JPS63128020A - Epoxy resin composition and resin-sealed type semiconductor device - Google Patents

Epoxy resin composition and resin-sealed type semiconductor device

Info

Publication number
JPS63128020A
JPS63128020A JP61272838A JP27283886A JPS63128020A JP S63128020 A JPS63128020 A JP S63128020A JP 61272838 A JP61272838 A JP 61272838A JP 27283886 A JP27283886 A JP 27283886A JP S63128020 A JPS63128020 A JP S63128020A
Authority
JP
Japan
Prior art keywords
particle size
epoxy resin
filler
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61272838A
Other languages
Japanese (ja)
Other versions
JPH0554865B2 (en
Inventor
Masaji Ogata
正次 尾形
Masanori Segawa
正則 瀬川
Hidetoshi Abe
英俊 阿部
Shigeo Suzuki
重雄 鈴木
Hiroyuki Hozoji
裕之 宝蔵寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61272838A priority Critical patent/JPS63128020A/en
Publication of JPS63128020A publication Critical patent/JPS63128020A/en
Priority to JP4178867A priority patent/JP2649632B2/en
Publication of JPH0554865B2 publication Critical patent/JPH0554865B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epoxy resin composition, having excellent molding operability as well as a low thermal expansion coefficient and useful for sealing semiconductors, by blending an epoxy resin with specific spherical fused quartz powder. CONSTITUTION:A composition obtained by blending (A) an epoxy resin with (B) spherical fused quartz powder containing >=90wt% particles having <=100mu particle size and particle size distribution exhibiting 0.6-1.5 gradient (n) when indicating the particle size distribution by an RRS particle size chart as a filler in an amount of >=80wt% based on the total composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形作業性に優れ念熱膨張係数が小さな半導体
封止用エポキシ樹脂組成物及び当該組成物を用いた樹脂
封止型半導体装置に関する。  。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for encapsulating semiconductors that has excellent molding workability and a small coefficient of thermal expansion, and a resin-encapsulated semiconductor device using the composition. . .

〔従来の技術〕[Conventional technology]

トランジスタ、IO,LSI等の半導体装置の外装には
金属、ガラス、セラミックス等を用いるハーメチック封
止型とエポキシ樹脂を主流とする樹脂封止型の2種類が
ある。前者は気密性には優れているが非常に高価である
。一方、後者は大量生産によって極めて安価に製造する
ことができる。
There are two types of exterior packaging for semiconductor devices such as transistors, IOs, and LSIs: a hermetic sealing type that uses metal, glass, ceramics, etc., and a resin sealing type that uses epoxy resin as the mainstream. The former has excellent airtightness but is very expensive. On the other hand, the latter can be manufactured extremely cheaply through mass production.

近年、封止用樹脂の信頼性が著しく向上したことにより
、現在では全半導体製品の80係以上がエポキシ樹脂を
主流とする熱硬化性樹脂を用い念樹脂封止型になってい
る。
In recent years, the reliability of sealing resins has improved significantly, and now more than 80 of all semiconductor products are of the thermosetting resin type using thermosetting resins, mainly epoxy resins.

しかし、半導体素子の集積度は年々上昇し、そh&て洋
ってチップサイズの大型化、配線の微細化並びに多層化
等が進んでいる。一方、外装(パッケージ)についてみ
ると、実装の高密度化、自動化のために、パッケージサ
イズは小型薄型化の方向に進み%ま念、パッケージの形
状も従来のD I L P (Dual in Lin
e Package )  からPPP(Flat P
lastic Packaqs ) 、 B OP (
SmallOutlinOPackage )、 P 
L CO(PlasticLoaded 0bip C
arrier )等ビン挿入実装型から面付実装型に移
行している。このような集積度の向上、パッケージサイ
ズあるいは形状、実装方式等の変遷に伴い、素子が繊細
化し、パッケージの封止樹脂1−は薄肉化の傾向をます
ます強めている。
However, the degree of integration of semiconductor devices is increasing year by year, and as a result, chip sizes are becoming larger, wiring becomes finer, and the number of layers becomes larger. On the other hand, regarding the exterior (package), package sizes are becoming smaller and thinner due to higher density and automation of packaging, and the shape of the package is also changing from the conventional DILP (Dual in Lin
ePackage) to PPP (Flat P
lastic Packaqs), B OP (
SmallOutlinOPackage), P
L CO (Plastic Loaded 0bip C
arrier), etc., has shifted from the bottle insertion type to the surface mounting type. With the increase in the degree of integration, changes in package size or shape, mounting methods, etc., elements are becoming more delicate and the sealing resin 1- of the package is becoming increasingly thinner.

そのため、封止品に熱的ストノスが加わると半導体装置
を構成する封止樹脂、フレーム、チップ等の熱膨張係数
の違いによって熱応力が生じ、そのために封止樹脂にク
ラックが発生したり&あるいは逆にチップやチップ表面
に形成されているパッシベーション膜にクラックが生じ
念り、チップ表面の配線の切断、短絡1位置ズV等が生
じ易くなり、素子特性変動や信頼性低下が問題になって
いる。この問題はパッケージの実装方式がピン挿入型か
ら面付型に移行し、実装時にパッケージがさらされる温
度条件が従来よりも厳しくなっていることによっても助
長されている。
Therefore, when thermal stress is applied to the encapsulated product, thermal stress is generated due to the difference in thermal expansion coefficient of the encapsulating resin, frame, chip, etc. that make up the semiconductor device, which may cause cracks to occur in the encapsulating resin. On the other hand, cracks may occur in the chip or the passivation film formed on the chip surface, making it more likely that wiring on the chip surface will be cut, short circuits, etc. will occur, resulting in changes in device characteristics and reduced reliability. There is. This problem has been exacerbated by the shift in package mounting methods from pin-insertion type to surface-mount type, and the temperature conditions to which packages are exposed during mounting have become more severe than in the past.

樹脂封止半導体に発生する熱応力は、上述のように各構
成材料の熱膨張係数の違いによって発生するため、各構
成材料特に熱膨張係数が大きな封止樹脂の熱膨張係数を
小さくすることができれば。
Thermal stress that occurs in resin-sealed semiconductors is caused by the differences in the thermal expansion coefficients of each constituent material, as described above, so it is possible to reduce the thermal expansion coefficient of each constituent material, especially the sealing resin, which has a large coefficient of thermal expansion. if you can.

熱応力の大幅な低減が可能になる。一般に、封止用樹脂
には熱膨張係数の低減を目的に樹脂よりも熱膨張係数が
小さな無機質光てん剤が配合されておシ、熱膨張係数を
小さくする比めには充てん剤の配合量を従来よりも更に
増やせば良い。しかし、従来は充てん剤の配合t’を余
り増やすと樹脂組成物の粘度が著しく上昇し流動性が低
下するため封止作業が困難になる。そのなめ、特許第8
02445号、同855789号各明細書及び特公昭6
0−10533号公報に記載されているように特定の粒
度分布を有する無機光てん剤を用い、樹脂組成物の粘度
上昇や流動性低下を余り起こさずに充てん剤の配合量を
増やす方法が提案されている。しかし、このような手法
を用いても現在樹脂封止型半導体の主流になっているフ
ェノール硬化型エポキシ樹脂系組成物においてはベース
樹脂自体の粘度が高いために、充てん量を飛躍的に増や
して熱膨張係数の大幅な低減を図るには限界がめった。
It becomes possible to significantly reduce thermal stress. Generally, in order to reduce the coefficient of thermal expansion, sealing resins are mixed with an inorganic optical filler whose coefficient of thermal expansion is smaller than that of the resin. It would be better to increase it even more than before. However, conventionally, if the filler blend t' is increased too much, the viscosity of the resin composition increases significantly and the fluidity decreases, making the sealing work difficult. That lick, Patent No. 8
Specifications of No. 02445, No. 855789 and Japanese Patent Publication No. 1986
As described in Publication No. 0-10533, a method has been proposed that uses an inorganic photonic agent having a specific particle size distribution to increase the amount of filler without significantly increasing the viscosity or decreasing the fluidity of the resin composition. has been done. However, even if such a method is used, the phenol-curing epoxy resin composition, which is currently the mainstream for resin-encapsulated semiconductors, has a high viscosity of the base resin itself, so it is difficult to dramatically increase the filling amount. The limit has been reached in achieving a significant reduction in the coefficient of thermal expansion.

その理由としては従来このような用途には大きな原石を
機械的に粉砕して製造した角ばった充てん剤が使用され
てきたため、充てん剤のかさばりによって樹脂組成物の
粘度上昇や流動性の低下が起り易かったものと推定され
る。そのため。
The reason for this is that angular fillers made by mechanically crushing large rough stones have traditionally been used for such applications, and the bulk of the fillers increases the viscosity and reduces fluidity of the resin composition. It is presumed that it was easy. Therefore.

その対策として特公昭60−26505号及び同60−
40188号各公報に開示されるように、球形の充てん
剤を用いる方法が提案されているが、前述のような素子
の高集積化、パッケージの小型薄型化に充分対応し得る
封止用樹脂組成物を得るに至っていない。
As a countermeasure, Special Publication No. 60-26505 and No. 60-
As disclosed in each publication No. 40188, a method using a spherical filler has been proposed, but a resin composition for sealing that can sufficiently cope with the above-mentioned high integration of elements and miniaturization and thinning of packages has been proposed. I haven't gotten anything yet.

