JPH02258983A - Ceramic-metal joined body and production thereof - Google Patents

Ceramic-metal joined body and production thereof

Info

Publication number
JPH02258983A
JPH02258983A JP7906589A JP7906589A JPH02258983A JP H02258983 A JPH02258983 A JP H02258983A JP 7906589 A JP7906589 A JP 7906589A JP 7906589 A JP7906589 A JP 7906589A JP H02258983 A JPH02258983 A JP H02258983A
Authority
JP
Japan
Prior art keywords
layer
ceramic
metal
silicate
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7906589A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Norio Takahashi
紀雄 高橋
Masatoshi Nakamizo
雅敏 中溝
Kanesuke Kido
木戸 兼介
Katsumi Morikawa
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP7906589A priority Critical patent/JPH02258983A/en
Publication of JPH02258983A publication Critical patent/JPH02258983A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the joined body having high bonding strength and satisfactory oxidation preventing property and not causing exfoliation even after use at a high temp. over a long period of time by forming a heat insulating layer obtd. by sintering a heat insulating material based on inorg. hollow granules on a reactive binding layer consisting of a silicate and an oxide coating film formed on the surface of a metal member. CONSTITUTION:A metal member is heated to >=500 deg.C in a steam atmosphere to form an oxide coating film on the surface. This oxide coating film is coated with a sol of a silicate such as sodium silicate as a binder and the resulting binder layer is coated with a mixture of a heat insulating material based on inorg. hollow granules with a silicate binder and a hardening agent. They are held under heating at about 750-850 deg.C in a neutral atmosphere for about 0.5-1.5hr to obtain a ceramic-metal joined body having the above-mentioned characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の排気系機器等に使用し得るセラミッ
ク・金属接合体とその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic-metal bonded body that can be used for exhaust system equipment of internal combustion engines, and a method for manufacturing the same.

〔従来の技術及び発明が解決しようとする課題〕内燃機
関の排気系部材等のように高温腐食性ガスl+   −
: Jt、かつ急激な熱衝撃を受けるものに対して、耐
熱性、耐食性及び耐熱衝撃性を付与するために、その内
面にセラミックのコーティングを施こすことが提案され
ている。
[Problems to be solved by the prior art and the invention] High-temperature corrosive gas l+ - such as exhaust system members of internal combustion engines, etc.
: It has been proposed to apply a ceramic coating to the inner surface of Jt, and to impart heat resistance, corrosion resistance, and thermal shock resistance to those subjected to sudden thermal shock.

このようなセラミック・金属接合体で最も大きな問題は
、高温排気ガスによって急激な熱衝撃を受けるために、
セラミックと金属との熱膨張の差によってセラミックと
金属の接合境界面で大きな歪応力が発生し、セラミック
の接合面からの剥離が発生すること、およびセラミック
層は金属に比べて熱伝導率が非常に小さいために熱衝撃
によりセラミック層内の温度勾配が非常に大きくなり、
そのためセラミック層内で大きな歪応力が発生し、セラ
ミック層内で剥離が発生することである。
The biggest problem with such ceramic-metal joints is that they are subject to sudden thermal shock from high-temperature exhaust gas.
The difference in thermal expansion between ceramic and metal causes large strain stress at the ceramic-metal bonding interface, which causes the ceramic to peel from the bonded surface, and the ceramic layer has a very high thermal conductivity compared to the metal. Due to the small size of the ceramic layer, the temperature gradient within the ceramic layer becomes very large due to thermal shock.
Therefore, large strain stress is generated within the ceramic layer, and peeling occurs within the ceramic layer.

一般にセラミックは圧縮強さは大きいが、引張強さは小
さく非常に脆い性質を持っており、熱衝撃に対する抵抗
性は非常に小さいという欠点を有する。
In general, ceramics have a high compressive strength, but a low tensile strength and are extremely brittle, and have the disadvantage of having a very low resistance to thermal shock.

そこで、このような問題を解決するために種々の提案が
なされている。
Therefore, various proposals have been made to solve such problems.

例えば、特開昭58−51214号は高熱の排気ガスに
接する金属性機器本体の内面に耐火物原料粒子と耐熱性
無機質結合材の混和物よりなる不定形耐火物の被覆層を
形成したことを特徴とする内燃機関用排気ガス系機器を
開示している。
For example, JP-A No. 58-51214 discloses that a coating layer of an amorphous refractory made of a mixture of refractory raw material particles and a heat-resistant inorganic binder is formed on the inner surface of a metal device body that is in contact with high-temperature exhaust gas. Discloses an exhaust gas system device for an internal combustion engine having characteristics.

この他に、無機質結合剤を塗布後セラミック粒子を付着
させることよりセラミック層を形成する方法として、特
開昭58−99180号には、高熱の排気ガスに接する
金属製機器本体の内面に耐火物原料粒子と無機質結合材
とフリットの混和物よりなる泥漿を付着させて耐熱被覆
層を形成し、続いて前記耐熱被覆層が湿潤状態にある間
にその表面に耐火断熱材粒子を付着させて耐火断熱層を
形成し、次いで、前記耐熱被覆層を固化させたうえ前記
耐火断熱層の表面の耐火物原料粒子と無機質結合材とフ
リットの混和物よりなる泥漿を付着させて耐熱被覆層を
形成させることを特徴とし、必要に応じ前記耐熱被覆層
の表面に前記耐火断熱層と同村の耐火断熱層および前記
耐熱被覆層と同材の耐熱被覆層を順次反復して所要層形
成させる内燃機関用排気ガス系機器の製造法が開示され
ている。
In addition, Japanese Patent Laid-Open No. 58-99180 describes a method of forming a ceramic layer by attaching ceramic particles after applying an inorganic binder. A heat-resistant coating layer is formed by attaching a slurry made of a mixture of raw material particles, an inorganic binder, and a frit, and then, while the heat-resistant coating layer is in a wet state, fireproof insulation material particles are attached to the surface of the heat-resistant coating layer to make it fireproof. A heat insulating layer is formed, and then the heat resistant coating layer is solidified and a slurry made of a mixture of refractory raw material particles, an inorganic binder and a frit is attached to the surface of the fire resistant heat insulating layer to form a heat resistant coating layer. An exhaust gas for an internal combustion engine, characterized in that, if necessary, a fire-resistant heat-insulating layer made of the same material as the fire-resistant heat-insulating layer and a heat-resistant coating layer made of the same material as the heat-resistant coating layer are successively formed on the surface of the heat-resistant heat-resistant coating layer as required. A method of manufacturing gas-based equipment is disclosed.

!、かじながら、これらの方法によっても、セラミック
層と金属との接合強度は必ずしも十分ではなく、熱衝撃
によってセラミックと金属との接合界面での剥離及びセ
ラミック層内での剥離の恐れがあり、長時間の耐用に問
題がある。
! However, even with these methods, the bonding strength between the ceramic layer and the metal is not necessarily sufficient, and there is a risk of peeling at the bonding interface between the ceramic and the metal or within the ceramic layer due to thermal shock, resulting in long-term problems. There is a problem with time durability.

なお最近、金属アルコキシドなどを結合剤としたセラミ
ック塗料やコーティング剤が開発されているが、これら
は非常に高価であるとともに長期間耐用できるに充分な
厚さとすることが困難である。
Recently, ceramic paints and coatings using metal alkoxides as binders have been developed, but these are very expensive and difficult to make thick enough to last for a long period of time.

また、特開昭59−12116号には無機質の中空粒子
をセラミックからなるマトリックスに分散させてなる複
合セラミック材料が開示されているが、単に無機質中空
粒子をマ)IJフックス分散させるだけでは、断熱性は
確保できても、金属表面に付着性良好で熱衝撃に強いコ
ーティングを得ることはできない。また一般に無機質中
空粒子は強度が小さいため中空粒子間で破壊し、剥離や
亀裂の発生する恐れがある。
In addition, JP-A-59-12116 discloses a composite ceramic material in which inorganic hollow particles are dispersed in a ceramic matrix, but simply dispersing the inorganic hollow particles in an IJ Fuchs However, it is not possible to obtain a coating that has good adhesion and is resistant to thermal shock on metal surfaces. Furthermore, since inorganic hollow particles generally have low strength, there is a risk that the hollow particles will break, resulting in peeling or cracking.

次に、セラミック・金属接合体を長時間高温の腐食性排
気ガス等にさらしておくと、腐食性排気ガスがセラミッ
ク層内に侵入して金属との界面にまで達し、そこで金属
表面を酸化するという問題があることがわかった。金属
表面の酸化によりセラミック層と金属層との接合強度が
極端に低下し、機械的な衝撃や熱衝撃により簡単にセラ
ミック層が剥離するという問題が生ずる。
Next, if the ceramic-metal bonded body is exposed to high-temperature corrosive exhaust gas for a long period of time, the corrosive exhaust gas will penetrate into the ceramic layer and reach the interface with the metal, where it will oxidize the metal surface. It turns out that there is a problem. Oxidation of the metal surface causes a problem in that the bonding strength between the ceramic layer and the metal layer is extremely reduced, and the ceramic layer easily peels off due to mechanical or thermal shock.

従って、本発明の目的は、接合強度が十分に大きいとと
もに良好な酸化防止性を有し、長期間高温条件下で使用
しても剥離の問題のないセラミック・金属接合体を提供
することである。
Therefore, an object of the present invention is to provide a ceramic-metal bonded body that has sufficiently high bonding strength and good antioxidation properties, and does not cause peeling problems even when used under high temperature conditions for a long period of time. .

