JPS63128646A - Manufacture of multilayer interconnection structure - Google Patents

Manufacture of multilayer interconnection structure

Info

Publication number
JPS63128646A
JPS63128646A JP27591186A JP27591186A JPS63128646A JP S63128646 A JPS63128646 A JP S63128646A JP 27591186 A JP27591186 A JP 27591186A JP 27591186 A JP27591186 A JP 27591186A JP S63128646 A JPS63128646 A JP S63128646A
Authority
JP
Japan
Prior art keywords
film
titanium
titanium nitride
nitride film
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27591186A
Other languages
Japanese (ja)
Other versions
JPH0642514B2 (en
Inventor
Masaaki Ohira
正明 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61275911A priority Critical patent/JPH0642514B2/en
Publication of JPS63128646A publication Critical patent/JPS63128646A/en
Publication of JPH0642514B2 publication Critical patent/JPH0642514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a stabilized titanium nitride film having uniform film thickness by a method wherein the titanium nitride film is formed on the surface of a titanium film using an instantaneous annealing method. CONSTITUTION:An aluminum wiring conductor 3 is formed on the field oxide film 2 located on a semiconductor substrate 1 as a lower wiring layer, and a titanium film 4 is formed thereon by performing an RF sputtering method for example. Then, nitrogen is ion-implanted into the titanium film 4. Subsequently, a titanium nitride film 5 is formed by performing the instantaneous annealing method such as the irradiation of infrared rays, for example, at 550 deg.C for 10 seconds using the residual gas (air) in an annealing furnace in such a manner that titanium is not oxidized. The film 5 has a constant composition, it has no local defect, it is chemically and physically stable, and the hillock on a through hole part and the aluminum recrystallization generating on the semiconductor device in the heat treatment performed thereon can be prevented completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の多層配線構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a multilayer wiring structure of a semiconductor device.

〔従来の技術〕[Conventional technology]

LSI配線材料としては、主としてアルミニウムが用い
られているが、多層配線構造のスルーホール部では、熱
処理等によシヒロツク々どが発生しやすい。そこで信頼
性確保のため、スルーホール部にバリアメタルとして窒
化チタン膜を配置しておくことが多い。この窒化チタン
膜の形成は、窒素ふんい気中でプラズマスパッタを行な
う高周波(RF)スパッタ法、あるいはチタン膜成長後
に窒素ふんい気中でアニールを行なう方法によっている
Aluminum is mainly used as an LSI wiring material, but cracks are likely to occur in through-hole portions of multilayer wiring structures due to heat treatment and the like. Therefore, in order to ensure reliability, a titanium nitride film is often placed as a barrier metal in the through-hole portion. The titanium nitride film is formed by a radio frequency (RF) sputtering method in which plasma sputtering is performed in a nitrogen atmosphere, or by annealing in a nitrogen atmosphere after the titanium film is grown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記窒化チタン膜は、多層配線構造のバリアメタルとし
ては、前記ヒロックなどの防止に対しては極めて有益で
ある。しかし、従来の方法によって形成した窒化チタン
膜は、現実には膜質が不安定であシ、半導体装置の製造
過程において、その耐熱性がなくなシ、アルミ配線導体
と反応し、配線導体を変質または消失させるなど信頼性
上きわめて重大な障害をしばしば起こす欠点をもってい
た。これは、RFスパッタ法による場合に、残留ガス(
酸素)と窒素のバランスによシ膜質が決定されるため、
チタンの窒化が均一に進まず、比抵抗値を測定するとバ
ラツ中が非常に大きく、膜質が不安定なものが生ずるか
らである。チタン膜形成後、輩索中にてアニールして形
成する後者の方法でも、同様である。
The titanium nitride film is extremely useful as a barrier metal in a multilayer wiring structure in preventing the hillocks and the like. However, in reality, titanium nitride films formed by conventional methods are unstable in film quality, lose their heat resistance during the manufacturing process of semiconductor devices, and react with aluminum wiring conductors, changing the quality of the wiring conductors. It had the disadvantage of often causing extremely serious failures in terms of reliability, such as failure or disappearance. This is because residual gas (
The film quality is determined by the balance between oxygen) and nitrogen.
This is because the nitridation of titanium does not proceed uniformly, and when measuring the specific resistance value, there is a very large variation, resulting in unstable film quality. The same applies to the latter method in which the titanium film is formed by annealing in a tube after the titanium film is formed.