一方、樹脂封止型半導体の素子に加わる熱応力は、封止
樹脂の弾性率やガラス転移温度を下げることによっても
低減することができる。しかし、樹脂組成物のガラス転
移温度を下げると一般には高温の電気特性や耐湿性等が
低下するため、半導体装置にとっては好ましくない。そ
のなめ、最近ではペースm脂中にシリコーンゴムやポリ
ブタジェンゴムのようなゴム成分を配合してマトリック
スのエポキシ樹脂を海鳥構造にし硬化物の弾性率を小さ
くする方法が検討されている。しかし、この方法はチッ
プに加わる熱応力をある程度小さくすることけできるが
半導体装置を構成する各材料間の熱膨張係数の違いを縮
少する効果はほとんどなく1本質的な熱応力低減対策で
はない。
On the other hand, thermal stress applied to a resin-sealed semiconductor element can also be reduced by lowering the elastic modulus or glass transition temperature of the sealing resin. However, lowering the glass transition temperature of the resin composition generally lowers high-temperature electrical properties, moisture resistance, etc., which is not preferable for semiconductor devices. Therefore, recently, a method of blending a rubber component such as silicone rubber or polybutadiene rubber into the paste resin to make the matrix epoxy resin have a seabird structure and reduce the elastic modulus of the cured product has been studied. However, although this method can reduce the thermal stress applied to the chip to some extent, it has little effect on reducing the difference in thermal expansion coefficient between the materials that make up the semiconductor device, and is not an essential measure to reduce thermal stress. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そのなめ、熱応力の発生がより小さな半導体封止用エポ
キシ樹脂組成物及びそれを用い九半導体装置が強く望ま
れていた。
Therefore, there has been a strong desire for an epoxy resin composition for semiconductor encapsulation that generates less thermal stress and a semiconductor device using the same.

本発明は上記のような状況にかんがみてなされたもので
るって、その目的とするところは成形作業性が良く、シ
かも熱膨張係数が小さなエポキシ樹脂組成物及び当該樹
脂組成物を用いた徊頼性の優れた樹脂封止型半導体装置
を提供することにある。
The present invention has been made in view of the above-mentioned circumstances.The purpose of the present invention is to provide an epoxy resin composition that has good molding workability and a low coefficient of thermal expansion, and a mobile device using the resin composition. An object of the present invention is to provide a resin-sealed semiconductor device with excellent reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば1本発明の第1の発明はエポキシ樹
脂組成物に関する発明でろって、エポキシ樹脂に充てん
剤として球形の溶融石英粉を配合したエポキシ樹脂組成
物において、当該充てん剤の90重量優以上が100μ
m以下の粒径を有し、しかも、その粒度分布’1RR8
粒度線図で表示した場合に勾配nが16〜1.5の範囲
で直線性を示す粒度分布を有し、かつ当該充てん剤が組
成物全体て対し80重量置%以上配合されていることを
特徴とする。
To summarize the present invention, the first aspect of the present invention relates to an epoxy resin composition. 100μ for heavy weight and above
m or less, and its particle size distribution '1RR8
It has a particle size distribution that exhibits linearity with a slope n in the range of 16 to 1.5 when displayed on a particle size diagram, and the filler is blended in an amount of 80% by weight or more based on the entire composition. Features.

そして、本発明の第2の発明は樹脂封止型半導体装置に
関する発明であって、前記第1の発明のエポキシ樹脂組
成物で封止され、かつ封止樹脂の熱膨張係数が1.3 
X 10− ’ / C以下であることを特徴とする。
A second invention of the present invention relates to a resin-sealed semiconductor device, which is encapsulated with the epoxy resin composition of the first invention, and the sealing resin has a coefficient of thermal expansion of 1.3.
It is characterized by being less than or equal to X 10-'/C.

前記問題点は樹脂の粘度上昇や流動性を損わずに充てん
剤を多量に配合できれば解決が可能でめる。そこで、本
発明者等は充てん剤の形状、粒径、粒度分布、充てん滑
と樹脂組成物の緒特性並びにこれらの樹脂組成物で封止
した半導体装置の信頼性との関係を詳細に検討した。
The above problems can be solved if a large amount of filler can be added without increasing the viscosity or impairing the fluidity of the resin. Therefore, the present inventors investigated in detail the relationship between the shape, particle size, particle size distribution, and filling slippage of the filler, the properties of the resin composition, and the reliability of semiconductor devices sealed with these resin compositions. .

その結果、エポキシ樹脂に充てん剤としてその90重t
%以上が粒径100μm以下の範囲内にあって、しかも
その粒度分布をRR8,粒度線図で示し六場合に勾配n
がα6〜1.5の範囲で直線性を示す球形の溶融石英粉
を樹脂組成物全体に対し800X’1以上配合すれば良
いことを見出した。
As a result, 90 weight tons of it was used as a filler in epoxy resin.
% or more are within the particle size range of 100 μm or less, and the particle size distribution is shown in the particle size diagram as RR8.
It has been found that 800X'1 or more of spherical fused quartz powder exhibiting linearity in the range of α6 to 1.5 may be blended into the entire resin composition.

ここで、RRB粒度線図とは下記のロジンーラムラ−(
Rosin−Rammler )の式に従う粒度分布を
表わす粒度線図のことである。
Here, the RRB particle size diagram is the Rosin-Ramular (
This is a particle size diagram showing particle size distribution according to the Rosin-Rammler formula.

R(Dp)”” 1006X’9 (−b−Dpl゛ 
(但し、式中R(Dp)は最大粒径から粒径Dpマでの
累積型t%、Dp は粒径、b及びnは定数である) 式中のR(Dp)Vi積算残留重t%とも呼ばれている
R(Dp)""1006X'9 (-b-Dpl゛
(However, in the formula, R(Dp) is the cumulative t% from the maximum particle size to the particle size Dp, Dp is the particle size, and b and n are constants.) R(Dp)Vi integrated residual weight t in the formula Also called %.

また、RR8粒度線図における勾配とは、RR8粒度線
図の最大粒径から粒径Dp までの累積重量憾が少なく
とも25重量置板75重量置板範囲にある2点を結んだ
直線で代表されるロジンーラムラーの式のn値のことを
いう。一般に、充てん剤の原石を微粉砕した場合その粒
度分布はロジンーラムラーの式に合い、この式に基づい
た粒度分布の表わし方であるRR8粒度線図においてほ
ぼ直線性を示すとされている。本発明者等は各種充てん
剤の粒度分布を測定したところ、特別のふるい分けをし
ない限りいずれの充てん剤もその90重!4以上が上記
RRB粒度線図でほぼ直線性を示し上式によく適合する
ことを確認している。このような粒度分布を有する球形
の溶融石英粉は、例えば特開昭59−59737号公報
に示されているように、あらかじめ所定の粒度分布に粉
砕した角ばった溶融石英粉をプロパン、ブタン、水素な
どを燃料とする溶射装置から発生させた高温の火炎中に
一定量ずつ供給し、溶融、冷却することによって得られ
る。
In addition, the slope in the RR8 grain size diagram is represented by a straight line connecting two points where the cumulative weight range from the maximum grain size to the grain size Dp in the RR8 grain size diagram is at least within the range of 25 weight plate 75 weight plate. It refers to the n value of the Rosin-Ramler equation. Generally, when the filler raw stone is finely pulverized, its particle size distribution conforms to the Rosin-Rammler equation, and it is said that the RR8 particle size diagram, which is a way to express the particle size distribution based on this equation, shows almost linearity. The present inventors measured the particle size distribution of various fillers and found that unless special sieving is performed, all fillers are 90 times heavier! It has been confirmed that 4 or more shows almost linearity in the above RRB grain size diagram and fits well with the above formula. Spherical fused quartz powder having such a particle size distribution can be obtained by mixing angular fused silica powder, which has been crushed in advance to a predetermined particle size distribution, with propane, butane, and hydrogen, as shown in, for example, Japanese Patent Application Laid-Open No. 59-59737. It is obtained by supplying a fixed amount of fuel into a high-temperature flame generated from a thermal spraying device using fuel such as fuel, melting it, and cooling it.

エポキシ樹脂に充てん剤としてその90重il係以上が
粒径100μm以下の範囲内にあって、しかもその粒度
分布をRR8粒度線図で表示した場合にその勾配nが1
16〜1.5の範囲で直線性を示す球形の溶融石英粉を
樹脂組成物全体に対し80重量置%以上配合し次樹脂組
成物は、充てん剤配合量が多いにもかかわらず比較的粘
度が低く流動性が優れ、しかも硬化物は熱膨張係数が1
.3 X IQ−8/℃以下と小さい。それ故、Au線
をボンディングした半導体素子を封止してもAu #の
変形や断線が起りに<〈、また、封止品は熱応力の発生
が少ないなめに耐温度サイクル性、耐熱性、耐湿性等が
良好である。
When used as a filler in an epoxy resin, its particle size is within the range of 100 μm or less with a particle diameter of 90 μm or more, and its slope n is 1.
By blending spherical fused quartz powder with linearity in the range of 16 to 1.5 at least 80% by weight based on the entire resin composition, the resin composition has a relatively high viscosity despite the large amount of filler blended. is low and has excellent fluidity, and the cured product has a thermal expansion coefficient of 1.
.. It is small, less than 3 X IQ-8/℃. Therefore, even if a semiconductor element bonded with Au wire is sealed, deformation or disconnection of the Au wire may occur.Also, since the sealed product generates less thermal stress, it has good temperature cycle resistance, heat resistance, Good moisture resistance etc.

本発明におけるエポキシ樹脂組成物とは現在半導体封止
用成形材料として一般に用いられているエポキシ樹脂組
成物であって、りVゾールノボラック型エポヤシ樹脂、
フェノールノボラック型エポキシ樹脂、ビスフェノール
A型エポキシ樹脂等に硬化剤としてフェノールノボラッ
ク樹脂、硬化促進剤、充てん剤、可とう化剤、カップリ
ング剤、着色剤%帷燃化剤、離型剤などを配合した組成
物である。充てん剤として球形の溶融石英粉を用いるの
は前述のように球形化することによって充てん剤のかさ
ぼりが少なくなり高充てん化し易くなることの他に、素
子を封止する除光てん剤の角部が素子表面に触れて素子
を損傷したり素子特性に悪影響を及ぼすのを防止する効
果もるる。溶融石英は入手が容易な上に、それ自体の熱
膨張係数が比較的小さいため樹脂組成物の低熱膨張化に
有効なこと、イオン性不純物の含有率が極めて少ないこ
となどによる。充てん剤の90重Jt%以上/>”粒径
1θ0μm以下の範囲に限定する理由は、100μm超
の粗い粒子が多くなると封止の際Au線の変形や切断が
起今たり、ま虎、薄型パッケージを封止する際粗い粒子
が金型の中で目詰りを起し樹脂の充てん不良が発生する
ためである。RR8粒度線図で表示した勾配nを[16
〜1.5とするのは、nが1.5超すなわち粒度の分布
が極端に狭いと充てん剤のかさばりが大きく彦り、樹脂
組成物の粘度上昇や流動性の低下が起るなめでbる。一
方、勾配置f小さくするということは充てん剤中の微粒
子成分を増やすことに彦るが、微粒子成分が余り多くな
ると樹脂組成物がチキントロピック性を示すために著し
い粘度上昇と流動性の世下が起る。
The epoxy resin composition in the present invention is an epoxy resin composition that is currently commonly used as a molding material for semiconductor encapsulation, and includes a Vsol novolac type epoxy resin,
Phenol novolac type epoxy resin, bisphenol A type epoxy resin, etc. are blended with phenol novolac resin as a curing agent, curing accelerator, filler, softening agent, coupling agent, colorant, flame retardant, mold release agent, etc. The composition is The reason why spherical fused silica powder is used as a filler is that, as mentioned above, by making it spherical, the bulk of the filler is reduced, making it easier to achieve a high filling rate. It also has the effect of preventing the elements from touching the surface of the element and damaging the element or adversely affecting the characteristics of the element. Fused quartz is easy to obtain, has a relatively small coefficient of thermal expansion and is therefore effective in reducing the thermal expansion of resin compositions, and has an extremely low content of ionic impurities. The reason why the filler is limited to a particle size of 90 weight Jt% or more/> 1θ0 μm or less is that if there are too many coarse particles of more than 100 μm, the Au wire may be deformed or cut during sealing, or This is because coarse particles cause clogging in the mold when sealing the package, resulting in resin filling failure.The slope n shown in the RR8 particle size diagram is
The reason why n is set to 1.5 is because if n exceeds 1.5, that is, if the particle size distribution is extremely narrow, the bulk of the filler increases significantly, causing an increase in the viscosity and a decrease in fluidity of the resin composition. Ru. On the other hand, reducing the gradient height f means increasing the amount of fine particles in the filler, but if the amount of fine particles increases too much, the resin composition exhibits chicken-tropic properties, resulting in a significant increase in viscosity and poor fluidity. happens.

これを防ぐためにはnはα6以上が望ましい。In order to prevent this, n is preferably α6 or more.

本発明のエポキシ樹脂組成物は充てん剤配合量が多いに
もかかわらず、従来の半導体封止用成形材料と全く同様
の方法で作製することができ、更に、半導体の封止作業
も全く同様にして行える。
Although the epoxy resin composition of the present invention contains a large amount of filler, it can be produced in exactly the same manner as conventional molding materials for semiconductor encapsulation, and furthermore, the epoxy resin composition of the present invention can be produced in exactly the same way as the conventional molding material for semiconductor encapsulation. You can do it.

すなわち、各素材は70〜100t:に加熱された二軸
ロールや押出機で混練し、トランスファプレスで金型温
度160〜190℃、成形圧力30〜100 kll/
’5”、硬化時間1〜3分で成形することができる。
That is, each material is kneaded with a twin-screw roll or extruder heated to 70 to 100 tons, and then kneaded with a transfer press at a mold temperature of 160 to 190°C and a molding pressure of 30 to 100 kll/
'5'', can be molded in 1 to 3 minutes curing time.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが1
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1〜5.及び比較例1〜4 第1図に示す各稲光てん剤を用い、第1表に示す配合の
エポキシ樹脂組成物を約80℃に加熱した二軸ロールで
約10分間混練した。得ら1.念各組成物について18
0℃におけるゲル化時間(G。
Examples 1-5. and Comparative Examples 1 to 4 Using each lightning agent shown in FIG. 1, an epoxy resin composition having the formulation shown in Table 1 was kneaded for about 10 minutes with a twin-screw roll heated to about 80°C. Obtained 1. 18 About each composition
Gelation time at 0°C (G.

?、 )をJXB −K 5909の熱板法により、1
80Cにおける最低溶融粘度(ηmin )  を高化
式フローテスターにより、更に組成物の流動性の尺度と
してスパイラルフ0− (&、?、) ftNMMX 
−1−66に準じ、金型温度180C1成形圧カフ 0
 kli/ex”。
? , ) by JXB-K 5909 hot plate method, 1
The minimum melt viscosity (ηmin) at 80C was measured using a high-performance flow tester, and spiral 0-(&,?,) ftNMMX was measured as a measure of the fluidity of the composition.
- According to 1-66, mold temperature 180C1 molding pressure cuff 0
kli/ex”.

成形時間1.5分で測定した。結果を第1表にまとめて
示す。
The measurement was performed with a molding time of 1.5 minutes. The results are summarized in Table 1.

なお、第1図は、各種の形及び勾配nの溶融石英の粒径
Dp(μm、横軸)と最大粒径から粒径Dpまでの累積
重量%、R(DI))との関係を示すグラフである。
In addition, FIG. 1 shows the relationship between the grain size Dp (μm, horizontal axis) of fused silica of various shapes and gradients n and the cumulative weight % from the maximum grain size to the grain size Dp (R (DI)). It is a graph.

第1表から明らかなように、本発明の組成物は、RRS
粒度線図の勾配nが16より小さいか、あるいは1.5
よりも大きい球形溶融石英を用いた組成物並びに角形の
溶融石英を用い念組成物に比べて、ゲル化時間はほとん
ど同じで硬化性には差がないが、溶融粘度は極めて低く
、流動性が大きいことが分かる。
As is clear from Table 1, the composition of the present invention has RRS
The slope n of the grain size diagram is less than 16 or 1.5
Compared to the composition using larger spherical fused quartz and the composition using prismatic fused quartz, the gelation time is almost the same and there is no difference in hardenability, but the melt viscosity is extremely low and the fluidity is poor. I know it's big.

実施例4.5%及び比較例5〜7 充てん剤として第1図に示した球形溶融石英(球−2)
及び角形溶融石英(角−2)を用い、上記実施例と同様
にして充てん剤配合量が70.75.80及び85Ii
量係の樹脂組成物を作製した。この組成物を用いてφ1
0XIDO−の丸棒をトランスファ成形し、180’C
/A時間の2次硬化を行った後A8TM−0696−4
4K準じ熱膨張係数を測定しその変曲点からガラス転移
温度を求めた。
Example 4.5% and Comparative Examples 5 to 7 Spherical fused silica (sphere-2) shown in FIG. 1 as a filler
and square fused quartz (square-2), the filler compounding amount was 70.75.80 and 85Ii in the same manner as in the above example.
A quantitative resin composition was prepared. Using this composition, φ1
0XIDO- round bar was transfer molded and heated to 180'C.
A8TM-0696-4 after secondary curing for /A hours
The thermal expansion coefficient was measured according to 4K, and the glass transition temperature was determined from the inflection point.

また、第2図に示すような金1!(SUB)製内筒をモ
ールドした際の金属円筒に加わる熱応力を金属円筒の内
側に貼り付けたス)L/インゲージによって測定した。
Also, gold 1 as shown in Figure 2! Thermal stress applied to the metal cylinder when the inner cylinder made of (SUB) was molded was measured using a L/in gauge attached to the inside of the metal cylinder.

すなわち、第2図は1本発明の樹脂組成物の熱応力測定
装置の断面概略図である。第2図において、符号1は樹
脂、2はストレインゲージ、3Fi熱電対、4は@(e
 u s )製内筒を意味し、直径及び高さの各数値の
単位は−である。
That is, FIG. 2 is a schematic cross-sectional view of an apparatus for measuring thermal stress of a resin composition according to the present invention. In Fig. 2, numeral 1 is resin, 2 is a strain gauge, 3Fi thermocouple, and 4 is @(e
u s ) means a manufactured inner cylinder, and the unit of each numerical value of diameter and height is -.

更に、シリコンウェハの表面にアルミニウムのジグザグ
配線を有する半導体素子を封止し、この封止品について
冷熱サイクル試験(−55℃/30分#150℃/30
分)を行い、封止層の耐クラツク性並びに+?−ド〜金
線〜アルミニウム配線間の接続信頼性(抵抗値が50%
以上変化した場合を不良と判定)を評価した。こ力、ら
の結果を第2表にまとめて示す。
Furthermore, a semiconductor element having aluminum zigzag wiring was sealed on the surface of a silicon wafer, and this sealed product was subjected to a thermal cycle test (-55°C/30 minutes #150°C/30 minutes).
) to check the crack resistance of the sealing layer and +? - Connection reliability between wire, gold wire and aluminum wire (resistance value is 50%)
(If the change was more than 100%, it was determined to be defective). The results of Kotoriki et al. are summarized in Table 2.

第2表から、充てん剤を80重重量%以上配合した実施
列の組成物は硬化物の熱膨張係数が極めて小さく、イン
サートに加わる熱゛応力が著しく低減されることが明ら
かである。
From Table 2, it is clear that the compositions of the Examples containing 80% by weight or more of filler have extremely small coefficients of thermal expansion of the cured products, and the thermal stress applied to the inserts is significantly reduced.

更に、このような樹脂組成物で封止した半導体装置は冷
熱サイクル試験により熱衝撃を加えた場合の封止樹脂層
の耐クラツク性や配線の接続信頼性も極めて優れている
ことが分かる。
Further, it can be seen that the semiconductor device sealed with such a resin composition has extremely excellent crack resistance of the sealing resin layer and wiring connection reliability when subjected to thermal shock in a thermal cycle test.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように1本発明の樹脂組成物は、硬
化収縮率が小さいため、その成形品の寸法精度が向上す
るという効果が奏せられる。
As explained above in detail, the resin composition of the present invention has a small curing shrinkage rate, and therefore has the effect of improving the dimensional accuracy of the molded product.

また、本発明の樹脂組成物t?、半導体の樹脂封止に用
い次場合、その成形作業性が優れていると共に、該樹脂
硬化物が耐クラツク性に優れていること、そして硬化収
縮率の小さいことに基づき、配線の位置ずれを防ぎ、素
子の表面層間絶縁膜の破損を防止する点で、得られた半
導体装置の信頼性が向上するという顕著な効果が奏せら
れる。
Moreover, the resin composition of the present invention t? When used for resin encapsulation of semiconductors, it is possible to prevent wiring misalignment due to its excellent molding workability, the excellent crack resistance of the cured resin, and its low curing shrinkage rate. By preventing damage to the surface interlayer insulating film of the element, a remarkable effect is achieved in that the reliability of the obtained semiconductor device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種の形及び勾配nの溶融石英の粒径と、最
大粒径から粒径DX)tでの累積重置板との関係を示す
グラフ、第2図は、本発明の樹脂組成物の熱応力測定装
置の断面概略図でろる。 1:樹脂、2ニストレインゲージ、3:熱電対。 4:鋼(8U8)製内筒
FIG. 1 is a graph showing the relationship between the grain size of fused silica of various shapes and gradients n and the cumulative stacking plate from the maximum grain size to the grain size DX)t. This is a schematic cross-sectional view of the apparatus for measuring thermal stress of compositions. 1: Resin, 2 Ni strain gauge, 3: Thermocouple. 4: Steel (8U8) inner cylinder

Claims (1)

【特許請求の範囲】 1、エポキシ樹脂に充てん剤として球形の溶融石英粉を
配合したエポキシ樹脂組成物において、当該充てん剤の
90重量%以上が100μm以下の粒径を有し、しかも
、その粒度分布をRRS粒度線図で表示した場合に勾配
nが0.6〜1.5の範囲で直線性を示す粒度分布を有
し、かつ当該充てん剤が組成物全体に対し80重量%以
上配合されていることを特徴とするエポキシ樹脂組成物
。 2、球形の溶融石英粉からなる充てん剤の90重量%以
上が100μm以下の粒径を有し、しかも、その粒度分
布をRRS粒度線図で表示した場合に勾配nが0.6〜
1.5の範囲で直線性を示す該充てん剤を組成物全体に
対し80重量%以上配合したエポキシ樹脂組成物で封止
され、かつ封止樹脂の熱膨張係数が1.3×10^−^
5/℃以下であることを特徴とする樹脂封止型半導体装
置。
[Scope of Claims] 1. In an epoxy resin composition in which spherical fused silica powder is blended as a filler into an epoxy resin, 90% by weight or more of the filler has a particle size of 100 μm or less, and It has a particle size distribution that exhibits linearity with a slope n in the range of 0.6 to 1.5 when the distribution is expressed in an RRS particle size diagram, and the filler is blended in an amount of 80% by weight or more based on the entire composition. An epoxy resin composition characterized by: 2. 90% by weight or more of the filler made of spherical fused silica powder has a particle size of 100 μm or less, and when the particle size distribution is expressed in an RRS particle size diagram, the slope n is 0.6 to
It is sealed with an epoxy resin composition containing 80% by weight or more of the filler having linearity in the range of 1.5, based on the total composition, and the sealing resin has a coefficient of thermal expansion of 1.3 x 10^- ^
A resin-sealed semiconductor device characterized in that the temperature is 5/℃ or less.
JP61272838A 1986-11-18 1986-11-18 Epoxy resin composition and resin-sealed type semiconductor device Granted JPS63128020A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61272838A JPS63128020A (en) 1986-11-18 1986-11-18 Epoxy resin composition and resin-sealed type semiconductor device
JP4178867A JP2649632B2 (en) 1986-11-18 1992-06-15 Resin-sealed semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61272838A JPS63128020A (en) 1986-11-18 1986-11-18 Epoxy resin composition and resin-sealed type semiconductor device
JP4178867A JP2649632B2 (en) 1986-11-18 1992-06-15 Resin-sealed semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4178867A Division JP2649632B2 (en) 1986-11-18 1992-06-15 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPS63128020A true JPS63128020A (en) 1988-05-31
JPH0554865B2 JPH0554865B2 (en) 1993-08-13

