことにより耐火層
を形成するものである。
That is, the method for manufacturing the heat insulating metal part) A of the present invention includes (a
l Apply an inorganic binder solution to the inner surface of the metal member, (b)
Immediately, a fireproof insulation material powder is attached to the solution layer, and (c+
A fireproof insulation layer is formed by performing the first step including drying and solidification by heat treatment at least once, and then an inorganic binder solution is applied to the surface of the +di fireproof insulation layer,
te + Immediately add refractory powder to the layer of inorganic binder solution (=
A fire-resistant layer is formed by carrying out the second step, which includes the step of drying and solidifying by the ((l i) treatment, at least once).

本発明の方法において接着性を賦与するために使用する
無機質結合剤としては、珪酸ソーダ、珪酸カリ、珪酸リ
チウムなどの珪酸塩結合剤、第一リン酸アルミニウム、
コロイダルシリカ、エチルシリケート等が適当である。
Inorganic binders used to impart adhesive properties in the method of the present invention include silicate binders such as sodium silicate, potassium silicate, lithium silicate, monobasic aluminum phosphate,
Colloidal silica, ethyl silicate, etc. are suitable.

結合剤は水溶液の形で使用するが、その濃度は20〜6
Qwt%が好ましい。2Qwt%より低いと接着力が小
さく剥離しやすい。又、6Qwt%より高いと塗布作業
が困難となる。より好ましくは25〜55wt%である
The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
Qwt% is preferred. If it is lower than 2Qwt%, the adhesive strength is small and peeling is likely to occur. Moreover, if it is higher than 6Qwt%, coating work becomes difficult. More preferably, it is 25 to 55 wt%.

結合剤溶液に、硬化剤を適量添加することもできる。硬
化剤は、結合剤の種類によって異なるがそれぞれ公知の
ものが使用できる。例えば、珪酸塩結合剤に対しては珪
弗化ソーダ、焼成リン酸アルミニウム、グイカルシウム
シリケート、炭酸ガスなどがある。又、リン酸アルミニ
ウムに対してはマグネシア、ライムなどの塩基性酸化物
、カルシウムアルミネート、弗化アンモニウム等がある
Appropriate amounts of curing agents can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. For example, silicate binders include sodium silicate, calcined aluminum phosphate, calcium silicate, carbon dioxide, and the like. For aluminum phosphate, there are basic oxides such as magnesia and lime, calcium aluminate, ammonium fluoride, and the like.

断熱性を賦与するために使用する耐火断熱材はシラスバ
ルーン、発泡シリカ、パーライト等の無機質断熱材であ
る。その粉末の平均粒径は一般に10〜500μmの範
囲である。10μmより小さいと、収縮による亀裂・剥
離を生じるし、500μmより大きいと、平滑な被膜層
を形成しにくい。
The fireproof heat insulating material used to provide heat insulation properties is an inorganic heat insulating material such as shirasu balloon, foamed silica, and perlite. The average particle size of the powder generally ranges from 10 to 500 μm. When it is smaller than 10 μm, cracking and peeling occur due to shrinkage, and when it is larger than 500 μm, it is difficult to form a smooth coating layer.

好ましい粒径範囲は20〜200μmである。The preferred particle size range is 20-200 μm.

耐火材としてはシャモット、アルミナ、ジルコン、ジル
コニア等の一般的に使用されるものでよいが、特にジル
コニアは熱伝導率が低いので好ましい。耐火刊粉末の平
均粒度は一般に10〜500μmの範囲である。10μ
mより小さいと粒子間の凝集が起りやすく、平滑な被膜
層を形成しにくいし、高熱の影響を受けて収縮しやすい
。また、500μmより大きいと、平滑な皮膜を形成し
にくい。好ましい粒径範囲は20〜200μmである。
As the refractory material, commonly used materials such as chamotte, alumina, zircon, and zirconia may be used, but zirconia is particularly preferred because of its low thermal conductivity. The average particle size of the refractory powder generally ranges from 10 to 500 μm. 10μ
If it is smaller than m, agglomeration between particles tends to occur, making it difficult to form a smooth coating layer, and easily shrinking under the influence of high heat. Moreover, if it is larger than 500 μm, it is difficult to form a smooth film. The preferred particle size range is 20-200 μm.

本発明の方法は耐火断熱層を形成する段階と耐火層を形
成する段階とを有する。
The method of the present invention includes the steps of forming a refractory insulation layer and forming a refractory layer.

耐火断熱層を形成する場合、まず金属部材の内面に無機
質結合剤溶液を塗布する。これにより金属部材の内面は
一様に結合剤溶液で濡れる。これに耐火断熱材粉末を付
着させる。付着方法としては、結合剤溶液表面に粉末を
散布したり、金属部材内に粉末を充填し、一定時間放置
したりする方法等がある。効率上の観点からは後者の方
法が望ましい。後者の方法の場合、金属部材の内部に耐
火断熱材粉末を充填し、一定時間放置すると、結合剤溶
液は粉末粒子間に浸透し、十分な量の粉末が濡れること
になる。このプロセスを促進するために粉末全体に幾分
圧力をかげてもよい。次に金属部材の中から粉末を取り
出し、付着の不十分な粉末は空気流により吹き飛ばし、
除去する。このようにして、十分に結合剤溶液が含浸し
た耐火断熱材粉末の層が形成される。この層の厚さは結
合剤溶液の濃度及び厚さにより異なるが、一般に100
〜1500μmである。
When forming a fireproof heat insulating layer, an inorganic binder solution is first applied to the inner surface of a metal member. As a result, the inner surface of the metal part is evenly wetted with the binder solution. A fireproof insulation material powder is attached to this. As a method of attachment, there are methods such as scattering the powder on the surface of the binder solution, or filling the metal member with the powder and leaving it for a certain period of time. The latter method is preferable from an efficiency standpoint. In the case of the latter method, the interior of the metal member is filled with refractory insulation powder and, when left for a certain period of time, the binder solution penetrates between the powder particles and a sufficient amount of the powder is wetted. Some pressure may be applied throughout the powder to facilitate this process. Next, the powder is taken out from inside the metal member, and the powder that is insufficiently adhered is blown away by air flow.
Remove. In this way, a layer of refractory insulation powder fully impregnated with binder solution is formed. The thickness of this layer varies depending on the concentration and thickness of the binder solution, but is generally 100
~1500 μm.

以上の方法により形成した結合剤溶液含浸耐火断熱材粉
末層は、泥漿状にして塗布した層と比較して、水分が非
常に少い。これは本発明の著しい特徴である。かかる特
徴により、次の熱処理による乾燥・固化工程において層
に亀裂が生じたり層が剥離したりすることはない。
The binder solution-impregnated refractory insulation powder layer formed by the above method has significantly less moisture than a layer applied in the form of a slurry. This is a significant feature of the invention. Due to this feature, the layer does not crack or peel during the subsequent drying and solidification process by heat treatment.

上記層の熱処理は約300℃まで除々に加熱することに
より行う。急激な加熱は層の亀裂や剥&11を引き起す
おそれがあるので、避けるべきである。
The heat treatment of the layer is carried out by gradually heating it to about 300°C. Rapid heating should be avoided as it may cause cracking and peeling of the layers.

好ましくは、層を室温で自然乾燥し、しかる後陣々に温
度を上げる。例えば自然乾燥後、50°Cに1時間保持
し、次に100℃に1時間保持する。
Preferably, the layer is allowed to air dry at room temperature, with subsequent increases in temperature. For example, after air drying, it is held at 50°C for 1 hour, and then held at 100°C for 1 hour.

さらに安定性向上のためには、300°Cまで加熱する
ことが望ましい。
In order to further improve stability, it is desirable to heat up to 300°C.

次に、必要とあらば、」二記の耐火断熱材層の上にさら
に同様の方法により結合剤溶液を塗布し、耐火断熱材粉
末を付着させ、熱処理により乾燥・固化させる。比較的
厚い耐火断熱層を得るためには、このサイクルを数回繰
り返す。十分な断熱性を確保するために、耐火断熱層は
1.5 mm以上必要である。
Next, if necessary, a binder solution is further applied in the same manner on the fireproof heat insulating material layer described in section 2 above, and the fire proof heat insulating material powder is adhered thereto, followed by drying and solidification by heat treatment. This cycle is repeated several times to obtain a relatively thick refractory insulation layer. To ensure sufficient heat insulation, the fireproof insulation layer must be at least 1.5 mm thick.

