JPH0527275B2 - - Google Patents

Info

Publication number
JPH0527275B2
JPH0527275B2 JP16966383A JP16966383A JPH0527275B2 JP H0527275 B2 JPH0527275 B2 JP H0527275B2 JP 16966383 A JP16966383 A JP 16966383A JP 16966383 A JP16966383 A JP 16966383A JP H0527275 B2 JPH0527275 B2 JP H0527275B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
conductivity type
insulating film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16966383A
Other languages
Japanese (ja)
Other versions
JPS6060768A (en
Inventor
Hideaki Takahashi
Ginjiro Kanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16966383A priority Critical patent/JPS6060768A/en
Publication of JPS6060768A publication Critical patent/JPS6060768A/en
Publication of JPH0527275B2 publication Critical patent/JPH0527275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、絶縁ゲート半導体装置の製造方法、
さらに詳しくは、半導体板上に形成される多結晶
シリコンのゲート電極配線と層間絶縁膜とを同時
に形成でき、しかも、ゲート電極配線を層間絶縁
膜によつて埋め込み、表面の平坦化をはかること
ができる絶縁ゲート形半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an insulated gate semiconductor device;
More specifically, it is possible to simultaneously form a polycrystalline silicon gate electrode wiring formed on a semiconductor board and an interlayer insulating film, and to planarize the surface by burying the gate electrode wiring with the interlayer insulating film. The present invention relates to a method for manufacturing an insulated gate type semiconductor device.

従来例の構成とその問題点 大規模集積回路(以下、LSIと記す)、例えば
MOS形LSIの製作においては、MOSトランジス
タ構成する活性領域、この活性領域を半導体基板
内で分離する素子分離領域、さらに、作り込まれ
た各素子間を電気的に相互接続する電極配線等の
形成が不可欠であり、これらを精度良く、かつ、
高い再現性を保ちながら微細構造とすることが強
くのぞまれている。
Conventional configurations and their problems Large-scale integrated circuits (hereinafter referred to as LSI), e.g.
In the production of MOS type LSI, the active region that makes up the MOS transistor, the element isolation region that separates this active region within the semiconductor substrate, and the formation of electrode wiring that electrically interconnects the manufactured elements are formed. are essential, and these must be carried out accurately and
There is a strong desire to create fine structures while maintaining high reproducibility.

通常のMOS形LSIプロセスにおいては、素子
分離に必要なフイールド酸化膜と称される酸化膜
を形成した後に、ゲート電極領域を形成し、さら
に、このゲート電極をマスクとして利用する自己
整合法(セルフアラメント法)によりソースおよ
びドレイン領域を形成することによりMOSトラ
ンジスタが作り込まれる。この後に、層間絶縁膜
の形成と金属酸線層の形成が行なわれている。し
かしながら、MOS形LSIの集積度が高くなると、
半導体板内に作り込まれた多数の回路要素間を電
気的に相互接続するための配線が複雑化するとと
もに各所で電路が交差するところとなる。このた
め、金属配線層を多層に形成し、層が異る配線層
間およびゲート電極と各配線層との間で電路の立
体交差を実現し、併せて、金属配線層パターンの
簡略化をはかつた多層配線構造が採られている。
In a normal MOS LSI process, after forming an oxide film called a field oxide film necessary for element isolation, a gate electrode region is formed, and then a self-alignment method (self-alignment method) in which this gate electrode is used as a mask is used. A MOS transistor is fabricated by forming source and drain regions using the alignment method. After this, an interlayer insulating film and a metal oxide layer are formed. However, as the degree of integration of MOS LSI increases,
Wiring for electrically interconnecting a large number of circuit elements built into a semiconductor board becomes complicated, and electric paths intersect at various locations. For this reason, metal wiring layers are formed in multiple layers, realizing three-dimensional intersections of electric paths between different wiring layers and between the gate electrode and each wiring layer, and at the same time simplifying the metal wiring layer pattern. A multilayer wiring structure is adopted.