本発明のもう1つの目的は、このようなセラミック・金
属接合体を製造する方法を提供することである。
Another object of the present invention is to provide a method for manufacturing such a ceramic-metal joint.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的に鑑みて鋭意研究の結果、本発明者等は、金属
の酸化皮膜と珪酸塩が反応した結合層を形成した上に、
断熱性及び/又は耐火性を付与するために、断熱及び/
又は耐火層を形成することにより長期間高温の腐食性排
気ガス等にさらされていても剥離のおそれがないセラミ
ック・金属接合体が得られることを発見し、本発明に想
到した。
As a result of intensive research in view of the above objectives, the present inventors formed a bonding layer in which a metal oxide film and a silicate reacted, and
Insulation and/or fire resistance to provide insulation and/or fire resistance.
Alternatively, the inventors discovered that by forming a refractory layer, it is possible to obtain a ceramic-metal bonded body that is free from peeling even when exposed to high-temperature corrosive exhaust gas or the like for a long period of time, and came up with the present invention.

すなわち、本発明のセラミック・金属接合体は、金属製
部材の表面に酸化皮膜と珪酸塩とが反応した結合層を有
し、前記結合層の表面に無機質中空粒子を主体とする断
熱材を焼固した断熱層を有することを特徴とする。
That is, the ceramic-metal bonded body of the present invention has a bonding layer in which an oxide film and a silicate have reacted on the surface of a metal member, and a heat insulating material mainly composed of inorganic hollow particles is baked on the surface of the bonding layer. It is characterized by having a solid heat insulating layer.

また、本発明のもう1つのセラミック・金属接合体は、
金属製部材の表面に酸化皮膜と珪酸塩とが反応した結合
層を有し、前記結合層の表面に無機質粒子を主体とする
耐火材を焼固した耐火性の耐火層を有することを特徴と
する。
Another ceramic-metal bonded body of the present invention is
It is characterized by having a bonding layer in which an oxide film and a silicate have reacted on the surface of the metal member, and having a refractory layer on the surface of the bonding layer made by sintering a refractory material mainly composed of inorganic particles. do.

また、本発明のセラミック・金属接合体の製造法は、 (a)金属製部材を水蒸気雰囲気中で加熱処理してその
表面に酸化皮膜を形成し、 (b)前記酸化皮膜の上に珪酸塩結合剤を塗布し、(c
)無機質中空粒子を主体とする断熱材と珪酸塩結合剤と
硬化剤との混合物、又は耐火材と珪酸塩結合剤と硬化剤
との混合物を前記結合層の表面に塗布して断熱層又は耐
火層を形成し、(6)続いて養生、乾燥し、 (e)酸素分圧10mmHg以下の雰囲気中において焼
成を行ない、前記酸化皮膜と前記珪酸塩との反応により
結合層を形成するとともに断熱層又は耐火層を焼固する ことを特徴とする。
In addition, the method for manufacturing a ceramic-metal bonded body of the present invention includes: (a) heat-treating a metal member in a steam atmosphere to form an oxide film on its surface; and (b) forming a silicate film on the oxide film. Apply bonding agent, (c
) A mixture of a heat insulating material mainly composed of inorganic hollow particles, a silicate binder, and a hardening agent, or a mixture of a fireproof material, a silicate binder, and a hardening agent is applied to the surface of the bonding layer to form a heat insulating layer or a fireproof layer. A layer is formed, (6) followed by curing and drying, and (e) firing in an atmosphere with an oxygen partial pressure of 10 mmHg or less, whereby a bonding layer is formed by the reaction between the oxide film and the silicate, and a heat insulating layer is formed. Or, it is characterized by hardening the refractory layer.

また、本発明のもう1つのセラミック・金属接合体の製
造法は、 (a)金属製部材の表面に珪酸塩を塗布し、水蒸気雰囲
気で加熱処理して金属部材の表面を酸化するとともに前
記珪酸塩との反応により結合層を形成し、 (b)無機質中空粒子を主体とする断熱材と珪酸塩結合
剤と硬化剤との混合物、又は耐火材と珪酸塩結合剤と硬
化剤との混合物を前記結合層の表面に塗布して断熱層又
は耐火層を形成し、(c)続いて養生、乾燥し、 (6)酸素分圧10mmHg以下の雰囲気中におりて焼
成を行ない、前記結合層及び断熱層又は耐火層を焼固す
る ことを特徴とする。
Another method of manufacturing a ceramic-metal bonded body according to the present invention is as follows: (a) A silicate is applied to the surface of a metal member, and the surface of the metal member is oxidized by heat treatment in a steam atmosphere, and the silicate is (b) A mixture of a heat insulating material mainly composed of inorganic hollow particles, a silicate binder, and a hardening agent, or a mixture of a fireproof material, a silicate binder, and a hardening agent. A heat insulating layer or a fireproof layer is formed by coating on the surface of the bonding layer, (c) followed by curing and drying, and (6) baking in an atmosphere with an oxygen partial pressure of 10 mmHg or less to form a heat insulating layer or a fireproof layer. It is characterized by hardening the heat insulating layer or the fireproof layer.

本発明を以下において詳細に説明する。The invention will be explained in detail below.

本発明のセラミック・金属接合体は、結合層及び断熱層
及び/又は耐火層を有し、さらに必要に応じ表面層を有
する。以下各層について詳述する。
The ceramic-metal bonded body of the present invention has a bonding layer, a heat insulating layer and/or a refractory layer, and further has a surface layer if necessary. Each layer will be explained in detail below.

(1)結合層 セラミックを金属表面と強固に接着させるためには金属
表面に対して物理的及び化学的相乗作用によって接合す
ることが重要である。本発明者等は種々研究の結果、金
属表面にあらかじめ酸化皮膜を形成することが接着に有
効であることを発見した。
(1) Bonding Layer In order to firmly bond the ceramic to the metal surface, it is important to bond the ceramic to the metal surface by physical and chemical synergy. As a result of various studies, the present inventors have discovered that forming an oxide film on the metal surface in advance is effective for adhesion.

金属の表面にあらかじめ酸化皮膜を形成することにより
表面層に非常に小さな凹凸が発生し結合剤としての珪酸
塩のぬれ性が向上するとともに、最終熱処理によってそ
の酸化皮膜と珪酸塩が反応するので化学的にも強固に結
合した良好な結合層を形成する。
By forming an oxide film on the surface of the metal in advance, very small irregularities are generated on the surface layer, which improves the wettability of the silicate as a binder, and the oxide film and silicate react with each other during the final heat treatment. Forms a good bonding layer that is also strongly bonded.

結合層は断熱層又は耐火層と金属を接合するとともに外
部からの腐食性気体の浸透を防止するための緻密な層で
ある。結合層の厚さは50μm以下が適当であり、50
μmを超えると結合層から剥離する恐れがある。好まし
くは2〜30μmの厚さである。ここで厚さは平均値で
あり、全体的には20〜30%程度の変動がある。
The bonding layer is a dense layer that joins the heat insulating layer or the fireproof layer and the metal and prevents corrosive gases from penetrating from the outside. The thickness of the bonding layer is suitably 50 μm or less;
If it exceeds μm, there is a risk of peeling from the bonding layer. Preferably the thickness is 2 to 30 μm. The thickness here is an average value, and there is an overall variation of about 20 to 30%.

なお、琺瑯技術においては酸化皮膜のない金属表面にセ
ラミックを形成し、酸化焼成することにより、金属の表
面に酸化物を形成しながらセラミックの接着を図ってい
るが、これに対して本発明の結合層の形成方法において
は金属の表面をあらかじめ所定の膜厚になるように酸化
皮膜を形成し1、珪酸塩結合剤の塗布後中性雰囲気で焼
成することにより、酸化皮膜と珪酸塩が反応し、安定し
た結合層を形成する。なお、本発明においては、結合層
が十分に形成されていれば若干酸化皮膜が残存しても本
発明の効果は変らない。
In contrast, in the enamel technology, ceramic is formed on a metal surface without an oxide film and then oxidized and fired to bond the ceramic while forming an oxide on the metal surface. In the method of forming a bonding layer, an oxide film is formed on the surface of the metal in advance to a predetermined thickness.1 After applying a silicate binder, baking is performed in a neutral atmosphere to cause the oxide film and silicate to react. and form a stable bonding layer. In the present invention, as long as the bonding layer is sufficiently formed, even if some oxide film remains, the effects of the present invention will not be affected.

本発明の結合層の形成方法において、金属表面における
酸化皮膜の形成はミ例えば金属製部材を加熱雰囲気中に
入れることにより行うことができる。加熱雰囲気として
は、水蒸気中で500℃以上が好ましい。
In the bonding layer forming method of the present invention, the formation of an oxide film on the metal surface can be performed, for example, by placing the metal member in a heated atmosphere. The heating atmosphere is preferably 500° C. or higher in steam.

また酸化皮膜と珪酸塩との反応は最終熱処理、すなわち
、中性雰囲気中で750〜850℃程度の加熱条件下に
0.5〜1.5時間程度保持することにより行うことが
できる。中性雰囲気としては、酸素分圧が10mmHg
以下の雰囲気を使用する。
Further, the reaction between the oxide film and the silicate can be carried out by final heat treatment, that is, by holding the film under heating conditions of about 750 to 850° C. for about 0.5 to 1.5 hours in a neutral atmosphere. As a neutral atmosphere, the oxygen partial pressure is 10 mmHg.
Use the atmosphere below.

