JPS61244817A - Manufacture of heat insulating manifold - Google Patents
Manufacture of heat insulating manifoldInfo
- Publication number
- JPS61244817A JPS61244817A JP8590085A JP8590085A JPS61244817A JP S61244817 A JPS61244817 A JP S61244817A JP 8590085 A JP8590085 A JP 8590085A JP 8590085 A JP8590085 A JP 8590085A JP S61244817 A JPS61244817 A JP S61244817A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- heat insulating
- manifold
- fire
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Silencers (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は断熱性並びに耐久性に優れた断熱マニホルドの
製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a heat insulating manifold having excellent heat insulating properties and durability.
内燃機関の排気系機器、特にマニホルドの内面はシリン
ダーより排出される高温・高圧の燃焼ガスに接するため
、その影響を強く受け、長時間使用することができない
難点があり、又断熱性が小さい欠点がある。Exhaust system equipment of internal combustion engines, especially the inner surface of the manifold, is in contact with the high temperature and high pressure combustion gas discharged from the cylinder, so it is strongly affected by it, making it difficult to use for a long time, and also has the disadvantage of poor insulation properties. There is.
特開昭58−99180号は排気マニホルド等の内燃機
関用排気ガス系機器の内面に耐火断熱コーティシグを施
こす方法を開示している。この方法は、高熱の排気ガス
に接する金属製機器本体の内面に耐火物原料粒子と無機
質結合材とフリットの混和物よりなる泥漿を付着させて
耐熱被覆層を形成し、続いて、該耐熱被覆層が湿潤状態
にある間にその表面に耐火断熱材粒子を付着させて耐火
断熱層を形成し1次いで、前記耐熱被覆層を固化させた
うえ該耐火断熱層の表面に耐火物原料粒子と無機質結合
材とフリットの混和物よりなる泥漿を付着させて耐熱被
覆層を形成させることを特徴とし、必要に応じ前記外層
の耐熱被覆層の表面に前記耐火断熱層と同材の耐火断熱
層および前記耐熱被覆層と同材の耐熱被覆層を順次反復
して所要層形成させるものである。この方法により、耐
熱被覆層と耐火断熱層と耐熱被覆層との三層が一体化し
て積層されたコーティングが形成される。Japanese Patent Laid-Open No. 58-99180 discloses a method of applying a fire-resistant and heat-insulating coating to the inner surface of exhaust gas system equipment for an internal combustion engine, such as an exhaust manifold. In this method, a heat-resistant coating layer is formed by attaching a slurry made of a mixture of refractory raw material particles, an inorganic binder, and a frit to the inner surface of a metal device body that is in contact with high-temperature exhaust gas, and then the heat-resistant coating layer is formed. While the layer is in a wet state, refractory insulation material particles are attached to the surface thereof to form a refractory insulation layer, and then the heat resistant coating layer is solidified, and refractory raw material particles and inorganic materials are applied to the surface of the refractory insulation layer. The heat-resistant coating layer is formed by adhering a slurry made of a mixture of a binder and a frit, and if necessary, a fire-resistant heat-insulating layer made of the same material as the fire-resistant heat-insulating layer and the above-mentioned Heat-resistant coating layers and heat-resistant coating layers made of the same material are sequentially repeated to form required layers. By this method, a coating is formed in which the three layers of the heat-resistant coating layer, the fire-resistant heat insulating layer, and the heat-resistant coating layer are integrated and laminated.
しかしながら、上記方法においてはコーティング材料を
泥漿状にしてコーティングするため、被覆層中の水分が
比較的多くならざるを得ず、乾燥時に亀裂が生じ、また
熱処理時の収縮が大きく。However, in the above method, since the coating material is coated in the form of a slurry, the water content in the coating layer must be relatively large, causing cracks during drying and large shrinkage during heat treatment.