このようにして形成された耐火断熱層の上に耐火層を形
成する必要がある。耐火層はまず無機質結合剤溶液を塗
布し、耐火材粉末を付着させ、熱処理により乾燥・固化
する工程を含む方法により形成する。具体的な条件は、
耐火材粉末を使用すること以外耐火断熱層の形成条件と
実質的に同一である。耐火層は上記工程からなるーサイ
クルのみで形成することができるが、必要とあらば数回
繰り返してもよい。かかる方法により0.5顛以上の耐
火層を形成する。
It is necessary to form a refractory layer on the refractory heat insulating layer thus formed. The refractory layer is formed by a method including the steps of first applying an inorganic binder solution, adhering a refractory material powder, and drying and solidifying by heat treatment. The specific conditions are:
The conditions for forming the refractory heat insulating layer are substantially the same except that refractory material powder is used. The refractory layer can be formed only by a cycle consisting of the above steps, but the steps may be repeated several times if necessary. By this method, a refractory layer of 0.5 or more thickness is formed.

〔実施例〕〔Example〕

本発明を以下の実施例によりさらに詳細に説明する。 The present invention will be explained in further detail by the following examples.

実施例1 予めp H10〜11のアルカリ性溶液で脱脂処理を施
した鋳鉄製マニホルドの内面に、第一段階として珪曹比
2.9、濃度4.5 w t%の珪酸ソーダ水溶液に硬
化剤として焼成リン酸アルミニウム(ヘキスト社製H,
Bハードナー)をl Q w t%添加したものを塗布
した。直ちに断熱材としてカザ1JJi0.2、粒径4
4〜150μmのシラスバルーンを散布した。
Example 1 As a first step, a sodium silicate aqueous solution with a silica ratio of 2.9 and a concentration of 4.5 wt% was added as a hardening agent to the inner surface of a cast iron manifold that had been previously degreased with an alkaline solution with a pH of 10 to 11. Calcined aluminum phosphate (Hoechst H,
B hardener) was added in an amount of 1 Q w t%. Immediately use Kaza1JJi0.2, particle size 4 as a heat insulating material.
Shirasu balloons of 4 to 150 μm were sprayed.

シラスバルーンが十分に付着した後、室温で1時間保持
し、次に50℃に昇温して1時間保持し、さらに100
℃に昇温しで1時間保持し、最後に300°Cに昇温し
で1時間保持した。この熱処理により耐火断熱層を完全
に固化した。このプロセスをさらに2回繰り返し、厚さ
311の耐火断熱層を形成した。
After the Shirasu balloon was sufficiently attached, it was held at room temperature for 1 hour, then raised to 50°C and held for 1 hour, and then heated to 50°C.
The temperature was raised to 300°C and held for 1 hour, and finally to 300°C and held for 1 hour. This heat treatment completely solidified the fireproof heat insulating layer. This process was repeated two more times to form a refractory insulation layer with a thickness of 311 mm.

第二段階として上記の耐火断熱層の上に上記と同一の無
機質結合剤を塗布し、さらに粒径44〜150μmの安
定化ジルコニア粒子を散布した後、上記と同一の熱処理
を行い、厚さ0.51の耐火層を形成した。
As a second step, the same inorganic binder as above is applied on top of the above fireproof heat insulating layer, and stabilized zirconia particles with a particle size of 44 to 150 μm are further sprinkled, and then the same heat treatment as above is performed to reduce the thickness to 0. A refractory layer of .51 was formed.

(Mられた耐火断熱コーティングには全く亀裂は見られ
ず、また断熱マニホルドに対して1000°Cの燃焼ガ
スによる加熱と放冷を繰り返したが、コーティングの亀
裂や剥離は全く見られなかった。
(No cracks were observed in the M-treated fireproof and heat-insulating coating, and even though the heat-insulating manifold was repeatedly heated with combustion gas at 1000°C and allowed to cool, no cracks or peeling of the coating were observed.

一方、同一材料を泥漿状にして塗布して作成した耐火断
熱コーティングは、乾燥・固化時に多くの亀裂が見られ
、同一条件の加熱・冷却により亀裂は一層広がった。
On the other hand, a fire-resistant and heat-insulating coating made by applying the same material in the form of a slurry had many cracks during drying and solidification, and the cracks widened further when heated and cooled under the same conditions.

実施例2 あらかじめpH10〜11のアルカリ性溶液で脱脂処理
を施した鋳鉄製マニホルドの内面に第一段階として珪曹
比3.0濃度、40wt%の珪酸ソーダ水溶液に硬化剤
として焼成リン酸アルミニウム(ヘキスト社MH,Bハ
ードナー)を13wt%添加したものを塗布した。直ち
に断熱材としてかさ比重0.22、粒径44〜150μ
mパーライトを散布した。実施例1と同じ方法により熱
処理を施し、耐火断熱層を完全に固化した。このプロセ
スをさらに2回繰り返し厚さ3 mmの耐火断熱層を形
成した。
Example 2 As a first step, calcined aluminum phosphate (Hoechst) was added to a sodium silicate aqueous solution with a silica ratio of 3.0 concentration and 40 wt% on the inner surface of a cast iron manifold that had been previously degreased with an alkaline solution with a pH of 10 to 11. A coating containing 13 wt % of MH, B hardener) was applied. Immediately used as a heat insulator with a bulk specific gravity of 0.22 and a particle size of 44-150μ
Spread m perlite. Heat treatment was performed in the same manner as in Example 1 to completely solidify the fireproof heat insulating layer. This process was repeated two more times to form a 3 mm thick fireproof heat insulating layer.

第2段階として、上記の耐火断熱層の上に」二記と同一
の無機質結合剤“を塗布しさらに粒径44〜150μm
の安定化ジルコニア粒を散布した後、上記と同一の加熱
処理を行い厚さ500μmの耐火層を形成した。
As a second step, the same inorganic binder as described in Section 2 is applied on top of the above fireproof heat insulating layer, and the particle size is 44 to 150 μm.
After scattering the stabilized zirconia grains, the same heat treatment as above was performed to form a fireproof layer with a thickness of 500 μm.

得られた耐火断熱コーティングには亀裂、剥離は全く見
られず、また断熱マニホルドに対して1000℃の燃焼
ガスによる加熱と放冷とを繰り返したが、コーティング
層には亀裂は全く見られなかった。
No cracks or peeling were observed in the resulting fireproof and heat-insulating coating, and even though the heat-insulating manifold was repeatedly heated with combustion gas at 1000°C and allowed to cool, no cracks were observed in the coating layer. .

一方、同一材料を泥漿状にて塗布して作成した耐火断熱
コーティングは乾燥・固化時に多くの亀裂が見られ、同
一条件の加熱冷却により亀裂は一層拡大した。
On the other hand, a fireproof and heat-insulating coating made by applying the same material in the form of a slurry showed many cracks during drying and solidification, and the cracks expanded further when heated and cooled under the same conditions.

本実施例は断熱マニホルドについて述べたが、本発明は
これに限定されるものではなく、高温ガスを扱う化学装
置や加熱装置等の金属部材の耐火断熱コーティングの形
成に応用できるものである。
Although this embodiment describes a heat insulating manifold, the present invention is not limited thereto, but can be applied to the formation of a fire-resistant heat insulating coating on metal members such as chemical equipment or heating equipment that handle high-temperature gas.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は結合剤溶液に耐火断熱材粉末や耐火材粉
末を付着させることにより耐火断熱層や耐火層を形成す
るので、乾燥・固化後も亀裂や剥離が生じず、また高温
ガスによる加熱と冷却のサイクルを繰り返しても亀裂や
剥離を起さない。また、結合剤溶液中の結合剤の濃度を
高くすることができるので、作業能率が良い。結合剤溶
液の塗布と粉末付着を繰り返すことにより、所望の厚さ
の耐火断熱コーティングを得ることができる。
The method of the present invention forms a fireproof heat insulating layer or fireproof layer by attaching fireproof heat insulating material powder or refractory material powder to a binder solution, so that cracks or peeling do not occur even after drying and solidification, and heating with high temperature gas No cracking or peeling occurs even after repeated cooling cycles. Further, since the concentration of the binder in the binder solution can be increased, work efficiency is improved. By repeating the application of the binder solution and the powder deposition, the desired thickness of the refractory insulation coating can be obtained.

ノん謬(弁理士高石橘馬Non-False (Patent Attorney Takaishi Tachibana)

Claims (1)

【特許請求の範囲】 断熱金属部材を製造する方法において、 (a)金属部材の内面に無機質結合剤溶液を塗布し、(
b)直ちに前記無機質結合剤溶液の層に耐火断熱材粉末
を付着させ、 (c)熱処理により乾燥・固化する 工程を含む第一段階を少くとも1回行うことにより耐火
断熱層を形成し、次いで (d)前記耐火断熱層の表面に無機質結合剤溶液を塗布
し、 (e)直ちに前記無機質結合剤溶液の層に耐火材粉末を
付着させ、 (f)熱処理により乾燥・固化する 工程を含む第二段階を少くとも1回行うことにより耐火
層を形成することを特徴とする方法。
[Claims] A method for manufacturing a heat insulating metal member, comprising: (a) applying an inorganic binder solution to the inner surface of the metal member;
b) Immediately depositing a refractory insulation powder on the layer of inorganic binder solution; (c) forming a refractory insulation layer by performing at least one first step comprising drying and solidifying by heat treatment; (d) applying an inorganic binder solution to the surface of the refractory heat insulating layer; (e) immediately adhering a refractory material powder to the layer of the inorganic binder solution; and (f) drying and solidifying by heat treatment. A method characterized in that the refractory layer is formed by carrying out at least one of two steps.
JP272285A 1985-01-11 1985-01-11 Production of heat insulating metallic member Pending JPS61163282A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP272285A JPS61163282A (en) 1985-01-11 1985-01-11 Production of heat insulating metallic member
US06/817,687 US4680239A (en) 1985-01-11 1986-01-10 Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
DE19863600574 DE3600574A1 (en) 1985-01-11 1986-01-10 EXHAUST DEVICE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP272285A JPS61163282A (en) 1985-01-11 1985-01-11 Production of heat insulating metallic member

Publications (1)

Publication Number Publication Date
JPS61163282A true JPS61163282A (en) 1986-07-23

Family

ID=11537200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP272285A Pending JPS61163282A (en) 1985-01-11 1985-01-11 Production of heat insulating metallic member

Country Status (1)

Country Link
JP (1) JPS61163282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540215A (en) * 2006-06-15 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー Exhaust system part having heat insulation double wall and method for manufacturing the same
US8356639B2 (en) 2006-06-15 2013-01-22 3M Innovative Properties Company Insulated double-walled exhaust system component and method of making the same
WO2020017192A1 (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Method for manufacturing internal-combustion engine piston

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540215A (en) * 2006-06-15 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー Exhaust system part having heat insulation double wall and method for manufacturing the same
US8356639B2 (en) 2006-06-15 2013-01-22 3M Innovative Properties Company Insulated double-walled exhaust system component and method of making the same
JP2013144985A (en) * 2006-06-15 2013-07-25 Three M Innovative Properties Co Insulated double-walled exhaust system component and method of making the same
US8522828B2 (en) 2006-06-15 2013-09-03 3M Innovative Properties Company Insulated double-walled exhaust system component and method of making the same
WO2020017192A1 (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Method for manufacturing internal-combustion engine piston
JP2020012413A (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine

Similar Documents

Publication Publication Date Title
CA1327873C (en) Ceramic coating on metal
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
JPH0729857B2 (en) Ceramic-metal bonded body and manufacturing method thereof
JPH01166875A (en) Ceramic-metal composite material body and manufacture thereof
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
JPS61163282A (en) Production of heat insulating metallic member
JPS62107076A (en) Production of heat insulating metallic member
JPS62211138A (en) Heat-insulating member
JPS62107086A (en) Production of heat insulating metallic member
JPH0435620B2 (en)
CN1182655A (en) Coating for casting thin foundry goods
JPS61244819A (en) Heat insulating manifold
JPH0250994B2 (en)
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JPS62107075A (en) Method for coating inside surface of exhaust apparatus
JPS61244817A (en) Manufacture of heat insulating manifold
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS63154815A (en) Exhaust system equipment
JPS5899180A (en) Manufacture of exhaust gas instrument for internal combustion engine
JPS61244818A (en) Heat insulating manifold
JPS62107077A (en) Method for coating inside surface of exhaust apparatus
JPS62107078A (en) Method for coating inside surface of exhaust apparatus
JPS63295210A (en) Preparation of ceramic-coated tube-like body
JPS62107079A (en) Method for coating inside surface of exhaust apparatus
JPS63295209A (en) Preparation of ceramic-coated tube-like body