ところで、このような構造のMOS形LSIでは、
前述のゲート電極に大きな段差があると、後の層
間絶縁膜および金属配線層の形成時に、この段差
を越えて延びる部分で膜厚が薄くなり、断線事故
が発生する。特に、このゲート電極部分で電路の
立体交差がなされた場合には、電路の交差部にお
ける断線事故が顕著となる問題があつた。
By the way, in a MOS type LSI with such a structure,
If there is a large step in the gate electrode, when an interlayer insulating film and a metal wiring layer are formed later, the film thickness becomes thinner in a portion extending beyond the step, resulting in a disconnection accident. Particularly, when electrical circuits are crossed over three-dimensionally at this gate electrode portion, there has been a problem in that disconnection accidents at the intersection of the electrical circuits become conspicuous.

発明の目的 本発明は、層間絶縁膜および金属配線層の形成
に先だつて半導体基板上に段差部が形成されるこ
とにより発生する問題の排除を意図してなされた
もので、ゲート電極の段差が現われないように、
平坦なゲート電極配線層を形成するとともに、ゲ
ート電極配線層の形成と同時に層間絶縁膜を形成
することができる絶縁ゲート形半導体装置の製造
方法の提供を目的とするものである。
OBJECTS OF THE INVENTION The present invention was made with the intention of eliminating problems caused by the formation of a step portion on a semiconductor substrate prior to the formation of an interlayer insulating film and a metal wiring layer. so as not to appear,
It is an object of the present invention to provide a method for manufacturing an insulated gate type semiconductor device that can form a flat gate electrode wiring layer and form an interlayer insulating film simultaneously with the formation of the gate electrode wiring layer.

発明の構成 本発明にかかる絶縁ゲート形半導体装置の製造
方法は、素子間分離用絶縁膜で包囲された一導電
形の半導体基板表面層に逆導電形の不純物を導入
し、逆導電形表面層を形成したのち、同逆導電形
表面層を2分する食刻溝を形成するとともに同食
刻溝の内面を少なくとも覆うゲート絶縁膜を形成
し、さらに、露出表面の形状に沿つた形状が得ら
れるように多結晶シリコン膜を全面に形成し、次
いで、マスク材料で全面を覆い、同食刻溝部分を
開口し、イオン注入により同多結晶膜の側壁部を
除いた露出表面を窒化し、これをマスクとして酸
化処理を施し前記多結晶シリコン膜を酸化させ
る。この時、窒化表面層下の多結晶シリコン膜は
酸化されずに残るため、多結晶シリコンが食刻溝
内に埋め込まれた形となる。本発明によれば、ゲ
ート電極配線の主面と半導体基板の活性領域の主
面とがほぼ同一の平面内に位置するとろとなるた
め、段差のない平坦な面状態が得られ、また、ゲ
ート電極配線とこれを埋め込む層間絶縁膜を同時
に形成することができる。
Structure of the Invention A method for manufacturing an insulated gate type semiconductor device according to the present invention includes introducing an impurity of an opposite conductivity type into a surface layer of a semiconductor substrate of one conductivity type surrounded by an insulating film for isolation between elements. After forming an etched groove that bisects the surface layer of the opposite conductivity type, a gate insulating film is formed that covers at least the inner surface of the etched groove, and a shape that follows the shape of the exposed surface is obtained. A polycrystalline silicon film is formed on the entire surface so that the polycrystalline silicon film is formed, and then the entire surface is covered with a mask material, the etched groove portions are opened, and the exposed surface of the polycrystalline film except for the sidewall portions is nitrided by ion implantation. Using this as a mask, oxidation treatment is performed to oxidize the polycrystalline silicon film. At this time, the polycrystalline silicon film under the nitrided surface layer remains unoxidized, so that the polycrystalline silicon is buried in the etched groove. According to the present invention, since the main surface of the gate electrode wiring and the main surface of the active region of the semiconductor substrate are located in almost the same plane, a flat surface state with no steps can be obtained. The electrode wiring and the interlayer insulating film embedding the electrode wiring can be formed at the same time.

実施例の説明 本発明の絶縁ゲート形半導体装置の製造方法を
MOS形LSIの製造を例示して以下に詳しく説明
する。
DESCRIPTION OF EMBODIMENTS The method for manufacturing an insulated gate semiconductor device of the present invention
The manufacturing of a MOS type LSI will be explained in detail below using an example.

まず第1図で示すように、シリコン基板1の表
面上に素子間分離の機能をもつフイールド酸化膜
2を形成したのち、ヒ素あるいはボロンをイオン
注入して拡散層3を形成する。ついで、シリコン
基板1にプラズマエツチング処理を施し、第2図
で示すように拡散層3を2分する溝4を形成す
る。この場合、ホトレジストに形成するエツチン
グ用の窓の寸法幅は3μm以下が好ましく、また、
この寸法幅に忠実にシリコン基板1を食刻するた
めに四塩化炭素系のガスプラズマで異方性エツチ
ングを行なう。
First, as shown in FIG. 1, a field oxide film 2 having a function of separating elements is formed on the surface of a silicon substrate 1, and then a diffusion layer 3 is formed by ion-implanting arsenic or boron. Next, the silicon substrate 1 is subjected to a plasma etching process to form a groove 4 that divides the diffusion layer 3 into two as shown in FIG. In this case, the width of the etching window formed in the photoresist is preferably 3 μm or less, and
In order to etch the silicon substrate 1 faithfully to this dimensional width, anisotropic etching is performed using carbon tetrachloride gas plasma.

この後、第3図で示すように、900℃の酸素雰
囲気中で膜厚500Å程度の酸化膜(ゲート酸化膜)
5を形成し、さらに、この酸化膜5の上に膜厚が
4000Å、シート抵抗が約15Ω/□の多結晶シリコ
ン膜6を形成する。次いで、第4図で示すよう
に、シリコン基板1に溝4を形成したときと同程
度の開口寸法幅を持つホトレジストパターン7を
形成し、このホトレジストパターン7をマスクと
して、加速電圧50KeVで窒素のイオン注入を行
なう。この処理で多結晶シリコン膜6のイオン注
入方向と垂直な表面が窒化し、窒化膜8,81,
82が形成される。そして、最後の処理として、
9Kg/cm2の高圧酸素雰囲気中で加熱処理を施し、
多結晶シリコン膜6の一部を酸化膜に変換する。
すなわち、窒化膜8,81,82によつて覆われ
ることのない部分の多結晶シリコン膜は完全に酸
化され、窒化膜81と82の直下の部分は横方向
に酸化が進み、食刻溝の幅を適当に選択しておけ
ば、両側からの酸化は合体して、酸化膜を形成す
る。窒化膜8の直下では酸化は生じない。この時
窒化膜も酸化されるが、窒化膜8,81,82の
膜厚を、酸化されて消失するよう選んでおくと好
都合である。また、一部が窒化膜のまま残つて
も、酸化膜中に取り込まれて害はない。このよう
な窒化膜のマスク効果により、第5図で示すよう
に、窒化膜8,81,82の形成された部分の幅
とほぼ等しい幅をもち、全域の厚みが4000Åのゲ
ート電極層9が形成され、また、この上部までが
層間絶縁膜となる酸化膜10で覆われた構造が得
られる。
After this, as shown in Figure 3, an oxide film (gate oxide film) with a thickness of about 500 Å is formed in an oxygen atmosphere at 900°C.
5 is formed, and furthermore, on this oxide film 5, a film with a thickness of
A polycrystalline silicon film 6 of 4000 Å and a sheet resistance of about 15 Ω/□ is formed. Next, as shown in FIG. 4, a photoresist pattern 7 having an opening dimension width comparable to that when forming the groove 4 in the silicon substrate 1 is formed, and using this photoresist pattern 7 as a mask, nitrogen is irradiated at an accelerating voltage of 50 KeV. Perform ion implantation. Through this treatment, the surface of the polycrystalline silicon film 6 perpendicular to the ion implantation direction is nitrided, and the nitride films 8, 81,
82 is formed. And as a final step,
Heat treated in a high pressure oxygen atmosphere of 9Kg/ cm2 ,
A part of the polycrystalline silicon film 6 is converted into an oxide film.
That is, the portions of the polycrystalline silicon film that are not covered by the nitride films 8, 81, and 82 are completely oxidized, and the portions directly under the nitride films 81 and 82 are oxidized laterally, resulting in the formation of the etched grooves. If the width is chosen appropriately, oxidation from both sides will coalesce to form an oxide film. No oxidation occurs directly under the nitride film 8. Although the nitride film is also oxidized at this time, it is convenient to select the thickness of the nitride films 8, 81, and 82 so that they are oxidized and disappear. Further, even if a part of the nitride film remains, it will be incorporated into the oxide film and will not cause any harm. Due to the masking effect of the nitride film, as shown in FIG. 5, a gate electrode layer 9 is formed which has a width approximately equal to the width of the portions where the nitride films 8, 81, and 82 are formed and a total thickness of 4000 Å. Moreover, a structure is obtained in which the upper part is covered with the oxide film 10 which becomes an interlayer insulating film.