剥離・破損が起こりがちである。また高温の排気ガスに
より急激に加熱される際にも熱衝撃により亀裂が生ずる
おそれが大きい、さらに、コーティング材料は泥漿状で
あるためマニホルドの内面に均一な厚さで付着させるこ
とはきわめて困難である。Peeling and breakage are likely to occur. There is also a high risk of cracking due to thermal shock when rapidly heated by high-temperature exhaust gas.Furthermore, since the coating material is slurry-like, it is extremely difficult to apply it to the inner surface of the manifold with a uniform thickness. be.
本発明者等は、これらの欠点にかんがみ種々研究を重ね
た結果、マニホルドの内面に結合剤を塗布した後無機質
ファイバーからなる断熱材および耐火材粉末をそれぞれ
気体とともに送給して付着させ、均等な厚さの断熱層と
耐火層を形成し、熱処理を行うことにより亀裂・剥離の
ない耐火・断熱コーティングを形成することができるこ
とを発見し1本発明を完成するに至った。In view of these shortcomings, the inventors of the present invention have conducted various studies, and after applying a binder to the inner surface of the manifold, a heat insulating material made of inorganic fibers and a refractory material powder are delivered together with gas to adhere them evenly. The inventors discovered that by forming a heat insulating layer and a fire resistant layer with a certain thickness and performing heat treatment, it is possible to form a fire resistant and heat insulating coating that does not crack or peel, leading to the completion of the present invention.
すなわち、本発明の断熱マニホルドの製造法は、(a)
鋳鉄製マニホルドの内面に無機質結合剤溶液を塗布し、
(b)直ちに前記溶液層に無機質ファイバーよりなる耐
火断熱材を気体とともに送給して付着させ、(c)熱処
理により乾燥・固化する工程を含む第一段階を少なくと
も1回行うことにより耐火断熱層を形成し、次いで(d
)耐火断熱層の表面に無機質結合剤溶液を塗布し、(e
)直ちに無機質結合剤溶液の層に耐火材粉末を気体とと
もに送給して付着させ、(f)熱処理により乾燥・固化
する工程を含む第二段階を少なくとも1回行うことによ
り耐火層を形成するものである。That is, the method for manufacturing a heat insulating manifold of the present invention includes (a)
Apply an inorganic binder solution to the inner surface of the cast iron manifold,
(b) Immediately supply a fireproof insulation material made of inorganic fiber with gas to the solution layer to adhere it, and (c) perform at least one first step including drying and solidification by heat treatment to form a fireproof insulation layer. , then (d
) Apply an inorganic binder solution to the surface of the fireproof insulation layer,
) A refractory layer is formed by immediately applying a refractory material powder together with a gas to adhere to the layer of an inorganic binder solution, and (f) performing at least one second step including a step of drying and solidifying by heat treatment. It is.
本発明の方法において接着性を付与するために使用する
無機質結合剤としては、珪酸ソーダ、珪酸カリ、珪酸リ
チウムなどの珪酸塩結合剤、第一リン酸アルミニウム、
コロイダルシリカ、エチルシリケート等が適当である。Inorganic binders used to impart adhesive properties in the method of the present invention include silicate binders such as sodium silicate, potassium silicate, lithium silicate, monobasic aluminum phosphate,
Colloidal silica, ethyl silicate, etc. are suitable.
結合剤は水溶液の形で使用するが、その濃度は20〜6
0wt%が好ましい。20wt%より低いと接着力が小
さく剥離しやすい。又60wt%より高いと塗布作業が
困難となる。より好ましくは25〜55 w t%であ
る。The binder is used in the form of an aqueous solution, and its concentration is between 20 and 6
0 wt% is preferred. If it is lower than 20 wt%, the adhesive force is small and peeling is likely to occur. Moreover, if it is higher than 60 wt%, coating work becomes difficult. More preferably, it is 25 to 55 wt%.