本発明の目的は、上記の欠点を除去し、半導体装置とし
て、信頼性の高いバリア層を有する多層配線構造の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing a multilayer wiring structure having a highly reliable barrier layer as a semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明における多層配線構造の製造方法は、半導体装置
の主面上に形成された、下部配線層上にチタン膜を形成
する工程と、該チタン膜に窒素をイオン注入後、瞬間ア
ニール法によって該チタン膜の少なくとも表面に窒化チ
タン膜を形成する工程と、該窒化チタン膜上の層間絶縁
膜のスルーホールを介して該窒化チタン膜に接触する上
部配線層を形成する工程とを含むものである。
The method for manufacturing a multilayer wiring structure according to the present invention includes the steps of forming a titanium film on a lower wiring layer formed on the main surface of a semiconductor device, and after implanting nitrogen ions into the titanium film, an instantaneous annealing method is used. The method includes a step of forming a titanium nitride film on at least the surface of the titanium film, and a step of forming an upper wiring layer in contact with the titanium nitride film through a through hole in an interlayer insulating film on the titanium nitride film.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例につき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、第1実施例につき、工程順に示したものであ
る。この実施例は、眉間絶縁膜を、バリアメタル形成後
形成する場合である。第1図(1りは、半導体基板l上
のフィールド酸化J1g2に下部配線層としてアルミ配
線導体3が形成されていて、その上に、先ずBFスパッ
タ法で厚さ100OAのチタン膜4を形成した状態を示
すものである。次に第1図伽)で、窒素をチタン膜4の
中にイオン注入(ドーズ量2X1015/cm” 、 
 10 k e V )を行なう。イオン注入ハ、R,
(ピーク値を示す深さ) = 225λ、SD(標準偏
差値) = 12OAと、深さに対する正規分布の状態
で打込まれる。
FIG. 1 shows the steps of the first embodiment in order. In this example, the glabellar insulating film is formed after the barrier metal is formed. In Figure 1, an aluminum wiring conductor 3 is formed as a lower wiring layer on a field oxidation J1g2 on a semiconductor substrate l, and a titanium film 4 with a thickness of 100 OA is first formed on it by BF sputtering. Next, in Fig. 1(a), nitrogen ions are implanted into the titanium film 4 (dose amount: 2 x 1015/cm").
10 ke V). Ion implantation C, R,
(Depth showing peak value) = 225λ, SD (standard deviation value) = 12OA, and is implanted in a state of normal distribution with respect to depth.

次に第1図(e)で、アニールを行ない、窒化チタンl
I5を形成する。アニールは、アニール炉中の残留ガス
(空気)によシ、チタンが酸化しないように、瞬間アニ
ール法を用いる。通常瞬間アニール法は3秒〜50秒で
あるが、この実施例では赤外線照射によp温度550C
,時間10秒で行なった。
Next, as shown in FIG. 1(e), annealing is performed and titanium nitride l
Form I5. For annealing, an instantaneous annealing method is used to prevent titanium from oxidizing due to residual gas (air) in the annealing furnace. Normally instantaneous annealing is performed for 3 seconds to 50 seconds, but in this example, infrared irradiation was used at a p temperature of 550C.
, the time was 10 seconds.

以下、第1図(d)に示すように、上部配線層を周知の
方法で行なう。窒化チタン膜5をホトレジスト法(PR
法)を用いてバターニングを行ないバリアメタル部10
を形成してから、CVD法で層間絶縁膜6を堆積する。
Thereafter, as shown in FIG. 1(d), the upper wiring layer is formed by a well-known method. The titanium nitride film 5 is coated with a photoresist method (PR).
The barrier metal part 10 is patterned using
After forming, an interlayer insulating film 6 is deposited by the CVD method.

次にスルーホール7を開孔し、上部配線層としてアルミ
配線導体8を、スルーホール7を介してバリアメタル部
10に接触させることで多層配線構造が形成される。
Next, a through hole 7 is opened, and an aluminum wiring conductor 8 as an upper wiring layer is brought into contact with the barrier metal part 10 via the through hole 7, thereby forming a multilayer wiring structure.

