JPS63128720A - Reactive ion etching method - Google Patents

Reactive ion etching method

Info

Publication number
JPS63128720A
JPS63128720A JP27609586A JP27609586A JPS63128720A JP S63128720 A JPS63128720 A JP S63128720A JP 27609586 A JP27609586 A JP 27609586A JP 27609586 A JP27609586 A JP 27609586A JP S63128720 A JPS63128720 A JP S63128720A
Authority
JP
Japan
Prior art keywords
reactive ion
etching
ion etching
etching method
throughhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27609586A
Other languages
Japanese (ja)
Other versions
JPH0691046B2 (en
Inventor
Naoki Inagaki
直樹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61276095A priority Critical patent/JPH0691046B2/en
Publication of JPS63128720A publication Critical patent/JPS63128720A/en
Publication of JPH0691046B2 publication Critical patent/JPH0691046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce heaping of reaction products which suppress etching reaction and to enlarge an etching grade, by adding a small amount of carbon compound containing oxygen and either fluorine or hydrogen as reactive gases when a contact hole and a throughhole are formed by a reactive ion etching method. CONSTITUTION:When a contact hole and a throughhole are formed by a reactive ion etching method, a small amount of carbon compound containing oxygen and at least either fluorine or hydrogen is added in a flow rate ratio of 20-40%. In this method, because of little heaping of reaction products suppressing an etching reaction, an etching grade to be obtained becomes large, and besides because of few reaction product heaped on a silicon substrate 3 serving as a base film and on a first metallic wiring layer 1, a contact resistance and a throughhole resistance become stable and small, so that the contact hole 4 and the throughhole 7 can be formed with high quality by this etching method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置のコンタクトホール及びスルーホー
ルの反応性イオンエツチング方法、特に高いエツチング
レートが得られる上に、コンタクト抵抗及びスルーホー
ル抵抗の小さいコンタクトホール及びスルーホールの反
応性イオンエツチング方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for reactive ion etching of contact holes and through holes in semiconductor devices, and in particular, a method for reactive ion etching of contact holes and through holes in semiconductor devices. This invention relates to a reactive ion etching method for contact holes and through holes.

〔従来の技術〕[Conventional technology]

従来、この種の反応性イオンエツチング方法は反応性ガ
スとして少なくともフッ素と水素のいずれかを含む炭素
化合物に酸素や水素等を少量添加してエツチングを行っ
ていた。
Conventionally, this type of reactive ion etching method has carried out etching by adding a small amount of oxygen, hydrogen, etc. to a carbon compound containing at least either fluorine or hydrogen as a reactive gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の反応性イオンエツチング方法ではエツチ
ング反応を抑制する反応生成物の堆積が起きるため、得
られるエツチングレートが小さいばかりでなく、下地膜
であるシリコン基盤上及び第1層金属配線層上に堆積し
た反応生成物はコンタクト抵抗及びスルーホール抵抗を
増大させるので、コンタクトホール、スルーホールの品
質のバラツキが多く、安定した高歩留りが得られないと
いう欠点があった。
In the conventional reactive ion etching method described above, reaction products that inhibit the etching reaction are deposited, so not only the resulting etching rate is small, but also the etching rate is low, and the etching rate is not only small but also deposits on the underlying silicon substrate and the first metal wiring layer. Since the deposited reaction products increase the contact resistance and through-hole resistance, the quality of the contact holes and through-holes varies widely, resulting in a disadvantage that a stable high yield cannot be obtained.

本発明の目的は安定した高歩留りを得る反応性イオンエ
ツチング方法を提供することにある。
An object of the present invention is to provide a reactive ion etching method that provides a stable high yield.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の反応性イオンエツチング方法に対し、本
発明は本来絶縁膜に対して反応性のガスではない酸素を
エツチングガスとして用い、更に少量の前記炭素化合物
を添加することによって高いエツチングレートでコンタ
クト抵抗、スルーホール抵抗の小さいコンタクトホール
及びスルーホールを開孔するという独創的内容を有する
In contrast to the conventional reactive ion etching method described above, the present invention uses oxygen, which is not originally a reactive gas with respect to the insulating film, as an etching gas, and furthermore, by adding a small amount of the carbon compound, contact can be achieved at a high etching rate. It has the original content of opening contact holes and through holes with low resistance and through hole resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体装置上に形成するコンタクトホール及び
スルーホールを反応性イオンエツチングする際に、反応
性ガスとして酸素に少なくともフッ素と水素のいずれか
を含む炭素化合物を20%〜40%の流量比で添加して
用いることを特徴とする反応性イオンエツチング方法で
ある。
In the present invention, when performing reactive ion etching to form contact holes and through holes on a semiconductor device, a carbon compound containing at least either fluorine or hydrogen is mixed with oxygen as a reactive gas at a flow rate ratio of 20% to 40%. This is a reactive ion etching method that is characterized in that it is used by adding.

〔実施例〕〔Example〕

次に1本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

(実施例1) 第1図は本発明による反応性イオンエツチング方法を用
いた場合の半導体装置上のコンタクトホール部の断面構
造の一例を示した図である。第2図は本発明による反応
性イオンエツチング方法を用いた場合の半導体装置上の
スルーホール部の断面構造の一例を示した図である。第
1図ではシリコン基盤3上に、第2図では第1層金属配
線層1上にそれぞれ反応生成物の堆積は起きていない。
(Example 1) FIG. 1 is a diagram showing an example of a cross-sectional structure of a contact hole portion on a semiconductor device when the reactive ion etching method according to the present invention is used. FIG. 2 is a diagram showing an example of the cross-sectional structure of a through-hole portion on a semiconductor device when the reactive ion etching method according to the present invention is used. No reaction products are deposited on the silicon substrate 3 in FIG. 1, and on the first metal wiring layer 1 in FIG. 2.

第1図、第2図において、3はシリコン基盤、2は絶縁
膜、1は第1層金属配線層、4はコンタクトホール、5
は金属配線層間絶縁膜、6は第2層金属配線層、7はス
ルーホールである。第3図は酸素と酸素に添加する前記
炭素化合物の流量比と絶縁膜のエツチングレート指数と
の関係を求めた図の一例である。第4図は酸素と酸素に
添加する前記炭素化合物の流量比とスルーホールの比抵
抗との関係を求めた図の一例である。
1 and 2, 3 is a silicon substrate, 2 is an insulating film, 1 is a first metal wiring layer, 4 is a contact hole, and 5 is a silicon substrate.
6 is a metal wiring interlayer insulating film, 6 is a second metal wiring layer, and 7 is a through hole. FIG. 3 is an example of a diagram showing the relationship between the flow rate ratio of oxygen and the carbon compound added to oxygen and the etching rate index of the insulating film. FIG. 4 is an example of a diagram showing the relationship between the flow rate ratio of oxygen and the carbon compound added to oxygen and the resistivity of the through hole.

本発明による反応性イオンエツチング方法は、コンタク
トホール及びスルーホールを反応性イオンエツチングに
よって開孔させる際に、反応性ガスとして、酸素に、少
なくともフッ素と水素のいずれかを含む炭素化合物を2
0%〜40%の流量比で少量添加して用いる。本発明に
よれば、エツチング反応を抑制する反応生成物の堆積が
少ないので、得られるエツチングレートは高いばかりで
なく、下地膜であるシリコン基盤上及び第1層金属配線
層上に堆積する反応生成物も少ないので、コンタクト抵
抗及びスルーホール抵抗は安定して小さく、高品質のコ
ンタクトホール及びスルーホールのエツチングを行うこ
とが可能となる。
In the reactive ion etching method according to the present invention, when contact holes and through holes are opened by reactive ion etching, a carbon compound containing at least either fluorine or hydrogen is added to oxygen as a reactive gas.
It is used by adding a small amount at a flow rate of 0% to 40%. According to the present invention, since there is less deposition of reaction products that suppress the etching reaction, the resulting etching rate is not only high, but also the reaction products deposited on the silicon substrate that is the underlying film and the first metal wiring layer. Since there are fewer materials, the contact resistance and through-hole resistance are stably small, and high-quality contact holes and through-holes can be etched.

本発明によれば、第3図から絶縁膜のエツチングレート
指数は酸素と酸素に添加する前記炭素化合物の流量比が
20%〜40%の範囲内で極値をとって大きな値が得ら
れる。またスルーホールの比抵抗値は前記炭素化合物の
流量が多くなるほど増大する。従って上記流量比の範囲
内でコンタクトホール、スルーホールの反応性イオンエ
ツチングを行うと、高いエツチングレートで高品質のコ
ンタクトホール、スルーホールの開孔を行うことができ
る。
According to the present invention, as shown in FIG. 3, the etching rate index of the insulating film takes an extreme value and a large value is obtained when the flow rate ratio of oxygen and the carbon compound added to oxygen is within the range of 20% to 40%. Further, the resistivity value of the through hole increases as the flow rate of the carbon compound increases. Therefore, if reactive ion etching of contact holes and through holes is performed within the range of the above flow rate ratio, high quality contact holes and through holes can be formed at a high etching rate.

第5図と第6図はそれぞれ従来の技術を用いて、半導体
装置上のコンタクトホール及びスルーホールを開孔した
場合の断面構造を示した図の一例である。第5図ではシ
リコン基盤3上に、第6図では第1層金属配線層1上に
それぞれ反応生成物8の堆積が見られ、コンタクトホー
ル、スルーホールの品質のバラツキが生じる原因となる
FIGS. 5 and 6 are examples of cross-sectional structures when contact holes and through holes are opened on a semiconductor device using conventional techniques, respectively. Reaction products 8 are seen deposited on the silicon substrate 3 in FIG. 5 and on the first metal wiring layer 1 in FIG. 6, causing variations in the quality of contact holes and through holes.

(実施例2) 第7図は実施例1の反応性ガスに更にアルゴンやヘリウ
ムなどの不活性単原子ガスを一定流量添加した場合のス
ルーホールの比抵抗と実施例1のガス流量比との関係を
求めた図の一例である。
(Example 2) Figure 7 shows the relationship between the resistivity of the through hole and the gas flow rate ratio of Example 1 when a constant flow rate of an inert monatomic gas such as argon or helium is added to the reactive gas of Example 1. This is an example of a diagram showing relationships.

この実施例では、実施例1の第4図でのスルーホールの
比抵抗値に比較して更にスルーホールの比抵抗値が小さ
くなるという利点がある。
This embodiment has the advantage that the specific resistance value of the through hole is further reduced compared to the specific resistance value of the through hole shown in FIG. 4 of the first embodiment.

〔発明の効果〕 以上説明したように本発明による反応性イオンエツチン
グ方法は、コンタクトホール及びスルーホールを反応性
イオンエツチングによって開孔させる際に、反応性ガス
として酸素に少なくともフッ素と水素のいずれかを含む
炭素化合物を20%〜40%の流量比で少量添加して用
いることにより、エツチング反応を抑制する反応生成物
の堆積が少なく、得られるエツチングレートは高いばか
りでなく、下地膜であるシリコン基盤上及び第1層金属
配線層上に堆積する反応生成物も少ないので。
[Effects of the Invention] As explained above, in the reactive ion etching method according to the present invention, at least one of fluorine and hydrogen is added to oxygen as a reactive gas when contact holes and through holes are opened by reactive ion etching. By adding a small amount of a carbon compound containing carbon at a flow rate of 20% to 40%, the deposition of reaction products that suppress the etching reaction is reduced, and the etching rate obtained is not only high, but also the silicon that is the underlying film is There are also fewer reaction products deposited on the substrate and the first metal wiring layer.

コンタクト抵抗及びスルーホール抵抗は安定して小さく
、高品質のコンタクトホール及びスルーホールのエツチ
ングを行うことができ、安定した高歩留りを得ることが
できる効果を有するものである。
The contact resistance and through-hole resistance are stably low, high-quality contact holes and through-holes can be etched, and a stable high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による反応性イオンエツチング方法を用
いた場合の半導体装置上のコンタクトホール部の断面構
造を示した図、第2図は本発明による反応性イオンエツ
チング方法を用いた場合の半導体装置上のスルーホール
部の断面構造を示した図、第3図は酸素と酸素に添加す
る前記炭素化合物の流量比と絶縁膜のエツチングレート
指数との関係を示す図、第4図、第7図は酸素と酸素に
添加する炭素化合物の流量比とスルーホールの比抵抗と
の関係を示す図、第5図及び第6図はそれぞれ従来の反
応性イオンエツチング方法を用いて半導体装置上のコン
タクトホール及びスルーホールを開孔した場合の断面構
造を示した図である。
FIG. 1 is a diagram showing a cross-sectional structure of a contact hole portion on a semiconductor device when the reactive ion etching method according to the present invention is used, and FIG. 2 is a diagram showing a semiconductor when the reactive ion etching method according to the present invention is used. FIG. 3 is a diagram showing the cross-sectional structure of a through-hole portion on the device; FIG. 3 is a diagram showing the relationship between the flow rate ratio of oxygen and the carbon compound added to oxygen and the etching rate index of the insulating film; FIGS. The figure shows the relationship between the flow rate ratio of oxygen and a carbon compound added to oxygen and the resistivity of a through hole, and Figures 5 and 6 show the relationship between the flow rate ratio of oxygen and a carbon compound added to oxygen, and the resistivity of a through hole. It is a figure showing the cross-sectional structure when a hole and a through-hole are opened.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置上に形成するコンタクトホール及びス
ルーホールを反応性イオンエッチングする際に、反応性
ガスとして酸素に少なくともフッ素と水素のいずれかを
含む炭素化合物を20%〜40%の流量比で添加して用
いることを特徴とする反応性イオンエッチング方法。
(1) When performing reactive ion etching to form contact holes and through holes on semiconductor devices, a carbon compound containing at least either fluorine or hydrogen is added to oxygen as a reactive gas at a flow rate ratio of 20% to 40%. A reactive ion etching method characterized by using additives.
JP61276095A 1986-11-19 1986-11-19 Reactive ion etching method Expired - Lifetime JPH0691046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276095A JPH0691046B2 (en) 1986-11-19 1986-11-19 Reactive ion etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276095A JPH0691046B2 (en) 1986-11-19 1986-11-19 Reactive ion etching method

Publications (2)

Publication Number Publication Date
JPS63128720A true JPS63128720A (en) 1988-06-01
JPH0691046B2 JPH0691046B2 (en) 1994-11-14

Family

ID=17564732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276095A Expired - Lifetime JPH0691046B2 (en) 1986-11-19 1986-11-19 Reactive ion etching method

Country Status (1)

Country Link
JP (1) JPH0691046B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114235A (en) * 1981-01-08 1982-07-16 Toshiba Corp Cleaning of semiconductor substrate
JPS63104338A (en) * 1986-10-08 1988-05-09 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of forming aperture with inclination in composite insulating layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114235A (en) * 1981-01-08 1982-07-16 Toshiba Corp Cleaning of semiconductor substrate
JPS63104338A (en) * 1986-10-08 1988-05-09 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of forming aperture with inclination in composite insulating layer

Also Published As

Publication number Publication date
JPH0691046B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5240739A (en) Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5275715A (en) Electroplating process for enhancing the conformality of titanium and titanium nitride films in the manufacture of integrated circuits and structures produced thereby
US6815819B2 (en) In situ plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications
JPS6127657A (en) Wiring structure
JPS58204538A (en) Method of producing metal silicide-polysilicon double layer on substrate containing integrated circuit
US4381595A (en) Process for preparing multilayer interconnection
KR100485386B1 (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
US5817367A (en) Method of forming a thin film of copper
JPS63128720A (en) Reactive ion etching method
GB2186424A (en) Method for producing integrated circuit interconnects
JP3108120B2 (en) InGaAsP quaternary mixed crystal etching method
JPS5524454A (en) Insulating gate type field effect transistor
JPH0410219B2 (en)
JPH04294530A (en) Manufacture of semiconductor device
JPS6057227B2 (en) Manufacturing method of semiconductor device
KR100414745B1 (en) Method for forming metal interconnection of semiconductor device
JPH06275555A (en) Manufacture of semiconductor device
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JPH1112730A (en) Production of thin chromium film
JPH0425159A (en) Forming method of electrode wiring
JPH01223728A (en) Manufacture of semiconductor device
JPH0722152B2 (en) Dry etching method
JP2701722B2 (en) Method for manufacturing semiconductor device
JPH0269935A (en) Method for etching tungsten
JPH02174124A (en) Semiconductor device and manufacture thereof