結合剤溶液に、硬化剤を適量添加することもできる。硬
化剤は、結合剤の種類によって異なるがそれぞれ公知の
ものが使用できる。例えば、珪酸塩結合剤に対しては珪
弗化ソーダ、焼成リン酸アはマグネシア、ライムなどの
塩基性酸化物、カルシウムアルミネート、弗化アンモニ
ウム等がある。Appropriate amounts of curing agents can also be added to the binder solution. Although the curing agent differs depending on the type of binder, any known curing agent can be used. For example, silicate binders include sodium silicate fluoride, calcined phosphate binders include basic oxides such as magnesia and lime, calcium aluminate, ammonium fluoride, and the like.
断熱性を付与するために使用する耐火断熱材はセラミッ
クファイバー、ガラスファイバー、カーボンファイバー
等の無機質ファイバーである。The fireproof heat insulating material used to provide heat insulation is inorganic fiber such as ceramic fiber, glass fiber, or carbon fiber.
本発明に使用するファイバーの直径は一般に1〜8μm
、長さは0.5〜10mmの範囲である。The diameter of the fiber used in the present invention is generally 1 to 8 μm.
, the length ranges from 0.5 to 10 mm.
直径が1μmより小さいか、長さが0.5mmより短い
と収縮による亀裂・剥離を生じるし、直径が8μmより
大、きいか、長さが10mmより長いと気体による均一
な送給が困難である。好ましい繊維の直径は2〜4μm
、長さは1〜6mmである。If the diameter is smaller than 1 μm or the length is shorter than 0.5 mm, cracking or peeling will occur due to shrinkage, and if the diameter is larger than 8 μm, the length is longer than 10 mm, it will be difficult to uniformly supply the gas. be. The preferred fiber diameter is 2-4 μm
, the length is 1-6 mm.
耐火材としてはシャモット、アルミナ、ジルコン、ジル
コニア等の一般的に使用されるものでよいが、特にジル
コニアは熱伝道率が低いので好ましい。耐火材粉末の平
均粒度は一般に10〜500μmの範囲である。10μ
mより小さいと粒子間の凝集が起りやすく、平滑な被覆
層を形成しにくいし、高熱の影響を受けて収縮しやすい
、また。As the refractory material, commonly used materials such as chamotte, alumina, zircon, and zirconia may be used, but zirconia is particularly preferred because of its low thermal conductivity. The average particle size of the refractory powder generally ranges from 10 to 500 μm. 10μ
If it is smaller than m, agglomeration between particles tends to occur, making it difficult to form a smooth coating layer, and easily shrinking under the influence of high heat.
500μmより大きいと、平滑な皮膜を形成しにくい。If it is larger than 500 μm, it will be difficult to form a smooth film.
好ましい粒径範囲は20〜200μmである。The preferred particle size range is 20-200 μm.
本発明の方法は耐火断熱層を形成する段階と耐大層を形
成する段階とを有する。The method of the present invention includes the steps of forming a refractory insulation layer and forming a refractory layer.
耐火断熱層を形成する場合、まずマニホルドの内面に無
機質結合剤溶液を塗布する。これによりマニホルドの内
面は一様に結合剤溶液で濡れる。When forming a refractory insulation layer, an inorganic binder solution is first applied to the inner surface of the manifold. This evenly wets the inner surface of the manifold with the binder solution.
これに無機質ファイバーよりなる耐火断熱材を付着させ
る。付着方法としては、結合剤溶液表面に無機質ファイ
バーを散布したり、マニホルド内に気体とともに無機質
ファイバーを送給し、付着させる方法等がある。A fireproof insulation material made of inorganic fiber is attached to this. Examples of attachment methods include scattering inorganic fibers on the surface of the binder solution, and feeding inorganic fibers together with gas into a manifold to cause attachment.
効率上の観点からは後者の方法がのぞましい。The latter method is preferable from an efficiency standpoint.
後者の方法の場合、マニホルドの内部に無機質ファイバ
ーの耐火断熱材を気体とともに送給すると、マニホルド
の内面に均一に付着し結合剤溶液は無機質ファイバー間
に浸透し、充分な量のファイバーが濡れることになる。In the case of the latter method, when the inorganic fiber refractory insulation material is fed into the manifold together with gas, it adheres uniformly to the inner surface of the manifold, and the binder solution penetrates between the inorganic fibers to wet a sufficient amount of the fibers. become.
このプロセスを促進するために気体の排出側を密閉し幾
分圧力をかけても良い。次に無機質ファイバーの供給を
止め、気体のみを送給して付着の不充分なファイバーを
気体流により吹き飛ばし、除去する。このようにして、
充分に結合剤溶液が含浸した耐火断熱材の層が形成され
る。この層の厚さは結合剤溶液の濃度および厚さによっ
て異なるが、一般に100〜1500μmである。To facilitate this process, the gas outlet side may be sealed and some pressure may be applied. Next, the supply of inorganic fibers is stopped, and only gas is supplied to blow off and remove insufficiently adhered fibers with the gas flow. In this way,
A layer of refractory insulation is formed which is fully impregnated with the binder solution. The thickness of this layer depends on the concentration and thickness of the binder solution, but is generally between 100 and 1500 μm.
以上の方法により形成した結合剤溶液含浸耐火断熱材層
は、泥漿状にして塗布した層と比較して。The binder solution-impregnated refractory insulation layer formed by the above method was compared with the layer applied in the form of a slurry.
水分が非常に少い。これは本発明の著しい特徴である。Very little moisture. This is a significant feature of the invention.
かかる特徴により1次の熱処理による乾燥・固化工程に
おいて層に亀裂が生じたり層が剥離したりすることはな
い。Due to this feature, cracks do not occur in the layer or the layer peels off during the drying/solidification process by the primary heat treatment.
上記層の熱処理は約300℃まで徐々に加熱することに
より行う。急激な加熱は層の亀裂や剥離を引き起すおそ
れがあるので、避けるべきである。The heat treatment of the layer is carried out by gradually heating it to about 300°C. Rapid heating should be avoided as it may cause cracking and delamination of the layers.
好ましくは、層を室温で自然乾燥し、しかる後徐々に温
度を〒航。例えば自然乾燥後、50”Cに1時間保持し
1次に100℃に1時間保持する。Preferably, the layer is allowed to air dry at room temperature, and then the temperature is gradually increased. For example, after air drying, it is held at 50''C for 1 hour and then at 100°C for 1 hour.
さらに安定性向上のためには、300’Cまで加熱する
ことが望ましい。In order to further improve stability, it is desirable to heat up to 300'C.
次に、必要とあらば、上記の耐火断熱材層の上にさらに
同様の方法により結合剤溶液を塗布し。Next, if necessary, a binder solution is further applied on the above-mentioned fireproof insulation layer by the same method.
耐火断熱材を付着させ、熱処理により乾燥・同化させる
。比較的厚い耐火断熱層を得るためには、このサイクル
を数回繰り返す。充分な断熱性を確保するために、耐火
断熱層は1.5mm以上必要である。A fireproof insulation material is attached, and it is dried and assimilated by heat treatment. This cycle is repeated several times to obtain a relatively thick refractory insulation layer. In order to ensure sufficient heat insulation, the fireproof insulation layer needs to be 1.5 mm or more.
このようにして形成された耐火断熱層の上に耐火層を形
成する必要がある。耐火層はまず無機質結合剤溶液を塗
布し、耐火材粉末を付着させ、熱処理により乾燥・固化
する工程を含む方法により形成する。具体的な条件は、
耐火材粉末を使用すること以外耐火断熱層の形成条件と
実質的に同一である。耐火層は上記工程からなるーサイ
クルのみで形成することができるが、必要とあらば数回
繰り返してもよい。かかる方法により0.5mm以上の
耐火層を形成する。It is necessary to form a refractory layer on the refractory heat insulating layer thus formed. The refractory layer is formed by a method including the steps of first applying an inorganic binder solution, adhering a refractory material powder, and drying and solidifying by heat treatment. The specific conditions are:
The conditions for forming the refractory heat insulating layer are substantially the same except that refractory material powder is used. The refractory layer can be formed only by a cycle consisting of the above steps, but the steps may be repeated several times if necessary. By this method, a refractory layer of 0.5 mm or more is formed.
本発明を以下の実施例によりさらに詳細に説明する。 The present invention will be explained in further detail by the following examples.
実施例1
予めPHIO〜11のアルカリ性溶液で脱脂処理を施し
た球状黒鉛鋳鉄製マニホルドの内面に、第一段階として
珪曹比2.9、濃度45wt%の珪酸ソーダ水溶液に硬
化剤として焼成リン酸アルミニウム(ヘキスト社製H,
Bハードナー)を10wt%添加したものを塗布した。Example 1 The inner surface of a spheroidal graphite cast iron manifold that had been previously degreased with an alkaline solution of PHIO to 11 was coated with calcined phosphoric acid as a hardening agent in a sodium silicate aqueous solution with a silicate ratio of 2.9 and a concentration of 45 wt% as a first step. Aluminum (Hoechst H,
A coating containing 10 wt % of B hardener) was applied.
直ちに断熱材として繊維直径2〜4μm長さ2〜4mm
のセラミックファイバーを空気とともに送給した。Fiber diameter 2-4μm length 2-4mm immediately as insulation material
of ceramic fibers were delivered together with air.
セラミックファイバーが充分に付着した後、室温で1時
間保持し1次に50’Cに昇温しで1時間保持し、さら
に100℃に昇温しで1時間保持し、最後に300℃に
昇温しで1時間保持した。この熱処理により耐火断熱層
を完全に固化した。After the ceramic fibers were sufficiently attached, the temperature was kept at room temperature for 1 hour, then the temperature was raised to 50°C and held for 1 hour, the temperature was further raised to 100°C and held for 1 hour, and finally the temperature was raised to 300°C. It was kept warm for 1 hour. This heat treatment completely solidified the fireproof heat insulating layer.
このプロセスをさらに2回繰り返し、厚さ3mmの耐火
断熱層を形成した。This process was repeated two more times to form a 3 mm thick fireproof insulation layer.
第二段階として上記の耐火断熱層の上に上記と同一の無
機質結合剤を塗布し、さらに粒径44〜い、厚さQ、5
mmの耐火層を形成した。As a second step, the same inorganic binder as above is applied on the fireproof heat insulating layer, and the particle size is 44 ~
A fireproof layer of mm was formed.
得られた耐火断熱コーティングには全く亀裂は見られず
、また断熱マニホルドに対して100゜℃の燃焼ガスに
よる加熱と放冷を繰り返したが、た耐火断熱コーティン
グは、乾燥・固化時に多くの亀裂が見られ、同一条件の
加熱・冷却により亀裂は一層広がった。No cracks were observed in the obtained fire-resistant heat-insulating coating, and although the heat-insulating manifold was repeatedly heated with combustion gas at 100°C and allowed to cool, the fire-resistant heat-insulating coating showed many cracks during drying and solidification. was observed, and the cracks further expanded under the same heating and cooling conditions.
実施例2
予めPHIO〜11のアルカリ性溶液で脱脂処理を施し
た球状黒鉛鋳鉄製マニホルドの内面に第一段階として珪
曹比3.0、濃度40wt%の珪酸ソーダ水溶液に硬化
剤として焼成リン酸アルミニウム(ヘキスト社製H,B
ハードナー)を8wt%添加したものを塗布した。直ち
に断熱材として繊維直径t〜4μm長さ1〜5mmのガ
ラスファイバーを空気とともに送給した。実施例1と同
じ方法により熱処理を施し、耐火断熱層を完全に固化し
た。このプロセスを2回繰り返し厚さ3mmの耐火断熱
層を形成した。Example 2 As a first step, calcined aluminum phosphate was added as a hardening agent to a sodium silicate aqueous solution with a silicate ratio of 3.0 and a concentration of 40 wt% on the inner surface of a spheroidal graphite cast iron manifold that had been previously degreased with an alkaline solution of PHIO to 11. (Hoechst H, B
A coating containing 8 wt % of hardener) was applied. Immediately, glass fibers having a fiber diameter of t~4 μm and a length of 1 to 5 mm were fed together with air as a heat insulating material. Heat treatment was performed in the same manner as in Example 1 to completely solidify the fireproof heat insulating layer. This process was repeated twice to form a fireproof heat insulating layer with a thickness of 3 mm.