第2実施例として、層間絶縁膜をイオン注入のマスクと
して利用した実施例を2図で説明する。第2図(a)に
示すように、半導体基板l上のフィールド酸化膜2に、
下部配線層としてアルミ配線導体3が形成されていて、
その上に先ずチタン膜(厚さ100OA ) 4を形成
する。そして、さらに層間絶縁膜6を形成しスルーホー
ル7を開孔しておく。
As a second embodiment, an embodiment in which an interlayer insulating film is used as a mask for ion implantation will be described with reference to FIG. As shown in FIG. 2(a), on the field oxide film 2 on the semiconductor substrate l,
An aluminum wiring conductor 3 is formed as a lower wiring layer,
First, a titanium film (thickness: 100 OA) 4 is formed thereon. Then, an interlayer insulating film 6 is further formed and a through hole 7 is opened.

次に第2図(b)に示すように、層間絶縁116をマス
クとしてスルーホール7の部分にあたるチタン膜4の中
に窒素をイオン注入(ドーズ量2X 101S/cm”
  10 key)する。注入された状態は第1実施例
と同じ<R,=225人、 SD= 12OAの正規分
布である。
Next, as shown in FIG. 2(b), using the interlayer insulation 116 as a mask, nitrogen ions are implanted into the titanium film 4 corresponding to the through hole 7 (dose amount: 2X 101S/cm").
10 key). The injected state is the same as the first example, with a normal distribution of <R, = 225 people, SD = 12OA.

次に、第2図(c) において、瞬間アニール法を用い
、アニールを行なう。アニール条件は、第1実施例と同
じにする。これによシ窒化チタン膜5′がスルーホール
7のチタン膜4に形成され、この窒化チタン族5′とそ
の下部のチタン膜4とでバリアメタル部1σとなってい
る。以下、第2図(diに示すように、上部配線層とし
てアルミ配線導体8をスルーホール7を介してバリアメ
タル部10′に接触させることで多層配線構造が形成さ
れる。
Next, in FIG. 2(c), annealing is performed using the instantaneous annealing method. The annealing conditions are the same as in the first example. As a result, a titanium nitride film 5' is formed on the titanium film 4 of the through hole 7, and this titanium nitride group 5' and the titanium film 4 below form a barrier metal portion 1σ. Thereafter, as shown in FIG. 2 (di), a multilayer wiring structure is formed by bringing aluminum wiring conductor 8 as an upper wiring layer into contact with barrier metal portion 10' via through hole 7.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、多層配線間の接続部分に、窒化
チタン膜をバリアメタルとして設けた多層構造において
、本発明は特に窒化チタン膜として緻密で、しかも耐熱
性で化学的に安定な膜を形成するようにしたものである
。窒化チタン膜の形成には、イオン注入によシ均一に所
定量だけ、チタン膜中に窒素原子を入れ、かつ瞬間アニ
ールにより、残留ガス(空気)の影響をうけないように
している。このように組成が一定であって、局所的な欠
陥のない窒化チタン膜は化学的・物理的に安定であって
、半導体装置のそれ以降の生産工程における熱処理によ
シ、従来生じていたスルーホール部のヒロツクトカ、ア
ルミ再結晶化は完全に防止できる。
As explained above, in a multilayer structure in which a titanium nitride film is provided as a barrier metal at the connection portion between multilayer interconnections, the present invention particularly aims at providing a dense, heat-resistant, and chemically stable titanium nitride film. It was designed so that it could be formed. To form a titanium nitride film, nitrogen atoms are uniformly introduced into the titanium film in a predetermined amount by ion implantation, and instantaneous annealing is performed to prevent the film from being affected by residual gas (air). A titanium nitride film with a constant composition and no local defects is chemically and physically stable, and does not suffer from the through-through that conventionally occurs during heat treatment in the subsequent production process of semiconductor devices. It is possible to completely prevent cracks in the hole and aluminum recrystallization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を製造工程順に示す縦
断面図である。 1・・・半導体基板、  2・・・フィールド酸化膜、
3.8・・・アルミ配線導体、  4・・・チタン膜、
5.5′・・・窒化チタン膜、6・・・層間絶縁膜、7
・・・スルーホール、10.10’・・・バリアメタル
部。
FIGS. 1 and 2 are longitudinal sectional views showing an embodiment of the present invention in the order of manufacturing steps. 1... Semiconductor substrate, 2... Field oxide film,
3.8...Aluminum wiring conductor, 4...Titanium film,
5.5'...Titanium nitride film, 6...Interlayer insulating film, 7
...Through hole, 10.10'...Barrier metal part.