以上、一例を示して説明したが、本発明の製造
方法はMOS構造に限定されることなく、MIS構
造の半導体装置の製造に広く適用することができ
る。また、拡散層3の厚み、溝4の深さならびに
ゲート絶縁膜5および多結晶シリコン膜6の厚み
を制御するならば、ゲート電極によつてもたらさ
れる段差をほぼ零とすることができる。
Although an example has been described above, the manufacturing method of the present invention is not limited to MOS structures, but can be widely applied to manufacturing semiconductor devices with MIS structures. Furthermore, if the thickness of the diffusion layer 3, the depth of the groove 4, and the thickness of the gate insulating film 5 and polycrystalline silicon film 6 are controlled, the step caused by the gate electrode can be made almost zero.

発明の効果 以上に詳しくのべたように、本発明によれば段
差のない平坦なゲート電極を形成することができ
ることは勿論のこと、層間絶縁膜をゲート電極の
形成の同時に形成することができる。このことに
より、層間絶縁膜の表面も平坦な面状態となり多
層配線構造、とりわけ、ゲート電極形成部上を配
線層が横切る構造であつても、配線層の厚みを均
一化することが可能となり、断線事故の発生を確
実に排除する効果が奏される。
Effects of the Invention As described in detail above, according to the present invention, not only can a flat gate electrode with no steps be formed, but also an interlayer insulating film can be formed at the same time as the gate electrode is formed. As a result, the surface of the interlayer insulating film becomes flat, making it possible to make the thickness of the wiring layer uniform even in a multilayer wiring structure, especially in a structure in which the wiring layer crosses over the gate electrode formation part. The effect of reliably eliminating the occurrence of disconnection accidents is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は、本発明の製造方法により
MOS形LSIが製造される過程を示す図である。 1……シリコン基板、2……フイールド酸化
膜、3……拡散領域、4……拡散領域を2分する
溝、5……酸化膜(ゲート酸化膜)、6……多結
晶シリコン膜、7……ホトレジスト、8,81,
82……窒化膜、9……ゲート電極層、10……
絶縁膜(層間絶縁膜)。
Figures 1 to 5 show the results obtained by the manufacturing method of the present invention.
FIG. 3 is a diagram showing a process of manufacturing a MOS type LSI. 1... Silicon substrate, 2... Field oxide film, 3... Diffusion region, 4... Groove dividing the diffusion region into two, 5... Oxide film (gate oxide film), 6... Polycrystalline silicon film, 7 ...Photoresist, 8,81,
82...Nitride film, 9...Gate electrode layer, 10...
Insulating film (interlayer insulating film).

Claims (1)

【特許請求の範囲】 1 素子間分離用絶縁膜で包囲された一導電形の
半導体基板表面層に逆導電形の不純物を導入し、
逆導電形表面層を形成したのち、同逆導電形表面
層を2分する食刻溝を形成するとともに同食刻溝
の内面を少なくとも覆うゲート絶縁膜を形成し、
さらに、露出表面の形状に沿つた形状が得られる
ように多結晶シリコン膜を全面に形成し、次い
で、マスク材料で全面を覆い、同食刻溝部分を開
口し、イオン注入により同多結晶膜の側壁部を除
いた露出表面を窒化し、こののち、酸化処理を施
し前記多結晶シリコン膜を酸化させ、食刻溝内に
多結晶シリコンを残すことを特徴とする絶縁ゲー
ト形半導体装置の製造方法。 2 食刻溝内の多結晶シリコンを、それ以外の多
結晶シリコンを酸化させて得られる酸化膜内に埋
め込むことを特徴とする請求項1記載の絶縁ゲー
ト形半導体装置の製造方法。
[Claims] 1. Introducing an impurity of an opposite conductivity type into a surface layer of a semiconductor substrate of one conductivity type surrounded by an insulating film for isolation between elements,
After forming the opposite conductivity type surface layer, forming an etched groove that bisects the opposite conductivity type surface layer, and forming a gate insulating film that covers at least the inner surface of the etched groove,
Furthermore, a polycrystalline silicon film is formed on the entire surface so as to obtain a shape that follows the shape of the exposed surface, and then the entire surface is covered with a mask material, the etched groove portion is opened, and the polycrystalline silicon film is formed by ion implantation. 1. Manufacturing an insulated gate type semiconductor device characterized by nitriding the exposed surface excluding the side wall portions of the device, and then performing an oxidation treatment to oxidize the polycrystalline silicon film to leave polycrystalline silicon in the etched grooves. Method. 2. The method of manufacturing an insulated gate type semiconductor device according to claim 1, wherein the polycrystalline silicon in the etched groove is embedded in an oxide film obtained by oxidizing other polycrystalline silicon.
JP16966383A 1983-09-14 1983-09-14 Manufacture of insulated gate type semiconductor device Granted JPS6060768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16966383A JPS6060768A (en) 1983-09-14 1983-09-14 Manufacture of insulated gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16966383A JPS6060768A (en) 1983-09-14 1983-09-14 Manufacture of insulated gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPS6060768A JPS6060768A (en) 1985-04-08
JPH0527275B2 true JPH0527275B2 (en) 1993-04-20

Family

ID=15890620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16966383A Granted JPS6060768A (en) 1983-09-14 1983-09-14 Manufacture of insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6060768A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442421A (en) * 1990-10-01 1995-08-15 Canon Kabushiki Kaisha Process cartridge and image forming apparatus using the same
US6156603A (en) * 1998-12-01 2000-12-05 United Mircroelectronics Corp. Manufacturing method for reducing the thickness of a dielectric layer

Also Published As

Publication number Publication date
JPS6060768A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPS5831734B2 (en) Method for manufacturing semiconductor memory device
JPH0480532B2 (en)
JPS6273772A (en) Semiconductor device and manufacturing thereof
GB2100926A (en) Field effect transistors
US4663827A (en) Method of manufacturing a field effect transistor
JPH02100326A (en) Manufacture of mos type semiconductor device high in breakdown strength
EP0289089B1 (en) Method of manufacturing a semiconductor device having interconnections located both above a semiconductor region and above an isolation region adjoining it
JPH05206407A (en) Mos transistor and its manufacture
JPH0527275B2 (en)
JPH06244366A (en) Manufacture of mos transistor
EP0017934B1 (en) Method of manufacturing insulated-gate field-effect transistors
JP2973955B2 (en) Method for manufacturing semiconductor device
JPS6386455A (en) Semiconductor device
JPH01181468A (en) Semiconductor device
JPS58191469A (en) Manufacture of semiconductor device
JPS6331121A (en) Manufacture of semiconductor device
JPH023303B2 (en)
JPH04102356A (en) Semiconductor integrated circuit and manufacture thereof
KR0147648B1 (en) Method for planarization interlayer insulating film of semiconductor device
JP2727557B2 (en) Method for manufacturing semiconductor device
JPH04343221A (en) Manufacture of semiconductor device
JPS5856435A (en) Manufacture of semiconductor device
JPS6329587A (en) Manufacture of semiconductor device
JPH06291138A (en) Fabrication of semiconductor device