Family

ID=26498917

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61272838A Granted JPS63128020A (en) 1986-11-18 1986-11-18 Epoxy resin composition and resin-sealed type semiconductor device
JP4178867A Expired - Lifetime JP2649632B2 (en) 1986-11-18 1992-06-15 Resin-sealed semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4178867A Expired - Lifetime JP2649632B2 (en) 1986-11-18 1992-06-15 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (2) JPS63128020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH0299552A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy resin composition
JPH02110958A (en) * 1988-10-19 1990-04-24 Mitsubishi Electric Corp Semiconductor sealing epoxy resin composition
WO2002034832A1 (en) * 2000-10-24 2002-05-02 Mitsui Chemicals, Inc. Epoxy resin composition and its use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165578A (en) 1997-07-23 2000-12-26 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same
TWI412506B (en) 2006-05-12 2013-10-21 Denki Kagaku Kogyo Kk Ceramic powder and uses thereof
JP2008115381A (en) * 2006-10-13 2008-05-22 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device using the same
JP5345787B2 (en) * 2008-02-04 2013-11-20 電気化学工業株式会社 Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP2011035465A (en) * 2009-07-29 2011-02-17 Nippon Ceramic Co Ltd Ultrasonic wave transceiver
CN116323488A (en) 2020-09-29 2023-06-23 电化株式会社 Spherical alumina powder, resin composition, and heat sink material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123457A (en) * 1977-04-05 1978-10-27 Hitachi Ltd Molding resin composition
JPS57212225A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS61113642A (en) * 1984-11-09 1986-05-31 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing use
JPS61190961A (en) * 1985-02-19 1986-08-25 Nitto Electric Ind Co Ltd Semiconductor device
JPS6296568A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS63108021A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123457A (en) * 1977-04-05 1978-10-27 Hitachi Ltd Molding resin composition
JPS57212225A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS61113642A (en) * 1984-11-09 1986-05-31 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing use
JPS61190961A (en) * 1985-02-19 1986-08-25 Nitto Electric Ind Co Ltd Semiconductor device
JPS6296568A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH0299552A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy resin composition
JPH02110958A (en) * 1988-10-19 1990-04-24 Mitsubishi Electric Corp Semiconductor sealing epoxy resin composition
WO2002034832A1 (en) * 2000-10-24 2002-05-02 Mitsui Chemicals, Inc. Epoxy resin composition and its use

Also Published As

Publication number Publication date
JPH0554865B2 (en) 1993-08-13
JPH0680863A (en) 1994-03-22
JP2649632B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JPS6157347B2 (en)
JPS63128020A (en) Epoxy resin composition and resin-sealed type semiconductor device
JPH11288979A (en) Manufacture of semiconductor device
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JPS63108021A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP2702401B2 (en) Resin-sealed semiconductor device and its manufacturing method
JP2649632C (en)
JP2633856B2 (en) Resin-sealed semiconductor device
JP3249958B2 (en) Surface mount type resin-encapsulated semiconductor device
JP3249957B2 (en) Surface mount type resin-encapsulated semiconductor device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP3127146B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JPS6296538A (en) Inorganic filler and resin composition
JP3002652B2 (en) Surface mounted resin-sealed semiconductor device and method of manufacturing the same
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP3880211B2 (en) Resin composition for sealing and semiconductor device
JP2760348B2 (en) Thermosetting resin molding material
JPS63297436A (en) Sealant polymer composition for ic
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
JPS60224234A (en) Manufacture of semiconductor device
JPS63277225A (en) Method for kneading resin composition
JP4013049B2 (en) Epoxy resin composition for sealing and resin-sealed semiconductor device
JP2000186214A (en) Resin composition for encapsulation and semiconductor system
CN114388453A (en) Molding compound and package for encapsulating electronic components
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition