JP2639052B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2639052B2
JP2639052B2 JP2834389A JP2834389A JP2639052B2 JP 2639052 B2 JP2639052 B2 JP 2639052B2 JP 2834389 A JP2834389 A JP 2834389A JP 2834389 A JP2834389 A JP 2834389A JP 2639052 B2 JP2639052 B2 JP 2639052B2
Authority
JP
Japan
Prior art keywords
insulating layer
interlayer insulating
wiring
polyimide resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2834389A
Other languages
Japanese (ja)
Other versions
JPH02207552A (en
Inventor
繁 寺田
淳二 進藤
正則 池田
政司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2834389A priority Critical patent/JP2639052B2/en
Publication of JPH02207552A publication Critical patent/JPH02207552A/en
Application granted granted Critical
Publication of JP2639052B2 publication Critical patent/JP2639052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔概 要〕 半導体装置におけるポリイミド樹脂から成る層間絶縁
層の表面処理方法に関し, イオンミリングによりポリイミド樹脂層間絶縁層表面
に生じるリーク電流を低減することを目的とし, 導電領域が形成された基板表面にポリイミド樹脂から
成る層間絶縁層を形成する工程と, 該導電領域上における該層間絶縁層に開口を形成する工
程と,該開口内に表出する導電領域の表面層を除去する
ためのイオンミリング工程と,該イオンミリング工程を
経た該層間絶縁層上に所定パターンの配線を形成する工
程と,該配線が形成された該層間絶縁層の露出表面を非
導電性にするための酸化処理工程とを含むことから構成
される。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for treating a surface of an interlayer insulating layer made of a polyimide resin in a semiconductor device, and to reduce a leakage current generated on the surface of the polyimide resin interlayer insulating layer by ion milling. Forming an interlayer insulating layer made of a polyimide resin on the surface of the substrate on which is formed, forming an opening in the interlayer insulating layer on the conductive region, and forming a surface layer of the conductive region exposed in the opening. An ion milling step for removing, a step of forming a wiring of a predetermined pattern on the interlayer insulating layer after the ion milling step, and making an exposed surface of the interlayer insulating layer on which the wiring is formed non-conductive And an oxidation treatment step.

〔産業上の利用分野〕[Industrial applications]

本発明は,半導体装置におけるポリイミド樹脂から成
る層間絶縁層の表面処理方法に関する。
The present invention relates to a surface treatment method for an interlayer insulating layer made of a polyimide resin in a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体装置における絶縁層として,ポリイミド樹脂が
用いられている。すなわち,基板上にポリイミド樹脂溶
液を塗布したのち300℃前後の温度で熱処理するのみで
良好な絶縁層が形成でき,工程および装置が簡単でよい
という利点を有するため,層間絶縁層や保護絶縁層とし
て多く用いられている。
A polyimide resin is used as an insulating layer in a semiconductor device. In other words, a good insulating layer can be formed only by applying a polyimide resin solution on the substrate and then heat-treating it at a temperature of around 300 ° C. Many are used as.

第2図はポリイミド樹脂を層間絶縁層によって分離さ
れた二層配線構造を示す要部断面図であって,基板1上
には,例えばSiO2から成る絶縁層2と,例えばアルミニ
ゥム(Al)から成る下層配線3が形成されており,下層
配線3上にポリイミド樹脂から成る層間絶縁層4が形成
されている。さらに,層間絶縁層4上には,例えばA1か
ら成る上層配線5が形成されている。上層配線5は,層
間絶縁層4の所定位置に設けられた開口(スルーホー
ル)を通じて,所定の下層配線3に接続されている。符
号6は上層配線5を覆う,例えばポリイミド樹脂から成
る保護層6である。
Figure 2 is a fragmentary cross-sectional view showing a two-layer wiring structure that is separated polyimide resin with an interlayer insulating layer, on the substrate 1, for example an insulating layer 2 made of SiO 2, for example from Aruminiumu (Al) The lower wiring 3 is formed, and an interlayer insulating layer 4 made of a polyimide resin is formed on the lower wiring 3. Further, on the interlayer insulating layer 4, an upper wiring 5 made of, for example, A1 is formed. The upper wiring 5 is connected to a predetermined lower wiring 3 through an opening (through hole) provided at a predetermined position in the interlayer insulating layer 4. Reference numeral 6 denotes a protective layer 6 which covers the upper wiring 5 and is made of, for example, a polyimide resin.

〔発明が解決しようとする課題] ところで,前記スルーホールを形成したのち,真空蒸
着等の方法によって,層間絶縁層4に上層配線5を構成
する導電層を堆積するに先立って,一般に,下層配線3
の表面に対してイオンミリングが処理が施される。これ
は,41等から成る下層配線3表面に生成した自然酸化膜
等の表面層をイオンミリングにより除去し,上層配線5
との接続の信頼性を得るためである。
[Problems to be Solved by the Invention] After forming the through holes, prior to depositing a conductive layer forming the upper wiring 5 on the interlayer insulating layer 4 by a method such as vacuum deposition, a lower wiring is generally formed. 3
Is subjected to ion milling. This is because a surface layer such as a natural oxide film formed on the surface of the lower wiring 3 composed of 41 or the like is removed by ion milling, and the upper wiring 5 is removed.
The purpose is to obtain the reliability of the connection.

ところが,上記イオンミリングにより,上層配線5表
面が導電性を有するようになり,上記配線5相互間がリ
ークモードとなる。このリーク電流は60〜300pAに達
し,上相配線5から成る半導体装置ないしは集積回路の
動作が不安定になったり動作不良に至る。したがって,
このような層間絶縁層表面のリークにより,製品の信頼
性や製造歩留りが低下する問題があった。
However, due to the ion milling, the surface of the upper wiring 5 becomes conductive, and the space between the wirings 5 is in a leak mode. This leakage current reaches 60 to 300 pA, and the operation of the semiconductor device or the integrated circuit comprising the upper phase wiring 5 becomes unstable or malfunctions. Therefore,
Due to such leakage on the surface of the interlayer insulating layer, there has been a problem that the reliability of the product and the production yield are reduced.

本発明は,上記のようにイオンミリング処理によりポ
リイミド樹脂層間絶縁層表面に生じるリーク電流を低減
することを目的とする。
An object of the present invention is to reduce the leak current generated on the surface of a polyimide resin interlayer insulating layer by the ion milling process as described above.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は,導電領域が形成された基板表面にポリイ
ミド樹脂から成る層間絶縁層を形成する工程と,該導電
領域上における該層間絶縁層に開口を形成する工程と,
該開口内に表出する導電領域の表面層を除去するための
イオンミリング工程と,該イオンミリング工程を経た該
層間絶縁層上に所定パターンの配線を形成する工程と,
該配線が形成された該層間絶縁層の露出表面を非導電性
にするための酸化処理工程とを含むことを特徴とする本
発明に係る半導体装置の製造方法によって達成される。
The object is to form an interlayer insulating layer made of a polyimide resin on the surface of the substrate on which the conductive region is formed, to form an opening in the interlayer insulating layer on the conductive region,
An ion milling step for removing a surface layer of the conductive region exposed in the opening, and a step of forming a wiring of a predetermined pattern on the interlayer insulating layer after the ion milling step;
An oxidation treatment step for rendering the exposed surface of the interlayer insulating layer on which the wiring is formed non-conductive, the method according to the present invention.

〔作 用〕(Operation)

上記のようなポリイミド樹脂からなる絶縁層表面に導
電性が生じる理由は次のように考えられている。(昭和
56年春季電子通信学会講演No.485参照) ポリイミド樹脂を真空中で熱分解させた場合に,イミ
ド結合が切断され,一酸化炭素(CO)を放出するととも
に,熱架橋反応により表面がグラファイト化する。温度
が800℃に達すると,黒色の半導電性の物質が生じる。
イオンミリング処理においても,アルゴン(Ar)等のイ
オンの衝突により,ポリイミド樹脂表面から窒素原子
(N)や酸素原子(O)が失われ,過剰な炭素(C)ど
うしが結合してグラファイト化した低抵抗の変質層7
(第2図参照)が表面に生じるものと推定される。
The reason why conductivity occurs on the surface of the insulating layer made of the polyimide resin as described above is considered as follows. (Showa
When the polyimide resin is thermally decomposed in vacuum, the imide bond is broken, carbon monoxide (CO) is released, and the surface is graphitized by a thermal crosslinking reaction. I do. When the temperature reaches 800 ° C, a black semiconductive substance forms.
Even in the ion milling process, nitrogen (N) and oxygen (O) atoms were lost from the polyimide resin surface due to the collision of ions such as argon (Ar), and excess carbon (C) was bonded to form graphite. Transformed layer 7 with low resistance
(See FIG. 2) is assumed to occur on the surface.

したがって,ポリイミド樹脂絶縁層表面に生じた過剰
炭素を,酸化性雰囲気中における熱処理,酸素プラズマ
処理,酸素イオン注入等の酸化処理により除去すること
によって,表面の絶縁性が回復される。上層配線形成後
に上記酸化処理を行えば,ポリイミド樹脂層間絶縁層の
開口内に表出している下層配線表面は酸化されず,上層
配線と下層配線との接続には影響がない。上層配線の下
に上記変質層7が残留することになるが差支えない。
Therefore, by removing excess carbon generated on the surface of the polyimide resin insulating layer by heat treatment in an oxidizing atmosphere, oxygen plasma treatment, oxygen ion implantation, or the like, the surface insulation is restored. If the above oxidation treatment is performed after the upper wiring is formed, the surface of the lower wiring exposed in the opening of the polyimide resin interlayer insulating layer is not oxidized, and the connection between the upper wiring and the lower wiring is not affected. The deteriorated layer 7 will remain under the upper wiring, but this is not a problem.

〔実施例〕〔Example〕

以下本発明の実施例を第1図の工程説明図を用いて説
明する。以下の図面において,既掲の図面におけるのと
同じ部分には同一符号を付してある。
Hereinafter, an embodiment of the present invention will be described with reference to the process explanatory diagram of FIG. In the following drawings, the same parts as those in the already-described drawings are denoted by the same reference numerals.

第1図(a)を参照して,通常の半導体装置の製造工
程と同様にして,拡散層等が形成されたシリコンウエハ
等から成る基板1上に,SiO2等から成る絶縁層2を形成
し,絶縁層2上に,例えばAl薄膜を堆積し,これを周知
のリソグラフ技術を用いて,所定配線形状にパターンニ
ングして下層配線3を形成する。
Referring to FIG. 1A, an insulating layer 2 made of SiO 2 or the like is formed on a substrate 1 made of a silicon wafer or the like on which a diffusion layer or the like is formed in the same manner as in a normal semiconductor device manufacturing process. Then, for example, an Al thin film is deposited on the insulating layer 2 and is patterned into a predetermined wiring shape using a well-known lithographic technique to form a lower wiring 3.

上記ののち,基板1上に,例えばスピンコーティング
法によりポリイミド樹脂を塗布し,通常と同じ条件でプ
リベークおよびプリキュアーを行って層間絶縁層4を形
成し,次いで周知のリソグラフ技術を用いて,層間絶縁
層4の所定位置に下層配線3に達する開口8を設ける。
こののち,通常と同じ条件でポストキュアーを行う。
After the above, a polyimide resin is applied on the substrate 1 by, for example, a spin coating method, and pre-baking and pre-curing are performed under the same conditions as usual to form an interlayer insulating layer 4. Then, the interlayer insulating layer 4 is formed using a well-known lithographic technique. An opening 8 reaching the lower wiring 3 is provided at a predetermined position of the layer 4.
After that, post cure is performed under the same conditions as usual.

次いで,開口8内に表出する下層配線3表面に対し
て,アルゴンを用いてイオンミリングを施す。このイオ
ンミリングは,例えば高真空中で前記基板1全面に,200
mAのアルゴンイオンを140秒間照射するものである。上
記イオンミリングにより,開口8内には清浄な下層配線
3表面が表出する。一方,炭素が過剰となった変質層7
がポリイミド樹脂層間絶縁層4表面に生じる。
Next, ion milling is performed on the surface of the lower wiring 3 exposed in the opening 8 using argon. This ion milling is performed, for example, in a high vacuum over the entire surface of the substrate 1,
Irradiation with mA argon ions for 140 seconds. By the ion milling, a clean surface of the lower wiring 3 is exposed in the opening 8. On the other hand, the altered layer 7 with excess carbon
Are generated on the surface of the polyimide resin interlayer insulating layer 4.

次いで,基板1表面全体に,例えばA1薄膜を堆積し,
これを周知のリソグラフ技術を用いて,所定配線形状に
パターンニングして,第1図(b)に示すように,上層
配線5を形成する。
Next, for example, an A1 thin film is deposited on the entire surface of the substrate 1,
This is patterned into a predetermined wiring shape using a well-known lithographic technique, and an upper wiring 5 is formed as shown in FIG. 1 (b).

次いで,基板1を,酸化性雰囲気,例えば窒素(N2
と酸素(O2)の等量混合ガス中において,350℃で60分間
熱処理する。その結果,第1図(b)に示すように,上
層配線5から露出している層間絶縁層4表面において
は,過剰炭素がCOガスとして除去され,前記変質層7が
消失している。上記配線5下には変質層7が残留してい
るが,上層配線5相互間にリーク電流を生じるおそれは
ない。上層配線5間の60〜300pAであったリーク電流
が,上記酸化処理により10pA程度まで減少する。
Next, the substrate 1 is placed in an oxidizing atmosphere, for example, nitrogen (N 2 ).
Heat treatment at 350 ° C. for 60 minutes in a mixed gas of equal amounts of oxygen and oxygen (O 2 ). As a result, as shown in FIG. 1B, on the surface of the interlayer insulating layer 4 exposed from the upper wiring 5, excess carbon is removed as CO gas, and the altered layer 7 has disappeared. Although the deteriorated layer 7 remains under the wiring 5, there is no possibility that a leak current occurs between the upper wirings 5. The leakage current between 60 and 300 pA between the upper wirings 5 is reduced to about 10 pA by the oxidation treatment.

以後,通常の工程にしたがって,第1図(C)に示す
ように,上記配線5を覆う,例えばポリイミド樹脂を塗
布し,所定の条件でプリベーク,キュアー等を行って保
護層6を形成し,さらに,保護層6に開口(図示省略)
を設け,外部配線の接続を行って本発明の半導体装置が
完成する。
Thereafter, according to a normal process, as shown in FIG. 1 (C), a protective layer 6 is formed by applying, for example, a polyimide resin to cover the wiring 5 and performing pre-baking and curing under predetermined conditions. Further, an opening (not shown) is formed in the protective layer 6.
Are provided and external wiring is connected to complete the semiconductor device of the present invention.

上記酸素を含む雰囲気中での熱処理の代わりに,第1
図(b)の状態の基板1表面に酸素プラズマ処理を施し
てもよい。この酸素プラズマ処理は,通常のレジストア
ッシング装置を用いることができ,例えば圧力1.0Torr
の酸素プラズマ中で処理を行う。
Instead of the heat treatment in an atmosphere containing oxygen, the first
Oxygen plasma treatment may be applied to the surface of the substrate 1 in the state shown in FIG. For this oxygen plasma treatment, a normal resist ashing apparatus can be used.
The treatment is performed in oxygen plasma.

また,上記酸素雰囲気中での熱処理または酸素プラズ
マ処理の代わりに,第1図(b)の状態の基板1表面に
酸素イオン注入を行ってもよい。この場合の処理条件
は,例えば酸素イオンエネルギー10〜30KeV,ドーズ量を
1×1013〜1×1016ion/cm2として行えばよい。
Further, instead of the heat treatment in the oxygen atmosphere or the oxygen plasma treatment, oxygen ions may be implanted into the surface of the substrate 1 in the state shown in FIG. The processing conditions in this case may be, for example, an oxygen ion energy of 10 to 30 KeV and a dose of 1 × 10 13 to 1 × 10 16 ion / cm 2 .

なお,本発明は,上記配線がポリイミド樹脂層間絶縁
層の開口を通じて,例えば基板1の拡散層に接続される
場合であっても適用可能であることは言うまでもない。
It is needless to say that the present invention can be applied to the case where the wiring is connected to, for example, the diffusion layer of the substrate 1 through the opening of the polyimide resin interlayer insulating layer.

〔発明の効果〕〔The invention's effect〕

本発明によれば,ポリイミド樹脂層間絶縁層を用いる
半導体装置における配線相互間のリーク電流が低減さ
れ,該半導体装置の信頼性および製造歩留りを向上可能
とする効果がある。
ADVANTAGE OF THE INVENTION According to this invention, the leak current between wirings in the semiconductor device using a polyimide resin interlayer insulating layer is reduced, and there exists an effect which can improve the reliability and manufacturing yield of this semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の工程説明図, 第2図は従来の問題点説明図 である。 図において, 1は基板, 2は絶縁層, 3は下層配線, 4は層間絶縁層, 5は上層配線, 6は保護層, 7は変質層, 8は開口 である。 FIG. 1 is an explanatory view of a process in an embodiment of the present invention, and FIG. 2 is an explanatory view of a conventional problem. In the figure, 1 is a substrate, 2 is an insulating layer, 3 is a lower wiring, 4 is an interlayer insulating layer, 5 is an upper wiring, 6 is a protective layer, 7 is a deteriorated layer, and 8 is an opening.