第2段階として、上記の耐火断熱層の上に上記と同一の
無機質結合剤を塗布しさらに粒径44〜150μmの安
定化ジルコニア粒を空気とともに送給した後、上記と同
一の加熱処理を行ない厚さ500μmの耐火層を形成し
た。As a second step, the same inorganic binder as above is applied on the fireproof insulation layer, stabilized zirconia particles with a particle size of 44 to 150 μm are fed together with air, and then the same heat treatment as above is performed. A fireproof layer with a thickness of 500 μm was formed.
得られた耐火断熱コーティングには亀裂、剥離は全く見
られず、また断熱マニホルドに対して、1000℃の燃
焼ガスによる加熱と放冷とを繰り返したが、コーティン
グ層には亀裂は全く見られ耐火断熱コーティングは乾燥
・同化時に多くの亀裂が見られ、同一条件の加熱冷却に
より一層拡大した。No cracks or peeling were observed in the resulting fire-resistant and heat-insulating coating, and although the heat-insulating manifold was repeatedly heated with combustion gas at 1000°C and allowed to cool, no cracks were observed in the coating layer, indicating that it was fire-resistant. Many cracks were observed in the heat-insulating coating during drying and assimilation, and these cracks were further enlarged by heating and cooling under the same conditions.
本実施例は球状黒鉛鋳鉄製の断熱マニホルドについて述
べたが1本発明はこれに限定されるものではなくバーミ
キュラ鋳鉄あるいは普通鋳鉄製のマニホルドでも同じ目
的を達成し得るものである。Although this embodiment describes a heat insulating manifold made of spheroidal graphite cast iron, the present invention is not limited thereto, and the same objective can be achieved with a manifold made of vermicular cast iron or ordinary cast iron.
また、高温ガスを扱う化学装置や加熱装置等の金属部材
の耐火断熱コーティングの形成にも応用できるものであ
る。It can also be applied to the formation of fire-resistant and heat-insulating coatings for metal members such as chemical equipment and heating equipment that handle high-temperature gases.
本発明の方法は、結合剤溶液に無機質ファイバーよりな
る耐火断熱材や耐火材粉末を気体とともに送給して付着
させることにより耐火断熱層や耐火層を形成するので、
乾燥・固化後も亀裂や剥離を生じない。The method of the present invention forms a refractory insulation layer or a refractory layer by feeding a refractory insulation material made of inorganic fiber or refractory material powder together with a gas to adhere to a binder solution.
No cracking or peeling occurs even after drying and solidification.
また無機質ファイバーの断熱層は、加熱冷却による耐火
層の膨張、収縮に対する優れた緩衝効果を有するので高
温ガスによる加熱と冷却のサイクルを繰り返しても亀裂
や剥離を起さない。Furthermore, the inorganic fiber heat insulating layer has an excellent buffering effect against the expansion and contraction of the refractory layer due to heating and cooling, so it does not crack or peel even after repeated heating and cooling cycles using high-temperature gas.
さらに、結合剤溶液中の結合剤の濃度を高くすることが
できるので、作業能率が良い。結合剤溶液の塗布と、気
体とともに送給される断熱ファイバーの付着、あるいは
耐火材粉末の付着を繰り返すことにより、均一な所望の
厚さの耐火断熱コーティングを得ることができる。Furthermore, since the concentration of the binder in the binder solution can be increased, work efficiency is improved. By repeating the application of the binder solution and the deposition of gas-delivered insulation fibers or refractory powder, a uniform, desired thickness of the refractory insulation coating can be obtained.
Claims (1)
布し、 (b)直ちに前記無機質結合剤溶液の層に無機質ファイ
バーよりなる耐火断熱材を気体とともに送給して付着さ
せ、 (c)熱処理により乾燥・固化する 工程を含む第一段階を少くとも1回行うことにより耐火
断熱層を形成し、次いで (d)前記耐火断熱層の表面に無機質結合剤溶液を塗布
し、 (e)直ちに前記無機質結合剤溶液の層に耐火材粉末を
気体とともに送給して付着させ、 (f)熱処理により乾燥・固化する 工程を含む第二段階を少くとも1回行うことにより耐火
層を形成することを特徴とする断熱マニホルドの製造法
。[Claims] (a) An inorganic binder solution is applied to the inner surface of a cast iron manifold, and (b) a fireproof insulating material made of inorganic fiber is immediately delivered to the layer of the inorganic binder solution together with a gas to adhere. (c) forming a fireproof heat insulating layer by performing the first step including drying and solidifying by heat treatment at least once; and (d) applying an inorganic binder solution on the surface of the fireproof heat insulating layer. (e) Immediately deposit the refractory material powder on the layer of the inorganic binder solution by feeding it with a gas, and (f) perform the second step at least once including the step of drying and solidifying by heat treatment. A method for manufacturing a heat insulating manifold characterized by forming layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8590085A JPS61244817A (en) | 1985-04-22 | 1985-04-22 | Manufacture of heat insulating manifold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8590085A JPS61244817A (en) | 1985-04-22 | 1985-04-22 | Manufacture of heat insulating manifold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61244817A true JPS61244817A (en) | 1986-10-31 |
Family
ID=13871735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8590085A Pending JPS61244817A (en) | 1985-04-22 | 1985-04-22 | Manufacture of heat insulating manifold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61244817A (en) |
-
1985
- 1985-04-22 JP JP8590085A patent/JPS61244817A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4680239A (en) | Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same | |
US4975314A (en) | Ceramic coating bonded to metal member | |
JPH01500331A (en) | Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby | |
JPS61244817A (en) | Manufacture of heat insulating manifold | |
JPS62107076A (en) | Production of heat insulating metallic member | |
JPS61163282A (en) | Production of heat insulating metallic member | |
JPS62107086A (en) | Production of heat insulating metallic member | |
JPS61244818A (en) | Heat insulating manifold | |
JPS63154815A (en) | Exhaust system equipment | |
JPS62107075A (en) | Method for coating inside surface of exhaust apparatus | |
JPH0250994B2 (en) | ||
JPS63129115A (en) | Exhaust system apparatus and manufacture thereof | |
JPS62107084A (en) | Method for coating inside surface of exhaust apparatus | |
JPS61244819A (en) | Heat insulating manifold | |
JPS62107077A (en) | Method for coating inside surface of exhaust apparatus | |
JPS62107085A (en) | Method for coating inside surface of exhaust apparatus | |
JPS62107079A (en) | Method for coating inside surface of exhaust apparatus | |
JPS5899180A (en) | Manufacture of exhaust gas instrument for internal combustion engine | |
JPS62107078A (en) | Method for coating inside surface of exhaust apparatus | |
JPS62107081A (en) | Method for coating inside surface of exhaust apparatus | |
JPS63129114A (en) | Exhaust system apparatus and manufacture thereof | |
JPS62107080A (en) | Method for coating inside surface of exhaust apparatus | |
JPS63295209A (en) | Preparation of ceramic-coated tube-like body | |
JPH03177377A (en) | Sio2-impregnated brick for ceramic burner in hot blast stove | |
JPS6021886A (en) | Coating material for ceramic fiber |