Claims (1)

【特許請求の範囲】[Claims]  半導体装置の主面上に形成された、下部配線層上にチ
タン膜を形成する工程と、該チタン膜に窒素をイオン注
入後、瞬間アニール法によつて該チタン膜の少なくとも
表面に窒化チタン膜を形成する工程と、該窒化チタン膜
上の層間絶縁膜のスルーホールを介して該窒化チタン膜
に接触する上部配線層を形成する工程とを含むことを特
徴とする半導体装置の多層配線構造の製造方法。
A step of forming a titanium film on the lower wiring layer formed on the main surface of the semiconductor device, and after ion-implanting nitrogen into the titanium film, a titanium nitride film is formed on at least the surface of the titanium film by an instantaneous annealing method. and a step of forming an upper wiring layer in contact with the titanium nitride film through a through hole in an interlayer insulating film on the titanium nitride film. Production method.
JP61275911A 1986-11-18 1986-11-18 Method for manufacturing multilayer wiring structure Expired - Lifetime JPH0642514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275911A JPH0642514B2 (en) 1986-11-18 1986-11-18 Method for manufacturing multilayer wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275911A JPH0642514B2 (en) 1986-11-18 1986-11-18 Method for manufacturing multilayer wiring structure

Publications (2)

Publication Number Publication Date
JPS63128646A true JPS63128646A (en) 1988-06-01
JPH0642514B2 JPH0642514B2 (en) 1994-06-01

Family

ID=17562145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275911A Expired - Lifetime JPH0642514B2 (en) 1986-11-18 1986-11-18 Method for manufacturing multilayer wiring structure

Country Status (1)

Country Link
JP (1) JPH0642514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190551A (en) * 1992-01-17 1993-07-30 Yamaha Corp Semiconductor device
US5880526A (en) * 1996-04-15 1999-03-09 Tokyo Electron Limited Barrier metal layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119854A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device
JPS61242039A (en) * 1985-04-19 1986-10-28 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119854A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device
JPS61242039A (en) * 1985-04-19 1986-10-28 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190551A (en) * 1992-01-17 1993-07-30 Yamaha Corp Semiconductor device
US5880526A (en) * 1996-04-15 1999-03-09 Tokyo Electron Limited Barrier metal layer

Also Published As

Publication number Publication date
JPH0642514B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
EP0631308B1 (en) Method of controlling gate oxide thickness in the fabrication of semiconductor devices
JPS63301548A (en) Manufacture of semiconductor device
US3918149A (en) Al/Si metallization process
JPH02235358A (en) Connection method of multilayer wiring
JPH01199456A (en) Manufacture of semiconductor integrated circuit
JPS63128646A (en) Manufacture of multilayer interconnection structure
JP2639052B2 (en) Method for manufacturing semiconductor device
JPH0740587B2 (en) Method for manufacturing semiconductor device
JPH0456453B2 (en)
JPH04196122A (en) Manufacture of semiconductor device
JPS6197825A (en) Manufacture of semiconductor device
JP2579993B2 (en) Method for manufacturing semiconductor device
JPH03185823A (en) Manufacture of semiconductor device
RU2198451C2 (en) Method for insulating integrated-circuit components
JPH07263447A (en) Semiconductor device and its manufacture
JPS61166143A (en) Manufacture of semiconductor device
JPS59152644A (en) Forming method of multilayer interconnection
JPH02215131A (en) Manufacture of semiconductor device
JP3315252B2 (en) Method for manufacturing semiconductor device
JPH0666312B2 (en) Method for manufacturing semiconductor device
JPS59108317A (en) Forming method of electrode wiring
JPH0337857B2 (en)
JPH07273114A (en) Fabrication and planarization of semiconductor device
JPH0527275B2 (en)
JPH0786395A (en) Manufacture of semiconductor device