なお珪酸塩としては、珪酸ナトリウム、珪酸カリウム及
び珪酸リチウム等の1種または2種以上を混合したもの
で、ゾル状で用いる。これらの珪酸塩は珪酸リチウム、
珪酸カリウム、珪酸ナトリウムと順次熱膨張率が大きく
なり、これらを適当に選ぶことにより結合層の熱膨張率
を金属の熱膨張率にマツチさせることができる。
Note that the silicate is one or a mixture of two or more of sodium silicate, potassium silicate, lithium silicate, etc., and is used in the form of a sol. These silicates are lithium silicate,
The coefficient of thermal expansion increases in the order of potassium silicate and sodium silicate, and by appropriately selecting these, the coefficient of thermal expansion of the bonding layer can be matched to the coefficient of thermal expansion of the metal.

次に本発明のもう1つの結合層の形成方法について説明
する。本発明者等は、セラミックを金属表面と強固に接
着させるためには、金属表面に酸化皮膜と珪酸塩とが反
応してなる膜を形成することが接着にさらに有効である
ことを発見した。金属の表面に珪酸塩を塗布し、水蒸気
雰囲気中で熱処理を施すと、金属表面に発生する酸化皮
膜と珪酸塩が反応し、物理的及び化学的にさらに強固に
結合した、より緻密な結合層が形成される。
Next, another method of forming a bonding layer according to the present invention will be explained. The present inventors have discovered that in order to firmly adhere ceramic to a metal surface, it is more effective to form a film formed by reacting an oxide film and a silicate on the metal surface. When silicate is applied to the surface of a metal and heat treated in a steam atmosphere, the oxide film generated on the metal surface reacts with the silicate, creating a denser bonding layer that is even more strongly bonded physically and chemically. is formed.

結合層の厚さは前述の結合層と同様の厚さとすることが
できる。
The thickness of the bonding layer can be similar to the thickness of the bonding layer described above.

この結合層の形成方法において、金属表面に結合層を形
成するには以下の手順に従う。まず金属の表面を例えば
エアーブラスト等によって研掃して表面に非常に小さな
凹凸を形成し、珪酸塩溶液のぬれ性を向上させる。次い
で洗浄した後、珪酸塩溶液を塗布し、水蒸気雰囲気中に
おいて熱処理することにより、結合層を形成する。水蒸
気雰囲気としては、500℃以上が好ましい。
In this method for forming a bonding layer, the following steps are followed to form a bonding layer on a metal surface. First, the surface of the metal is polished by, for example, air blasting to form very small irregularities on the surface to improve the wettability of the silicate solution. After cleaning, a silicate solution is then applied and heat treated in a steam atmosphere to form a bonding layer. The water vapor atmosphere is preferably 500°C or higher.

なお珪酸塩としては前述の珪酸塩と同一のものを用いる
ことができる。
As the silicate, the same silicates as those mentioned above can be used.

(2)断熱層 この層は断熱性を付与するためのもので、無機質中空粒
子を主体とする断熱材を焼固した構成であり、断熱材と
マ) IJックス材と珪酸塩結合剤と硬化剤との混合物
を結合層上に塗布し、養生、乾燥の後、酸素分圧が10
mtnHg以下の中性雰囲気中で焼成を行うことにより
形成することができる。
(2) Heat insulating layer This layer is intended to provide heat insulating properties, and is composed of a heat insulating material mainly composed of inorganic hollow particles, which is hardened with a heat insulating material, an IJx material, a silicate binder, and a hardened material. The mixture with the agent is applied onto the bonding layer, and after curing and drying, the oxygen partial pressure becomes 10
It can be formed by firing in a neutral atmosphere of mtnHg or less.

断熱材としては、シラスバルーン、発泡シリカ、セラミ
ックバルーン等の無機質中空粒子を使用するのが好まし
い。その粉末の平均粒径は一般に10〜500μmの範
囲である。10μmより小さいと収縮による亀裂、剥離
を生じるし、50(1μmより大きいと平滑な皮膜層を
形成しにくい。好ましい粒径範囲は40〜200μmで
ある。
As the heat insulating material, it is preferable to use inorganic hollow particles such as glass balloons, foamed silica balloons, and ceramic balloons. The average particle size of the powder generally ranges from 10 to 500 μm. If it is smaller than 10 μm, cracks and peeling will occur due to shrinkage, and if it is larger than 50 (1 μm), it will be difficult to form a smooth film layer. The preferred particle size range is 40 to 200 μm.

珪酸塩結合剤は、上記結合層の欄で述べた珪酸カリウム
、珪酸ナトリウム、珪酸リチウム等の中から選択するこ
とができる。硬化剤としては焼成リン酸アルミニウム、
珪酸カルシウム等を使用することができる。
The silicate binder can be selected from among the potassium silicate, sodium silicate, lithium silicate, etc. mentioned in the section on the bonding layer above. As a hardening agent, calcined aluminum phosphate,
Calcium silicate, etc. can be used.

本発明の方法によれば、断熱材と珪酸塩結合剤と硬化剤
との混合物質泥漿の状態で結合層上に塗布する。塗布後
18〜30℃程度の温度で8〜24時間養生したを行う
。次いで乾燥により十分水分を除去した後で、750〜
850℃で0.5〜1゜5時間焼成を行う。焼成は結合
層と同様に酸素分圧が10mmHg以下の中性雰囲気中
で行う。
According to the method of the invention, a mixed slurry of insulation, silicate binder and hardener is applied onto the bonding layer. After coating, it is cured for 8 to 24 hours at a temperature of about 18 to 30°C. Then, after sufficiently removing moisture by drying,
Firing is performed at 850°C for 0.5 to 1°5 hours. The firing is performed in a neutral atmosphere with an oxygen partial pressure of 10 mmHg or less, similarly to the bonding layer.

なお、断熱層に、第8[!fに示すように無機質鱗片状
粒子を混在させてもよい。無機質鱗片状粒子としては、
天然に産するマイカ、人工的に合成したマイカ、膜状ガ
ラス、あるいはバルーン等の無機質中空粒子の破砕物等
を使用する。
In addition, the 8th [! As shown in f, inorganic scale-like particles may be mixed. As inorganic scaly particles,
Naturally occurring mica, artificially synthesized mica, membrane glass, or crushed inorganic hollow particles such as balloons are used.

無機質鱗片状粒子の形状は、長径及び短径が2〜74μ
m程度で、厚さが0.1〜3μm程度であり、長径に対
する厚さの比が10以上のものが適当である。さらに好
ましくは、長径5〜30μm、厚さ0.5〜2μm、長
径に対する厚さの比が15以上である。無機質鱗片状粒
子1が混在した構造とすると、断熱層も十分な強度及び
可撓性を有し、高温の熱衝撃に対しても剥離や亀裂が容
易に発生しなくなるとともに、酸化防止の作用も向上す
る。
The shape of the inorganic scale-like particles has a major axis and a minor axis of 2 to 74μ.
It is suitable that the thickness is about 0.1 to 3 μm, and the ratio of the thickness to the major axis is 10 or more. More preferably, the major axis is 5 to 30 μm, the thickness is 0.5 to 2 μm, and the ratio of the thickness to the major axis is 15 or more. When the inorganic scaly particles 1 are mixed in the structure, the heat insulating layer has sufficient strength and flexibility, and does not easily peel or crack even under high-temperature thermal shock, and also has an anti-oxidation effect. improves.

断熱層の厚さは、断熱性の面からは厚いほど良いが、2
000μmを超えると高温の熱衝撃に対し剥離する恐れ
があり、また200μm未満では断熱効果が得られない
。好ましくは300〜800μmが適当である。
The thicker the insulation layer is, the better it is from the standpoint of insulation, but 2
If it exceeds 000 μm, there is a risk of peeling due to high-temperature thermal shock, and if it is less than 200 μm, no heat insulating effect can be obtained. Preferably, 300 to 800 μm is appropriate.

(3)耐大層 この層は耐火性を付与するために形成した層であり、無
機質粒子を主体とする耐火材を焼固した構造を有する。
(3) Large resistant layer This layer is formed to impart fire resistance, and has a structure obtained by baking and hardening a fire resistant material mainly composed of inorganic particles.

耐火層は、耐火材と珪酸塩結合剤と硬化剤との混合物を
結合層又は断熱層の乾燥後の表面に塗布し、養生、乾燥
の後、酸素分圧が10mm)1g以下の中性雰囲気中で
焼成することにより形成することができる。
The fireproof layer is made by applying a mixture of a fireproof material, a silicate binder, and a hardening agent to the dried surface of the bonding layer or heat insulating layer, curing, and drying it in a neutral atmosphere with an oxygen partial pressure of 1 g (10 mm) or less. It can be formed by firing inside.

耐火材としては、シャモット、アルミナ、ジルコン、ジ
ルコニア等の一般に使用されるものでよいが、特にジル
コニアは熱伝導率が低いので好ましい。耐火材粉末の平
均粒度は一般に10〜500μmの範囲である。10μ
mより小さいと粒子間の凝集が起こりやす(、平滑な皮
膜層を形成しにくいし、高熱の影響を受けて収縮しやす
い。また、500μmより大きいと、平滑な皮膜を形成
しにくい。好ましい平均粒径は20〜200μmである
As the refractory material, commonly used materials such as chamotte, alumina, zircon, and zirconia may be used, but zirconia is particularly preferred because of its low thermal conductivity. The average particle size of the refractory powder generally ranges from 10 to 500 μm. 10μ
If it is smaller than 500 μm, agglomeration between particles tends to occur (it is difficult to form a smooth film layer, and it tends to shrink under the influence of high heat. If it is larger than 500 μm, it is difficult to form a smooth film. Preferred average The particle size is 20-200 μm.

なお珪酸塩結合剤及び硬化剤については断熱層に用いた
ものと同じでよい。
Note that the silicate binder and curing agent may be the same as those used for the heat insulating layer.

また耐火層形成における養生、乾燥及び焼成条件も基本
的に断熱層の形成における条件と同じでよい。
Furthermore, the curing, drying and firing conditions for forming the refractory layer may be basically the same as those for forming the heat insulating layer.

この層の厚さは、耐火性の面からは厚いほど良いが20
00μmを超えると高温の熱衝撃に対し剥離する恐れが
あり、100μm未満では十分な耐火効果が得られない
。好ましくは200〜800μmが適当である。
The thickness of this layer is 20%, although the thicker the better in terms of fire resistance.
If it exceeds 00 μm, there is a risk of peeling due to high temperature thermal shock, and if it is less than 100 μm, sufficient fireproofing effect cannot be obtained. Preferably, 200 to 800 μm is appropriate.

(4)表面層 この層は断熱層あるいは耐火層の表面に緻密なセラミッ
クの薄膜を形成し、表面からの腐食気体の侵入を防止す
る層である。表面層は無機質結合剤及び/又は有機金属
質結合剤からなる構成を有し、無機質結合剤及び/又は
有機金属質結合剤を断熱層あるいは耐火層の乾燥後の表
面に塗布後、酸素分圧が10++++e Hg以下の雰
囲気中において焼成を行うことにより形成することがで
きる。
(4) Surface layer This layer forms a dense ceramic thin film on the surface of the heat insulating layer or fireproof layer to prevent corrosive gases from entering from the surface. The surface layer has a structure consisting of an inorganic binder and/or an organometallic binder, and after applying the inorganic binder and/or organometallic binder to the dried surface of the heat insulating layer or fireproof layer, the oxygen partial pressure is It can be formed by firing in an atmosphere of 10+++e Hg or less.

又、無機質結合剤及び/又は有機金属質結合剤が乾燥す
るだけで安定化する場合には、断熱層又は耐火層の焼成
後の表面に無機質結合剤及び/又は有機金属質結合剤を
塗布し、乾燥することにより表面層を形成することがで
きる。
In addition, if the inorganic binder and/or organometallic binder can be stabilized simply by drying, the inorganic binder and/or organometallic binder may be applied to the fired surface of the heat insulating layer or fireproof layer. , a surface layer can be formed by drying.

無機質結合剤としては、珪酸ナトリウム、珪酸カリウム
及び珪酸リチウム等の珪酸アルカリ塩のゾル、シルカゾ
ル、アルミナゾル、リン酸アルミニウム溶液等が適当で
ある。
Suitable inorganic binders include sols of alkali silicate salts such as sodium silicate, potassium silicate, and lithium silicate, silka sol, alumina sol, and aluminum phosphate solutions.

また有機金属質結合剤としては、シリコンアルコキシド
、ジルコニウムアルコキシドなどを主成分とする結合剤
が適当である。
Further, as the organometallic binder, a binder containing silicon alkoxide, zirconium alkoxide, etc. as a main component is suitable.

この層については金属との熱膨張率を合わせることが材
質的に困難な面があり、層厚を15μm以下にする必要
がある。層厚が15μmを超えると熱膨張率の差による
歪応力が大きくなり、剥離したり亀裂が発生する恐れが
ある。好ましくは3〜10μmが適当である。
Regarding this layer, it is difficult to match the thermal expansion coefficient with that of the metal because of the material, so the layer thickness needs to be 15 μm or less. When the layer thickness exceeds 15 μm, the strain stress due to the difference in thermal expansion coefficient becomes large, and there is a risk of peeling or cracking. A suitable thickness is preferably 3 to 10 μm.

以上にふいて、結合層、断熱層、耐火層及び表面層につ
いて説明したが、これらの層は結合層及び断熱層又は耐
火層を除いて、全である必要はなく、用途に応じて省略
することができる。従って、本発明の好ましい組合せを
示すと、以下の通りとなる。
The bonding layer, heat insulating layer, fireproof layer, and surface layer have been explained above, but these layers do not need to be complete, except for the bonding layer, heat insulating layer, or fireproof layer, and may be omitted depending on the application. be able to. Therefore, the preferred combinations of the present invention are as follows.

(a)結合層+断熱層 (b)結合層+断熱層十表面層 (c)結合層+耐火層 (社)結合層+耐大層十表面層 (e)結合層+断熱層+耐火層 (f)結合層+断熱層+耐火層十表面層〔実施例〕 本発明を以下の実施例によりさらに詳細に説明する。(a) Bonding layer + heat insulation layer (b) Bonding layer + heat insulation layer + surface layer (c) Bonding layer + fireproof layer Co., Ltd. Bonding layer + Large-resistant layer 10 surface layers (e) Bonding layer + heat insulation layer + fireproof layer (f) Bonding layer + heat insulation layer + fireproof layer 10 surface layers [Example] The present invention will be explained in further detail by the following examples.

実施例1 第1図に示す形状のバーミキコラ鉄製のL字状管状部材
2(長軸a :200mm、短軸b :12h+ 、内
径c : 40mm、管肉d:3mm)を用いて本発明
を実施した。
Example 1 The present invention was carried out using an L-shaped tubular member 2 made of vermilion iron having the shape shown in FIG. did.

第2図は金属製管状部材2の内面に形成された結合層3
と断熱層4とからなる被覆層を模式的に示す図である。
FIG. 2 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 4 is a diagram schematically showing a covering layer consisting of a heat insulating layer 4 and a heat insulating layer 4. FIG.

鋳鉄製の金属製管状部材2を550℃に加熱し3μmの
酸化皮膜を形成した。
A metal tubular member 2 made of cast iron was heated to 550° C. to form an oxide film of 3 μm.

この金属製管状部材2を珪酸ナトリウム溶液(S+Oi
/ NaaOモル比3.0、濃度23重量%)内に浸漬
し、3分間保持した後引き上げて余剰の珪酸ナトリウム
を除去した後、乾燥器中にて室温より 150℃まで2
5分かけて昇温し、1時間保持した後室温まで冷却して
結合層3を形成した。
This metal tubular member 2 was soaked in a sodium silicate solution (S+Oi).
/ NaaO molar ratio 3.0, concentration 23% by weight), held for 3 minutes, pulled up to remove excess sodium silicate, and heated from room temperature to 150°C in a dryer for 2 minutes.
The temperature was raised over 5 minutes, maintained for 1 hour, and then cooled to room temperature to form a bonding layer 3.

次に断熱材粉末(カサ比重0.16、粒径44〜150
μmのシラスバルーン)と珪酸ナトリウム(珪酸塩結合
剤)と焼成リン酸アルミニウム(硬化剤)とを下記の割
合で配合し、混合スラリーを調製した。
Next, insulation powder (bulk specific gravity 0.16, particle size 44-150
A mixed slurry was prepared by blending a μm-sized shirasu balloon), sodium silicate (silicate binder), and calcined aluminum phosphate (hardening agent) in the following proportions.

珪酸ナトリウム (Sins/ Na2Dモル比3.0、濃度30重量%
)100重量部 シラスバルーン破砕粒 (<74μm)20重量部シラ
スバルーン (44〜150μm)10重量部焼成リン
酸アルミニウム(〈74μm)10重量部金属製管状部
材2の内面に形成した結合層3の面に上記混合スラリー
を塗布し、2時間養生する操作を繰返し断熱層4を形成
した。
Sodium silicate (Sins/Na2D molar ratio 3.0, concentration 30% by weight
) 100 parts by weight Shirasu balloon crushed particles (<74 μm) 20 parts by weight Shirasu balloon (44 to 150 μm) 10 parts by weight Calcined aluminum phosphate (<74 μm) 10 parts by weight Bonding layer 3 formed on the inner surface of the metal tubular member 2 The above-mentioned mixed slurry was applied to the surface and the operation of curing for 2 hours was repeated to form a heat insulating layer 4.

この状態で室温にて15時間養生して、断熱層中の珪酸
ナトリウムと焼成リン酸アルミニウムとの硬化反応を行
った。
In this state, it was cured at room temperature for 15 hours to effect a hardening reaction between the sodium silicate and calcined aluminum phosphate in the heat insulating layer.

次にこの金属製管状部材2を乾燥器に入れ、室温より昇
温速度1で7分で300t’まで加熱し、1時間保持し
た後、室温まで冷却して余剰水の脱水を行なった。
Next, this metal tubular member 2 was placed in a dryer, heated from room temperature to 300 t' in 7 minutes at a heating rate of 1, held for 1 hour, and then cooled to room temperature to remove excess water.

次にこの金属製管状部材2をN2雰囲気中(酸素分圧5
mmHg)1.:テ、昇温速度200t/時間−ct 
ao。
Next, this metal tubular member 2 is placed in a N2 atmosphere (oxygen partial pressure 5
mmHg)1. : Te, heating rate 200t/hour-ct
ao.

℃まで昇温し1時間保持した後、室温まで冷却し、厚さ
1500μmの断熱層4を焼固゛した。
The temperature was raised to .degree. C. and maintained for 1 hour, then cooled to room temperature, and the heat insulating layer 4 having a thickness of 1500 .mu.m was baked and hardened.

実施例2 第2図は金属製管状部材2の内面に形成された結合層3
と断熱層4とからなる被覆層を模式的に示す断面図であ
る。
Example 2 FIG. 2 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 2 is a cross-sectional view schematically showing a covering layer consisting of a heat insulating layer 4 and a heat insulating layer 4. FIG.

金属製管状部材2の内外面をエアーブラストにより研掃
し、稀薄珪酸カリウム溶液(濃度5重量%)で洗浄した
後、珪酸塩の塗布のために、珪酸カリウム溶液(Si0
2/ N20−r: JL/比3.o1濃度10重量%
)内に浸漬し、3分間保持した後引き上げて余剰の珪酸
カリウムを除去した。次いで室温に1時間保持した後、
550 t:の加熱水蒸気雰囲気に調整した炉内に90
分間保持することにより酸化皮膜の生成と共に酸化カリ
ウムとの反応をさせ、室温まで冷却して、結合層3を形
成した。
After cleaning the inner and outer surfaces of the metal tubular member 2 by air blasting and cleaning with a dilute potassium silicate solution (concentration 5% by weight), potassium silicate solution (Si0
2/N20-r: JL/Ratio 3. o1 concentration 10% by weight
), held for 3 minutes, and then pulled out to remove excess potassium silicate. Then, after keeping it at room temperature for 1 hour,
90 t: in a furnace adjusted to a heated steam atmosphere of 550 t.
By holding for a minute, an oxide film was formed and a reaction with potassium oxide was caused, and the bonding layer 3 was formed by cooling to room temperature.

次にこのようにして得られた結合層3の上に断熱層4を
実施例1と同一の方法で形成した。
Next, a heat insulating layer 4 was formed on the bonding layer 3 thus obtained in the same manner as in Example 1.

実施例3 第3図は金属製管状部材2の内面上に形成された結合層
3と、断熱層4と、表面層5とからなる被覆層を模式的
に示す断面図である。
Example 3 FIG. 3 is a cross-sectional view schematically showing a coating layer formed on the inner surface of a metal tubular member 2 and consisting of a bonding layer 3, a heat insulating layer 4, and a surface layer 5.

結合層3と、断熱層4を、実施例1と同一の方法で形成
し焼成後、リン酸アルミニウム溶液<a度40重量%)
を上記断熱層30表面に塗布し、昇温速度10℃/分で
110℃まで昇温し、1時間保持の熱処理をした後室温
まで冷却し、厚さ8μmの表面層5を形成した。
The bonding layer 3 and the heat insulating layer 4 are formed by the same method as in Example 1, and after firing, aluminum phosphate solution <A degree 40% by weight)
was applied to the surface of the heat insulating layer 30, heated to 110° C. at a heating rate of 10° C./min, heat treated for one hour, and then cooled to room temperature to form a surface layer 5 with a thickness of 8 μm.

実施例4 第4図は金属製管状部材2の内面上に形成した結合層3
と、断熱層4と耐火層6とからなる被覆層を模式的に示
す断面図である。
Example 4 FIG. 4 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 2 is a cross-sectional view schematically showing a covering layer consisting of a heat insulating layer 4 and a fireproof layer 6.

結合層3と、断熱層4を実施例1と同一の方法で形成し
た後、耐火材粉末(粒径44〜150μmの安定化ジル
コニア)と珪酸ナトリウム(珪酸塩結合剤)と焼成リン
酸アルミニウム(硬化側)とを下記の割合で配合した混
合スラリーを塗布した。
After forming the bonding layer 3 and the heat insulating layer 4 in the same manner as in Example 1, refractory material powder (stabilized zirconia with a particle size of 44 to 150 μm), sodium silicate (silicate binder), and calcined aluminum phosphate ( A mixed slurry containing the following components (cured side) was applied.

珪酸ナトリウム (Sins/Na、Oモル比3.0、濃度30重量%)
100重量部 安定化ジルコニア   (〈74μm>170重量部焼
成リン酸アルミニウム(<74μm)10重量部金属製
管状部材2の内面に形成した断熱層4の表面に上記混合
スラリーを塗布し2時間養生する操作を繰返し、耐火層
6を形成した。
Sodium silicate (Sins/Na, O molar ratio 3.0, concentration 30% by weight)
100 parts by weight Stabilized zirconia (<74 μm>170 parts by weight Calcined aluminum phosphate (<74 μm) 10 parts by weight The above mixed slurry is applied to the surface of the heat insulating layer 4 formed on the inner surface of the metal tubular member 2 and cured for 2 hours. The operation was repeated to form a fireproof layer 6.

この状態で室温にて15時間養生して、耐火層中の珪酸
ナトリウムと焼成リン酸アルミニウムとの硬化反応を行
った。
In this state, it was cured at room temperature for 15 hours to effect a hardening reaction between the sodium silicate and calcined aluminum phosphate in the fireproof layer.

次にこの金属製管状部材2を乾燥器に入れ室温より昇温
速度It/分で300℃まで加熱し、1時間保持した後
、室温まで冷却して余剰水の脱水を行なった。
Next, this metal tubular member 2 was placed in a dryer and heated from room temperature to 300° C. at a temperature increase rate It/min, held for 1 hour, and then cooled to room temperature to remove excess water.

次にこの金属製管状部材2をN2雰囲気中(酸素分圧5
叩)1g)にて、昇温速度200℃/時間で800℃ま
で昇温し、1時間保持した後室温まで冷却し、厚さ10
00μmの耐火層6と断熱層4を焼固した。
Next, this metal tubular member 2 is placed in a N2 atmosphere (oxygen partial pressure 5
The temperature was raised to 800°C at a temperature increase rate of 200°C/hour at a temperature of 1g), held for 1 hour, cooled to room temperature, and a thickness of 10
The refractory layer 6 and the heat insulating layer 4 having a thickness of 00 μm were baked and hardened.

実施例5 第5図は金属製管状部材2の内面上に形成した結合層3
と、断熱層4と、耐火層6と、表面層5とからなる被覆
層を模式的に示す断面図である。
Example 5 FIG. 5 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 2 is a cross-sectional view schematically showing a covering layer consisting of a heat insulating layer 4, a fireproof layer 6, and a surface layer 5.

結合層3と、断熱層4と、耐火層6を実施例4と同一の
方法で形成し焼成後、リン酸アルミニウム溶液(a度4
0重量%)を上記耐火層6の表面に塗布し、昇温速度1
0℃/分で110℃まで昇温し、1時間保持の熱処理を
した後、室温まで冷却し、厚さ8μmの表面層5を形成
した。
A bonding layer 3, a heat insulating layer 4, and a fireproof layer 6 are formed by the same method as in Example 4, and after firing, an aluminum phosphate solution (a degree 4
0% by weight) on the surface of the fireproof layer 6, and the heating rate was 1.
After heat treatment, the temperature was raised to 110° C. at a rate of 0° C./min and maintained for 1 hour, and then cooled to room temperature to form a surface layer 5 with a thickness of 8 μm.

実施例6 第6図は金属製管状部材2の内面上に形成した結合層3
と、耐火層6とからなる被覆層を模式的に示す断面図で
ある。
Example 6 FIG. 6 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 2 is a cross-sectional view schematically showing a coating layer consisting of a fireproof layer 6 and a fireproof layer 6. FIG.

鋳鉄製の金属製管状部材2を550℃に加熱して厚さ3
μmの酸化皮膜を形成した。
A cast iron metal tubular member 2 is heated to 550°C to have a thickness of 3
An oxide film of μm was formed.

結合層を形成するためにこの金属製管状部材2を珪酸カ
リウム溶液(Stew/KJモル比3,0、濃度23重
量%)内に浸漬し、3分間保持した後引き上げて余剰の
珪酸カリウムを除去した後、乾燥器中にて室温より 1
50℃まで25分かけて昇温し、1時間保持した後室温
まで冷却して結合層3を形成した。
In order to form a bonding layer, this metal tubular member 2 was immersed in a potassium silicate solution (Stew/KJ molar ratio 3.0, concentration 23% by weight), held for 3 minutes, and then pulled up to remove excess potassium silicate. After that, place it in a dryer at room temperature 1
The temperature was raised to 50° C. over 25 minutes, maintained for 1 hour, and then cooled to room temperature to form a bonding layer 3.

その後、耐火材粉末(粒径44〜150μmのアルミナ
)と珪酸す) IJウム(珪酸塩結合剤)と焼成リン酸
アルミニウム(硬化剤)とを下記の割合で配合した混合
スラリーを塗布した。
Thereafter, a mixed slurry containing refractory material powder (alumina with a particle size of 44 to 150 μm), silicic acid (silicate binder), and calcined aluminum phosphate (hardening agent) in the following proportions was applied.

珪酸ナトリウム (SiO,/ Na2Oモル比率3.0、濃度30重量
%)100重量部 アルミナ       (<74μm)  100重量
部焼成リン酸アルミニウム(<74μm)10重量部金
属製管状部材2の内面に形成した結合層3の表面に上記
混合スラリーを塗布し2時間養生する操作を繰返し、耐
火層6を形成した。
Sodium silicate (SiO, / Na2O molar ratio 3.0, concentration 30% by weight) 100 parts by weight Alumina (<74 μm) 100 parts by weight Calcined aluminum phosphate (<74 μm) 10 parts by weight Formed on the inner surface of the metal tubular member 2 The above mixed slurry was applied to the surface of the bonding layer 3 and the operation of curing for 2 hours was repeated to form the fireproof layer 6.

この状態で室温にて15時間養生して、耐火層中の珪酸
ナトリウムと焼成リン酸アルミニウムとの硬化反応を行
った。
In this state, it was cured at room temperature for 15 hours to effect a hardening reaction between the sodium silicate and calcined aluminum phosphate in the fireproof layer.

次にこの金属製管状部材2を乾燥器に入れ、室温より昇
温速度1℃/分で300℃まで加熱し、1時間保持した
後、室温まで冷却して余剰水の脱水を行なった。
Next, this metal tubular member 2 was placed in a dryer, heated from room temperature to 300° C. at a temperature increase rate of 1° C./min, held for 1 hour, and then cooled to room temperature to remove excess water.

次にこの金属製管状部材2をN、雰囲気中(酸素分圧5
mmt1g)にて、昇温速度200℃/時間で810℃
まで昇温し、1時間保持した後室温まで冷却し、厚さ1
000μmの耐火層6を焼固した。
Next, this metal tubular member 2 was placed in a nitrogen atmosphere (oxygen partial pressure 5
mmt1g) at a heating rate of 200°C/hour to 810°C.
After heating up to 1 hour and cooling to room temperature, a thickness of 1
The refractory layer 6 with a thickness of 000 μm was baked and hardened.

実施例7 第7図は金属製管状部材2の内面上に形成した結合層3
と、耐火層6と、表面層5によって形成された被覆層を
模式的に示す図である。
Example 7 FIG. 7 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 2 is a diagram schematically showing a fireproof layer 6 and a covering layer formed by a surface layer 5.

結合層3と、耐火層6を実施例6と同一の方法で形成し
た後、アルミナゾル(S度10重量%)を上記耐火層5
の表面に塗布し、昇温速度10℃/分で110℃まで昇
温し、1時間保持の熱処理をした後室温まで冷却し、厚
さ8μmの表面層5を形成した。
After forming the bonding layer 3 and the refractory layer 6 by the same method as in Example 6, alumina sol (S degree 10% by weight) was applied to the refractory layer 5.
The temperature was raised to 110° C. at a heating rate of 10° C./min, heat treated for 1 hour, and then cooled to room temperature to form a surface layer 5 with a thickness of 8 μm.

実施例8 第8図は金属製管状部材2の内面上に形成した結合層3
と、断熱層4とからなる被覆層を模式的に示す断面図で
ある。
Example 8 FIG. 8 shows a bonding layer 3 formed on the inner surface of a metal tubular member 2.
FIG. 4 is a cross-sectional view schematically showing a covering layer consisting of a heat insulating layer 4 and a heat insulating layer 4. FIG.

結合層3とを実施例1と同一の方法で形成した。A bonding layer 3 was formed by the same method as in Example 1.

次にこの金属製管状部材2を乾燥器中にて室温より昇温
速度1℃/分で300℃まで加熱し、1時間保持した後
、余剰水の脱水を行った。
Next, this metal tubular member 2 was heated from room temperature to 300° C. in a dryer at a heating rate of 1° C./min and held for 1 hour, after which excess water was dehydrated.

次にカサ比重0.47、粒径44〜150μmのセラミ
ックバルーン(断熱材粉末)とシリカバルーン破砕粒子
(無機質鱗片状粒子)と珪酸す) IJウム(珪酸塩結
合剤)と焼成リン酸アルミニウム(硬化剤)を下記の割
合で配合し、混合スラリーを調製した。
Next, ceramic balloons (insulating material powder) with a bulk specific gravity of 0.47 and a particle size of 44 to 150 μm, crushed silica balloon particles (inorganic scale-like particles), IJium (silicate binder), and calcined aluminum phosphate ( curing agent) in the following proportions to prepare a mixed slurry.

珪酸ナトリウム (SiOa/Na、0モル比率3.0、濃度30重量%
)100重量部 セラミックバルーン (< 100μm)20重量部シ
リカバルーン破砕粒子(〈74μm)25重量部焼成リ
ン酸アルミニウム (<74μm)  10重量部 金属製管状部材2の内面に形成した結合層3の表面に上
記混合スラリーを塗布し、°2時間養生する操作を繰り
返し断熱層4を形成した。
Sodium silicate (SiOa/Na, 0 molar ratio 3.0, concentration 30% by weight
) 100 parts by weight Ceramic balloon (<100 μm) 20 parts by weight Silica balloon crushed particles (<74 μm) 25 parts by weight Calcined aluminum phosphate (<74 μm) 10 parts by weight Surface of bonding layer 3 formed on the inner surface of metal tubular member 2 The heat insulating layer 4 was formed by repeatedly applying the mixed slurry and curing for 2 hours.

この状態で室温にて15時間養生して、断熱層中の珪酸
ナトリウムと焼成リン酸アルミニウムとの硬化反応を行
った。
In this state, it was cured at room temperature for 15 hours to effect a hardening reaction between the sodium silicate and calcined aluminum phosphate in the heat insulating layer.

次にこの金属製管状部材2を乾燥器に入れ、余剰水の脱
水を行った。
Next, this metal tubular member 2 was placed in a dryer to remove excess water.

室温より昇温速度1℃/分で300℃まで加熱し、1時
間保持した後、室温まで冷却した。
The mixture was heated from room temperature to 300°C at a heating rate of 1°C/min, held for 1 hour, and then cooled to room temperature.

次にこの金属製管状部材2をN、雰囲気中(酸素分圧5
 mmHg)にて、昇温速度200℃/時間で810℃
まで昇温し1時間保持した後、室温まで冷却し、厚さ1
500μmの断熱層4を焼固した。
Next, this metal tubular member 2 was placed in a nitrogen atmosphere (oxygen partial pressure 5
mmHg) at a heating rate of 200°C/hour to 810°C.
After raising the temperature to 1 hour and holding it for 1 hour, cool it to room temperature and form
The heat insulating layer 4 having a thickness of 500 μm was baked and hardened.

上記実施例1〜8における各被覆層の構成及び厚さは下
記の第1表に示す通りである。
The structure and thickness of each coating layer in Examples 1 to 8 above are as shown in Table 1 below.

なふ、実施例1と実施例2における各被覆層は同一の構
成となっている。
Nafu, each coating layer in Example 1 and Example 2 has the same structure.

なお、実施例3〜8においては、実施例1と同一の方法
で結合層を形成しているが、実施例2の方法を用いて結
合層を形成してもよい。
Note that in Examples 3 to 8, the bonding layer was formed using the same method as in Example 1, but the bonding layer may be formed using the method in Example 2.

上記実施例1〜8で得られた被覆層の特性を評価するた
めに、下記の加熱試験を実 施した。
In order to evaluate the characteristics of the coating layers obtained in Examples 1 to 8 above, the following heating test was conducted.

1)試験条件 プロパンガスを燃焼させて高温ガスを発生させる加熱評
価装置に各管状部材を取付け、第2表に示す条件で内面
加熱試験を行なった。
1) Test conditions Each tubular member was attached to a heating evaluation device that burns propane gas to generate high-temperature gas, and an inner surface heating test was conducted under the conditions shown in Table 2.

第  2  表 2)防食試験(酸化増量試験) 第2表に示す条件でそれぞれの試験時間後における燃焼
ガスによる接着面での酸化層の厚さを走査型電子顕微鏡
(SBM)により測定した。
Table 2 2) Corrosion Prevention Test (Oxidation Weight Gain Test) Under the conditions shown in Table 2, the thickness of the oxidized layer on the bonded surface due to combustion gas after each test time was measured using a scanning electron microscope (SBM).

結果を、被覆層を有さない比較例1とともに、第3表に
示す。
The results are shown in Table 3 together with Comparative Example 1 without a coating layer.

各実施例の酸化防止効果はコーティングしない場合の約
6〜90倍となっている。これより、酸化増量は被膜層
の断熱効果によって、著しく減少していることがわかる
The antioxidant effect of each example is about 6 to 90 times that of the case without coating. This shows that the weight gain due to oxidation is significantly reduced due to the heat insulating effect of the coating layer.

3)断熱試験 第2表に示す条件で金属製管状部材の表面温度を測定し
断熱性を検討した。その結果を、被覆層を有さない比較
例1とともに、第4表に示す。
3) Heat Insulation Test The surface temperature of the metal tubular member was measured under the conditions shown in Table 2 to examine the heat insulation properties. The results are shown in Table 4 together with Comparative Example 1 which does not have a coating layer.

断熱層は有するが耐火層は有さない実施例1〜3は、コ
ーティングしない比較例1と比べて、部材表面温度が6
5〜85℃低く、良好な断熱効果を有することがわかる
。また断熱層及び耐火層を両方有する実施例4及び5で
は、部材表面温度が125℃低くなっている。これによ
り、断熱層の断熱効果は、断熱層と耐火層を併用するこ
とによりさらに高められることがわかる。
Examples 1 to 3, which have a heat insulating layer but not a fireproof layer, have a member surface temperature of 6
It can be seen that the temperature is 5 to 85°C lower and has a good heat insulating effect. Furthermore, in Examples 4 and 5, which have both a heat insulating layer and a fireproof layer, the member surface temperature is 125°C lower. This shows that the heat insulating effect of the heat insulating layer can be further enhanced by using the heat insulating layer and the fireproof layer together.

4)耐久試験 第2表に示す条件で30分間加熱保持した後室温まで冷
却する繰返し加熱・冷却試験を100サイクル実施した
結果、被覆層に亀裂、剥離等は見られず耐久性は充分満
足する事が確認された。
4) Durability test As a result of conducting 100 cycles of repeated heating and cooling tests in which the product was heated for 30 minutes and then cooled to room temperature under the conditions shown in Table 2, no cracks or peeling were observed in the coating layer, and the durability was fully satisfied. The matter was confirmed.

上記実施例における各層の作用、効果を説明する。The functions and effects of each layer in the above embodiment will be explained.

金属製管状部材2の内面には厚さ約30μmの結合層3
が生成している。この結合層3は緻密なガラス質で鋳物
とよく接着し、断熱層4及び/又は耐火層6と鋳物との
接合に寄与している。
A bonding layer 3 with a thickness of approximately 30 μm is provided on the inner surface of the metal tubular member 2.
is being generated. This bonding layer 3 is dense and glassy and adheres well to the casting, contributing to the bonding between the heat insulating layer 4 and/or the refractory layer 6 and the casting.

この結合層3の表面に形成した断熱層4は厚さ1500
μmであった。なお実施例8の断熱層は中空状セラミッ
ク粒子が無機質鱗片状粒子と結合剤及び硬化剤とからな
る混合物をマトリックスとして形成されているので急激
な熱衝撃に対しても十分な可撓性を備え、かつ優れた断
熱性を有する。
The heat insulating layer 4 formed on the surface of this bonding layer 3 has a thickness of 1500 mm.
It was μm. The heat insulating layer of Example 8 was formed of hollow ceramic particles using a mixture of inorganic scale particles, a binder, and a hardening agent as a matrix, so it had sufficient flexibility even against sudden thermal shock. , and has excellent heat insulation properties.

また、実施例7の耐火層6は、厚さ1000μmであっ
た。なおこの耐火層6は、1100℃を超える高温の排
気ガスにも十分耐える耐火材であり、断熱層4の表面に
形成した場合には、断熱層4とも強固に結合し得る層で
ある。
Moreover, the fireproof layer 6 of Example 7 had a thickness of 1000 μm. Note that this fireproof layer 6 is a fireproof material that can sufficiently withstand high-temperature exhaust gas exceeding 1100° C., and when formed on the surface of the heat insulating layer 4, it is a layer that can be firmly bonded to the heat insulating layer 4.

また、表面層5は厚さ8μmであった。この表面層5は
緻密で薄い層で断熱層4あるいは耐火層6の開孔気孔を
埋めているため、金属製管状部材2と結合層3との接着
面の酸化を防止するのに優れた効果を有する。本実施例
はマニホールドについて述べたが、ポートライナー、フ
ロントチューブ、ターボチャージャ等に対しても同じよ
うに適用することができる。
Moreover, the surface layer 5 had a thickness of 8 μm. Since this surface layer 5 is a dense and thin layer that fills the open pores of the heat insulating layer 4 or the fireproof layer 6, it has an excellent effect in preventing oxidation of the adhesive surface between the metal tubular member 2 and the bonding layer 3. has. Although this embodiment has been described with respect to a manifold, it can be similarly applied to port liners, front tubes, turbochargers, etc.

〔発明の効果〕〔Effect of the invention〕

以上に詳述したように、本発明のセラミック・金属接合
体は、金属とセラミック層との接合を強固にする作用を
有する結合層を有するとともに、その上に断熱層又は耐
火層を有するので、高温の加熱条件下でもセラミック層
の剥離や亀裂のおそれがなく、かつ耐食性が著しく良好
である。従って、本発明のセラミック・金属接合体を、
例えば内燃機関の排気系機器等に使用すれば、800℃
を超える高温の排気ガスによる急激な繰返し熱衝撃にも
充分耐えることができ、しかも優れた防食性、断熱性お
よび耐火性を備え、部材の耐用寿命の増大に著しい効果
をもたらす。このような効果を有する本発明のセラミッ
ク・金属接合体は、特にエンジンの排気ガス用のマニホ
ールドや排気管等に使用するのに適している。
As detailed above, the ceramic-metal bonded body of the present invention has a bonding layer that has the effect of strengthening the bond between the metal and the ceramic layer, and has a heat insulating layer or a fireproof layer thereon. There is no risk of peeling or cracking of the ceramic layer even under high-temperature heating conditions, and the corrosion resistance is extremely good. Therefore, the ceramic-metal bonded body of the present invention,
For example, if used for internal combustion engine exhaust system equipment, etc., the temperature will exceed 800℃.
It can sufficiently withstand sudden repeated thermal shocks caused by exhaust gas at temperatures exceeding The ceramic-metal bonded body of the present invention having such effects is particularly suitable for use in engine exhaust gas manifolds, exhaust pipes, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用し得る金属部材の一例を示す断面
図であり、 第2図及至第81!Iは本発明の各実施例によるセラミ
ック・金属接合体を模式的に示す断面図である。 1:無機質鱗片状粒子 2:金属製管状部材 3:結合層 4:断熱層 5:表面層 6:耐火層 7:中空球状粒子 8:耐火粒子 第2図 第3図 第4図 第8図
FIG. 1 is a sectional view showing an example of a metal member to which the present invention can be applied; FIGS. 2 to 81! I is a sectional view schematically showing a ceramic-metal bonded body according to each embodiment of the present invention. 1: Inorganic scale-like particles 2: Metal tubular member 3: Bonding layer 4: Heat insulating layer 5: Surface layer 6: Refractory layer 7: Hollow spherical particles 8: Refractory particles Figure 2 Figure 3 Figure 4 Figure 8

Claims (17)

【特許請求の範囲】[Claims] (1)金属製部材の表面に酸化皮膜と珪酸塩とが反応し
た結合層を有し、前記結合層の表面に無機質中空粒子を
主体とする断熱材を焼固した断熱層を有することを特徴
とするセラミック・金属接合体。
(1) A metal member has a bonding layer formed by reacting an oxide film and a silicate on the surface thereof, and a heat insulating layer formed by sintering a heat insulating material mainly composed of inorganic hollow particles on the surface of the bonding layer. Ceramic-metal bonded body.
(2)請求項1に記載のセラミック・金属接合体におい
て、前記断熱層の表面に無機質結合剤及び/又は有機金
属結合剤からなる緻密で薄い表面層を有することを特徴
とするセラミック・金属接合体。
(2) The ceramic-metal bonded body according to claim 1, wherein the surface of the heat insulating layer has a dense and thin surface layer made of an inorganic binder and/or an organic metal binder. body.
(3)請求項1に記載のセラミック・金属接合体におい
て、上記断熱層の表面に無機質粒子を主体とする耐火材
を焼固した耐火層を有することを特徴とするセラミック
・金属接合体。
(3) The ceramic-metal bonded body according to claim 1, further comprising a refractory layer formed by sintering and hardening a refractory material mainly composed of inorganic particles on the surface of the heat insulating layer.
(4)請求項3に記載のセラミック・金属接合体におい
て、前記耐火層の表面に無機質結合剤及び/又は有機金
属結合剤からなる緻密で薄い表面層を有することを特徴
とするセラミック・金属接合体。
(4) The ceramic-metal bonded body according to claim 3, wherein the surface of the refractory layer has a dense and thin surface layer made of an inorganic binder and/or an organic metal binder. body.
(5)金属製部材の表面に酸化皮膜と珪酸塩とが反応し
た結合層を有し、前記結合層の表面に無機質粒子を主体
とする耐火材を焼固した耐火層を有することを特徴とす
るセラミック・金属接合体。
(5) A bonding layer formed by reacting an oxide film and a silicate on the surface of the metal member, and a refractory layer formed by baking and hardening a refractory material mainly composed of inorganic particles on the surface of the bonding layer. Ceramic/metal bonded body.
(6)請求項5に記載のセラミック・金属接合体におい
て、前記耐火層の表面に無機質結合剤及び/又は有機金
属質結合剤からなる緻密で薄い表面層を有することを特
徴とするセラミック・金属接合体。
(6) The ceramic-metal bonded body according to claim 5, wherein the refractory layer has a dense and thin surface layer made of an inorganic binder and/or an organometallic binder on the surface thereof. zygote.
(7)請求項1乃至6のいずれかに記載のセラミック・
金属接合体において、前記金属製部材が排気系機器であ
ることを特徴とするセラミック・金属接合体。
(7) The ceramic according to any one of claims 1 to 6.
A ceramic-metal joined body, wherein the metal member is an exhaust system device.
(8)請求項1乃至7のいずれかに記載のセラミック・
金属接合体において、前記結合層の厚さが50μm以下
、前記断熱層の厚さが200〜2000μm、前記耐火
層の厚さが100〜2000μm、前記表面層の厚さが
15μm以下であることを特徴とするセラミック・金属
接合体。
(8) The ceramic according to any one of claims 1 to 7.
In the metal bonded body, the bonding layer has a thickness of 50 μm or less, the heat insulation layer has a thickness of 200 to 2000 μm, the fireproof layer has a thickness of 100 to 2000 μm, and the surface layer has a thickness of 15 μm or less. Characteristic ceramic/metal bonded body.
(9)セラミック・金属接合体を製造する方法において
、 (a)金属製部材を水蒸気雰囲気中で加熱処理してその
表面に酸化皮膜を形成し、 (b)前記酸化皮膜の上に珪酸塩結合剤を塗布し、 (c)無機質中空粒子を主体とする断熱材と珪酸塩結合
剤と硬化剤との混合物を前記結合層の表面に塗布して断
熱層を形成し、 (d)続いて養生、乾燥し、 (e)酸素分圧10mmHg以下の雰囲気中において焼
成を行ない、前記酸化皮膜と前記珪酸塩との反応により
結合層を形成するとともに、断熱層を焼固する ことを特徴とするセラミック・金属接合体の製造法。
(9) In a method for manufacturing a ceramic-metal bonded body, (a) a metal member is heat-treated in a steam atmosphere to form an oxide film on its surface, and (b) silicate is bonded on the oxide film. (c) applying a mixture of a heat insulating material mainly composed of inorganic hollow particles, a silicate binder, and a hardening agent to the surface of the bonding layer to form a heat insulating layer; (d) followed by curing. , dried, and (e) fired in an atmosphere with an oxygen partial pressure of 10 mmHg or less to form a bonding layer by a reaction between the oxide film and the silicate and to harden the heat insulating layer.・Metal joint manufacturing method.
(10)セラミック・金属接合体の製造法において、 (a)金属製部材の表面に珪酸塩を塗布し、水蒸気雰囲
気で加熱処理して金属部材の表面を酸化するとともに前
記珪酸塩との反応により結合層を形成し、 (b)無機質中空粒子を主体とする断熱材と珪酸塩結合
剤と硬化剤との混合物を前記結合層の表面に塗布して断
熱層を形成し、 (c)続いて養生、乾燥し、 (d)酸素分圧10mmHg以下の雰囲気中において焼
成を行ない、前記結合層及び断熱層を焼固することを特
徴とするセラミック・金属接合体の製造法。
(10) In the method for manufacturing a ceramic-metal bonded body, (a) a silicate is applied to the surface of a metal member, the surface of the metal member is oxidized by heat treatment in a steam atmosphere, and the reaction with the silicate causes forming a bonding layer; (b) applying a mixture of a heat insulating material based on inorganic hollow particles, a silicate binder, and a hardening agent to the surface of the bonding layer to form a heat insulating layer; A method for producing a ceramic-metal bonded body, which comprises curing, drying, and (d) firing in an atmosphere with an oxygen partial pressure of 10 mmHg or less to harden the bonding layer and the heat insulating layer.
(11)請求項9又は10に記載のセラミック・金属接
合体の製造法において、 (a)前記断熱層を乾燥したあと、その表面に無機質結
合剤及び/又は有機金属質結合剤を塗布して表面層を形
成し、 (b)次いで酸素分圧10mmHg以下の雰囲気中にお
いて焼成を行なう ことを特徴とするセラミック・金属接合体の製造法。
(11) In the method for producing a ceramic-metal bonded body according to claim 9 or 10, (a) after drying the heat insulating layer, an inorganic binder and/or an organometallic binder is applied to the surface thereof. A method for producing a ceramic-metal bonded body, which comprises forming a surface layer, and (b) then firing in an atmosphere with an oxygen partial pressure of 10 mmHg or less.
(12)請求項9又は10に記載のセラミック・金属接
合体の製造法において、 (a)前記断熱層を焼成したあと、その表面に無機質結
合剤及び/又は有機金属質結合剤を塗布して表面層を形
成し、 (b)次いで110℃〜500℃で乾燥を行なうことを
特徴とするセラミック・金属接合体の製造法。
(12) In the method for producing a ceramic-metal bonded body according to claim 9 or 10, (a) after firing the heat insulating layer, an inorganic binder and/or an organometallic binder is applied to the surface thereof. A method for producing a ceramic-metal bonded body, which comprises forming a surface layer, and (b) then drying at 110°C to 500°C.
(13)セラミック・金属接合体を製造する方法におい
て、 (a)金属製部材を水蒸気雰囲気中で加熱処理してその
表面に酸化皮膜を形成し、 (b)前記酸化皮膜の上に珪酸塩結合剤を塗布し、 (c)耐火材と珪酸塩結合剤と硬化剤との混合物を前記
結合層の表面に塗布して耐火層を形成し、 (d)続いて養生、乾燥し、 (e)酸素分圧10mmHg以下の雰囲気中において焼
成を行ない、前記酸化皮膜と前記珪酸塩との反応により
結合層を形成するとともに耐火層を焼固する ことを特徴とするセラミック・金属接合体の製造法。
(13) In a method for manufacturing a ceramic-metal bonded body, (a) a metal member is heat-treated in a steam atmosphere to form an oxide film on its surface, and (b) silicate is bonded on the oxide film. (c) applying a mixture of a refractory material, a silicate binder, and a curing agent to the surface of said bonding layer to form a refractory layer; (d) followed by curing and drying; (e) A method for producing a ceramic-metal bonded body, characterized in that firing is performed in an atmosphere with an oxygen partial pressure of 10 mmHg or less to form a bonding layer through a reaction between the oxide film and the silicate and to harden the refractory layer.
(14)セラミック・金属接合体の製造法において、 (a)金属製部材の表面に珪酸塩を塗布し、水蒸気雰囲
気で加熱処理して金属部材の表面を酸化するとともに前
記珪酸塩との反応により結合層を形成し、 (b)耐火材と珪酸塩結合剤と硬化剤との混合物を前記
結合層の表面に塗布して耐火層を形成し、 (c)続いて養生、乾燥し、 (d)酸素分圧10mmHg以下の雰囲気中において焼
成を行ない、前記結合層及び耐火層を焼固することを特
徴とするセラミック・金属接合体の製造法。
(14) In the method for manufacturing a ceramic-metal bonded body, (a) silicate is applied to the surface of a metal member, and the surface of the metal member is oxidized by heat treatment in a steam atmosphere, and the reaction with the silicate causes forming a bonding layer; (b) applying a mixture of a refractory material, a silicate binder, and a curing agent to the surface of the bonding layer to form a refractory layer; (c) followed by curing and drying; (d) ) A method for producing a ceramic-metal bonded body, which comprises firing in an atmosphere with an oxygen partial pressure of 10 mmHg or less to harden the bonding layer and the refractory layer.
(15)請求項13又は14に記載のセラミック・金属
接合体の製造法において、 (a)前記耐火層を乾燥したあと、その表面に無機質結
合剤及び/又は有機金属質結合剤を塗布して表面層を形
成し、 (b)次いで酸素分圧10mmHg以下の雰囲気中にお
いて焼成を行なう ことを特徴とするセラミック・金属接合体の製造法。
(15) In the method for producing a ceramic-metal bonded body according to claim 13 or 14, (a) after drying the refractory layer, an inorganic binder and/or an organometallic binder is applied to the surface thereof. A method for producing a ceramic-metal bonded body, which comprises forming a surface layer, and (b) then firing in an atmosphere with an oxygen partial pressure of 10 mmHg or less.
(16)請求項13又は14に記載のセラミック・金属
接合体の製造法において、 (a)前記耐火層を焼成したあと、その表面に無機質結
合剤及び/又は有機金属質結合剤を塗布して表面層を形
成し、 (b)次いで110℃〜500℃で乾燥を行なうことを
特徴とするセラミック・金属接合体の製造法。
(16) In the method for producing a ceramic-metal bonded body according to claim 13 or 14, (a) after firing the refractory layer, an inorganic binder and/or an organometallic binder is applied to the surface thereof. A method for producing a ceramic-metal bonded body, which comprises forming a surface layer, and (b) then drying at 110°C to 500°C.
(17)請求項9乃至12のいずれかにに記載のセラミ
ック・金属接合体の製造法において、 (a)前記断熱層を養生、乾燥したあと、耐火材と珪酸
塩結合剤と硬化剤との混合物を前記断熱層の表面に塗布
して耐火層を形成し、 (b)続いて養生、乾燥し、 (c)次いで酸素分圧10mmHg以下の雰囲気中にお
いて焼成を行なう ことを特徴とするセラミック・金属接合体の製造法。
(17) In the method for manufacturing a ceramic-metal bonded body according to any one of claims 9 to 12, (a) after curing and drying the heat insulating layer, a refractory material, a silicate binder, and a hardening agent are combined. A ceramic material characterized in that the mixture is applied to the surface of the heat insulating layer to form a refractory layer, (b) it is then cured and dried, and (c) it is then fired in an atmosphere with an oxygen partial pressure of 10 mmHg or less. Manufacturing method for metal joints.
JP7906589A 1989-03-30 1989-03-30 Ceramic-metal joined body and production thereof Pending JPH02258983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7906589A JPH02258983A (en) 1989-03-30 1989-03-30 Ceramic-metal joined body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7906589A JPH02258983A (en) 1989-03-30 1989-03-30 Ceramic-metal joined body and production thereof

Publications (1)

Publication Number Publication Date
JPH02258983A true JPH02258983A (en) 1990-10-19

Family

ID=13679486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7906589A Pending JPH02258983A (en) 1989-03-30 1989-03-30 Ceramic-metal joined body and production thereof

Country Status (1)

Country Link
JP (1) JPH02258983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167543A (en) * 2011-02-09 2012-09-06 Ibiden Co Ltd Structure, and method of manufacturing the same
JP2018144326A (en) * 2017-03-03 2018-09-20 イビデン株式会社 Metal substrate with coat layer and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167543A (en) * 2011-02-09 2012-09-06 Ibiden Co Ltd Structure, and method of manufacturing the same
JP2018144326A (en) * 2017-03-03 2018-09-20 イビデン株式会社 Metal substrate with coat layer and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JPH01145383A (en) Ceramic and metal conjugate and production thereof
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
US4680239A (en) Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same
JPH0277582A (en) Ceramic coating of metal
GB2198660A (en) Heat-insulating lining for a gas turbine
US5167988A (en) Ceramic coating bonded to iron member
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JPH02258983A (en) Ceramic-metal joined body and production thereof
JPH075393B2 (en) Method for manufacturing ceramic / metal bonded body
CN115678331A (en) Temperature-resistant fireproof coating
JPH0250994B2 (en)
JPS62211138A (en) Heat-insulating member
JPH0132189B2 (en)
JPH0316969A (en) Production of cemented body of ceramics and member made of iron
JP3178628B2 (en) Insulating coating film
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JP3039269B2 (en) Method of forming thermal insulation film
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JP2020001942A (en) Heat insulation material, and method of producing the same
JPS62107086A (en) Production of heat insulating metallic member
JPS62107084A (en) Method for coating inside surface of exhaust apparatus
JPS63295210A (en) Preparation of ceramic-coated tube-like body
JPS62107076A (en) Production of heat insulating metallic member
JPS63295209A (en) Preparation of ceramic-coated tube-like body
JPS63129114A (en) Exhaust system apparatus and manufacture thereof