フロントページの続き (72)発明者 佐々木 政司 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭64−64237(JP,A) 特開 平1−100946(JP,A) 電子通信学会半導体・材料部門全国大 会講演論文集、昭和56年、P.2−250Continuation of the front page (72) Inventor Masashi Sasaki 1015 Ueodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (56) References JP-A-64-64237 (JP, A) JP-A-1-100946 (JP, A) Proceedings of the IEICE Semiconductor and Materials Division National Conference, 1981 2-250

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電領域が形成された基板表面にポリイミ
ド樹脂から成る層間絶縁層を形成する工程と, 該導電領域上における該層間絶縁層に開口を形成する工
程と, 該開口内に表出する導電領域の表面層を除去するための
イオンミリング工程と, 該イオンミリング工程を経た該層間絶縁層上に所定パタ
ーンの配線を形成する工程と, 該配線が形成された該層間絶縁層の露出表面を非導電性
にするための酸化処理工程 とを含むことを特徴とする半導体装置の製造方法。
A step of forming an interlayer insulating layer made of a polyimide resin on a surface of the substrate on which the conductive region is formed; a step of forming an opening in the interlayer insulating layer on the conductive region; An ion milling step for removing a surface layer of a conductive region to be formed, a step of forming a wiring of a predetermined pattern on the interlayer insulating layer after the ion milling step, and exposing the interlayer insulating layer on which the wiring is formed An oxidation treatment step for rendering the surface non-conductive.
JP2834389A 1989-02-07 1989-02-07 Method for manufacturing semiconductor device Expired - Fee Related JP2639052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2834389A JP2639052B2 (en) 1989-02-07 1989-02-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2834389A JP2639052B2 (en) 1989-02-07 1989-02-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02207552A JPH02207552A (en) 1990-08-17
JP2639052B2 true JP2639052B2 (en) 1997-08-06

Family

ID=12245955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2834389A Expired - Fee Related JP2639052B2 (en) 1989-02-07 1989-02-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2639052B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050905B1 (en) * 1999-05-07 2017-06-21 Shinko Electric Industries Co. Ltd. Method of producing a semiconductor device with insulating layer
JP2006303379A (en) * 2005-04-25 2006-11-02 Seiko Epson Corp Method for manufacturing semiconductor device
CN112379551A (en) * 2020-11-13 2021-02-19 广州易博士管理咨询有限公司 Low-cost LCOS packaging method and LCOS packaged by same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子通信学会半導体・材料部門全国大会講演論文集、昭和56年、P.2−250

Also Published As

Publication number Publication date
JPH02207552A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
JPH0613470A (en) Manufacture of semiconductor device
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
KR19980028939A (en) Method for manufacturing gate electrode and gate structure manufactured accordingly
JP2639052B2 (en) Method for manufacturing semiconductor device
CA1131796A (en) Method for fabricating mos device with self-aligned contacts
JPH0226055A (en) Manufacture of semiconductor device
JPH10209299A (en) Semiconductor device and its manufacture
JPH0611042B2 (en) Method for manufacturing semiconductor device
JP3093224B2 (en) Semiconductor device
JPH0822983A (en) Manufacture of semiconductor device
KR100282425B1 (en) Method for fabricating of capacitor
JPH0851156A (en) Manufacture of semiconductor device
JP3473302B2 (en) Method for forming coating type insulating film, method for manufacturing semiconductor device, and semiconductor device
JP3128153B2 (en) Method for manufacturing semiconductor device
JPH02186625A (en) Manufacture of semiconductor device
JPH10135451A (en) Method for manufacturing semiconductor device having reduced leak current regions
JPS61201423A (en) Ion implantation
JPH0716008B2 (en) Method for manufacturing semiconductor device
JPH02105520A (en) Manufacture of semiconductor device
JPH0642514B2 (en) Method for manufacturing multilayer wiring structure
JPS63128730A (en) Multilayer interconnecting method
JPH0329293B2 (en)
JPS60134469A (en) Manufacture of semiconductor device
JPH04268759A (en) Manufacture of semiconductor device
KR19990055133A (en) Spin-on Glass Film Formation Method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees