JPS61113642A - Epoxy resin composition for semiconductor sealing use - Google Patents

Epoxy resin composition for semiconductor sealing use

Info

Publication number
JPS61113642A
JPS61113642A JP23501184A JP23501184A JPS61113642A JP S61113642 A JPS61113642 A JP S61113642A JP 23501184 A JP23501184 A JP 23501184A JP 23501184 A JP23501184 A JP 23501184A JP S61113642 A JPS61113642 A JP S61113642A
Authority
JP
Japan
Prior art keywords
silica
epoxy resin
parts
filler
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23501184A
Other languages
Japanese (ja)
Other versions
JPH032390B2 (en
Inventor
Koji Mori
森 恒治
Shigeru Koshibe
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP23501184A priority Critical patent/JPS61113642A/en
Publication of JPS61113642A publication Critical patent/JPS61113642A/en
Publication of JPH032390B2 publication Critical patent/JPH032390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the titled composition with high moisture resistance and high crack resistance when subjected to heat shock, by incorporating an epoxy resin with as filler, specific spherical silica treated for providing the surface with hydrophobicity. CONSTITUTION:The objective composition can be obtained by incorporating (A) an epoxy resin with (B) spherical or crushed-type silica as filler with a weight-average size <=15mu and maximum size <=100mu, treated with alkoxysilane or titanate for providing its surface with hydrophobicity. The amount of the above treating agent to be used should be 0.2-5pts.wt. per 100pts.wt. of the silica.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱衝撃を受けた場合の耐クラック性及び耐湿性
に優れた特長を持つ半導体封止用エポキシ樹脂組成物に
関するものであシ、その特徴は表面を疎水化したシリカ
を充填材として使用するところKある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent crack resistance and moisture resistance when subjected to thermal shock. Its feature is that silica with a hydrophobic surface is used as a filler.

〔従来技術〕[Prior art]

従来半導体封止用エポキシ樹脂組成物には、充填材とレ
ジンを結合させるためにカップリング剤が用いられてい
る。これは充填材/レジン界面をつなぎ組成物としての
強度を高めることが目的であり、シラン系カッグリング
剤(エポキシシラン吻アミノシラン・ビニルシラン等)
が主として用いられている。又充填材としては平均粒径
2゜ミクロン最大粒径150ミクロンのシリカが用いら
れている。
Conventionally, a coupling agent is used in an epoxy resin composition for semiconductor encapsulation to bond a filler and a resin. The purpose of this is to connect the filler/resin interface and increase the strength of the composition. Silane-based clogging agents (epoxysilane, aminosilane, vinylsilane, etc.)
is mainly used. As the filler, silica having an average particle diameter of 2.degree. microns and a maximum particle diameter of 150 microns is used.

ところが、最近これら用途で低応力化が強く要求されて
きた。これは最終製品の国際化−あらゆる日時・場所で
の使用に対応するためである。即ち、多種多用−且つ多
人種によって使用されるため乱暴な取拠いや保管に対す
る強さが要求されて   ′きた。又゛、シリカ粒径も
細かくする必要性が生じてきた。シリカの粒径が100
ミクロン以上だと大含過ぎ即ちミクロ的に不均一となり
、半導体素子とリードとの結線を変形(ワイヤー変形)
させたシ樹脂クラックを発生させたシする原因となるこ
とが判ってきたためである。特に封止樹脂厚み300〜
500ミクロンのフラットパッケージでは大問題となり
つつある。
However, recently there has been a strong demand for lower stress in these applications. This is to internationalize the final product, allowing it to be used at any time and place. That is, because they are used in many different ways and by many people, they are required to be strong against rough handling and storage. Furthermore, there has been a need to reduce the particle size of silica. The particle size of silica is 100
If it is more than a micron, it will be too large, that is, it will be microscopically non-uniform, and the connection between the semiconductor element and the lead will be deformed (wire deformation).
This is because it has been found that this causes resin cracks to occur. In particular, the sealing resin thickness is 300~
This is becoming a big problem with 500 micron flat packages.

現在の組成物ではこれらの要求を満足することができな
い。現在の組成物は、あまシにもシリカ/レジンが強固
に結合しているため最終製品が硬くもろくなってしまう
。又、シリカは粗すぎるからである。
Current compositions cannot meet these demands. In current compositions, the silica/resin is tightly bound to the lintel, making the final product hard and brittle. Also, silica is too coarse.

〔発明の目的〕[Purpose of the invention]

本発明は、従来耐クラツク性及び耐湿性に問題があった
半導体封止用エポキシ樹脂組成物を抜本的に改良し、産
業・工業レベルでの適用即ち実用的製品の開発を目的と
して研究した結果、シリカの表面をアルコキシシラン類
又は及びチタネート類で疎水化処理することにより目的
とする耐クラツク性及び耐湿性に優れた半導体封止用エ
ポキシ樹脂組成物が得られることを見い出したものであ
る。
The present invention is the result of research aimed at fundamentally improving epoxy resin compositions for semiconductor encapsulation, which conventionally had problems with crack resistance and moisture resistance, and developing practical products for application at an industrial/industrial level. It has been discovered that an epoxy resin composition for semiconductor encapsulation having excellent crack resistance and moisture resistance can be obtained by hydrophobicizing the surface of silica with alkoxysilanes or titanates.

〔発明の構成〕[Structure of the invention]

本発明は表面を予めアルコキシシラン類又は及びチタネ
ート類で疎水化処理を施した平均粒径が15ミクロン以
下で最大粒径が100ミクロン以下の破砕状もしくは球
状のシリカを充填材として用いることを特徴とする半導
体封止用エポキシ樹脂組成物である。ここでいうシリカ
とは、平均粒径が15ミクロン以下で100ミクロン以
上の粒子を含まない破砕状もしくは球状のシリカのこと
をいい、半導体封止用途には電解質の不純物や異物が少
ないことが好ましい。
The present invention is characterized in that crushed or spherical silica having an average particle size of 15 microns or less and a maximum particle size of 100 microns or less, the surface of which has been previously hydrophobized with alkoxysilanes or titanates, is used as a filler. This is an epoxy resin composition for semiconductor encapsulation. Silica here refers to crushed or spherical silica with an average particle size of 15 microns or less and no particles larger than 100 microns, and for semiconductor encapsulation applications, it is preferable that the electrolyte contains few impurities or foreign substances. .

アルコキシシラン類、チタネート類とはシリカと反応す
るための官能基(シラノール基、メトキシ基等)を有す
るものであシ、商品ではアルコキシシラン類としてDC
−3037,5R−2402,5H−6200()−レ
・シリコーン社) 、KR−213、版−216、l0
3M−13(信越化学社) MTS 、 PTSシリー
ズ(大人化学工業所)等を挙げることができる。
Alkoxysilanes and titanates have functional groups (silanol groups, methoxy groups, etc.) to react with silica, and are commercially available as alkoxysilanes.
-3037, 5R-2402, 5H-6200 ()-Le Silicone Co., Ltd.), KR-213, version-216, l0
Examples include 3M-13 (Shin-Etsu Chemical Co., Ltd.) MTS, PTS series (Otona Chemical Industry Co., Ltd.), and the like.

望ましくはオリゴマー化したものが良い。オリゴマー化
することによシ応力援和の効果が大きくなる。又、チタ
ネート類としてはKEN −REACTシリーズ(Ke
nrich Petrochemical Inc )
等を挙げることができる。アルコキシシラン類やチタネ
ート類は一種もしくは二種以上使用しても良い。ここで
、シリカはアルコキシシラン類又は及びチタネート類と
予め混合しシリカ表面に処理剤による被膜を形成させる
ことが必須である。このことによシ、本発明の目的とす
る低応力及び高耐湿特性が得られる。
Preferably, it is oligomerized. Oligomerization increases the effect of stress relief. In addition, as titanates, KEN-REACT series (Ke
nrich Petrochemical Inc.)
etc. can be mentioned. One or more types of alkoxysilanes and titanates may be used. Here, it is essential to mix silica with alkoxysilanes or titanates in advance to form a coating with a treatment agent on the silica surface. This provides the low stress and high moisture resistance properties that are the object of the present invention.

一般的に、半導体封止用エポキシ樹脂組成物は樹脂、シ
リカよシ成シこれに硬化剤・硬化促進剤・離型剤・難燃
剤壷処理剤・顔料等を混合する場合が多い。特に現在汎
用の材料は、クレゾールノボラック型エポキシ樹脂・フ
ェノールノボラック(硬化剤)・第3級アミン(硬化促
進剤)・シリカ(充填材)・シラ/カップリング剤(、
処理剤)・3酸化アンチモン(難燃剤)等より構成され
、シリカ量゛としては50〜90重量%が普通であ企。
Generally, epoxy resin compositions for semiconductor encapsulation are made of resin, silica, and are often mixed with a curing agent, a curing accelerator, a mold release agent, a flame retardant, a pot treatment agent, a pigment, and the like. In particular, currently common materials include cresol novolak type epoxy resin, phenol novolac (curing agent), tertiary amine (curing accelerator), silica (filler), silica/coupling agent (,
It is composed of a processing agent), antimony trioxide (a flame retardant), etc., and the amount of silica is usually 50 to 90% by weight.

さて、信頼性であるが故障発生した半導体製品を解析し
た結果、不良現象は、例としてAt回路(1)及び保護
膜(2)を有する16にビットメモIJ−IC封入品に
ついて不良モデル図(第1図〜第3図)で示すと、大き
な充填材(3)の影響のため、■樹脂バルク・樹脂界面
のマイクロクラック(4)発生による水進入■回路保護
膜(パッシベーション膜)のクラック(5)による破損
による水進入、■アルミ回路のずれ(6)ゆがみ等によ
る回路異常によるものが大部分であった。さらに詳細に
検討した結果、これらの原因がシリカ及びカップリング
剤であることが判った。不良が発生している箇所には必
ず大きなシリカが存在しておシ囲シに細かいシリカが少
ないこと(充填材が偏在していること)が判った。即ち
、現在のシリカ粒径のバラツキが大きく応力が局部的に
不均一になっていることが判った。又、電子顕微鏡等に
よる観察でフィラー/レジン界面のカップリング剤層に
マイクロクラックや剥離現象が見られた。即ち、現在の
カップリング剤では応力を緩和する作用が不十分である
ことも判った。
Now, as a result of analyzing semiconductor products that were reliable but failed, we found that the defective phenomenon was caused by a defective model diagram (for example) of a 16-bit memo IJ-IC enclosed product with an At circuit (1) and a protective film (2). As shown in Figures 1 to 3), due to the influence of the large filler (3), ■Water intrusion due to the occurrence of microcracks (4) at the resin bulk/resin interface;■Cracks in the circuit protection film (passivation film) ( Most of the causes were due to water intrusion due to damage caused by 5), and circuit abnormalities caused by (6) distortion of the aluminum circuit. As a result of further detailed investigation, it was found that these causes were silica and the coupling agent. It was found that large silica was always present in the areas where defects occurred, and there was little silica in the surrounding area (the filler was unevenly distributed). That is, it was found that the current silica particle size has a large variation and the stress is locally non-uniform. Furthermore, microcracks and peeling phenomena were observed in the coupling agent layer at the filler/resin interface by observation using an electron microscope or the like. In other words, it has been found that the current coupling agents have insufficient stress relieving effects.

そこで、表面をアルコキシシラン類やチタネート類で疎
水化処理を施し緩衝層を形成した平均粒径が15ミクロ
ン以下で最大粒径が100ミクロン以下の破砕状もしく
は球状のシリカを充填材として用いると上記の不良が激
減することが判った。
Therefore, if crushed or spherical silica with an average particle diameter of 15 microns or less and a maximum particle diameter of 100 microns or less, whose surface has been hydrophobized with alkoxysilanes or titanates to form a buffer layer, is used as a filler, as described above. It was found that the number of defects was drastically reduced.

又処理剤の添加量としてはシリカの0.2/ 100〜
5/100が望ましい。少なすぎると低応力及び耐湿性
の効果が得られない場合、又多すぎると成形性(パリ、
硬化性)が問題となる場合もあるからである。
Also, the amount of processing agent added is 0.2/100 of silica.
5/100 is desirable. If the amount is too low, the effects of low stress and moisture resistance may not be obtained, and if the amount is too high, the formability (paris,
This is because curability) may become a problem.

〔発明の効果〕〔Effect of the invention〕

このように、本発明方法に従うと耐クラツク性及び耐湿
性に優れた半導体封止用エポキシ樹脂組成物を得ること
ができる。特に半導体封止用途では今後益々プラスチッ
クパッケージ化が予想され、又そのためにプラスチック
の低応力化・高耐湿化が要求されている今日においては
本発明の産業的意味役割は非常に大きい。
As described above, according to the method of the present invention, an epoxy resin composition for semiconductor encapsulation having excellent crack resistance and moisture resistance can be obtained. Particularly in semiconductor encapsulation applications, it is expected that plastic packaging will be used more and more in the future, and as a result, low stress and high moisture resistance of plastics are required, and the present invention plays an extremely important role in industry.

〔実施例〕〔Example〕

以下、半導体封土用エポキシ樹脂組成物での検討例で説
明する。例で用いた部はすべて重量部である。本発明に
よる実施例は従来の技術による比較例に比べ成形性、耐
湿性、耐クラツク性の点で優れており工業的に利用でき
る高付加価値を有している。
Hereinafter, an explanation will be given using a study example of an epoxy resin composition for semiconductor enclosure. All parts used in the examples are parts by weight. The examples according to the present invention are superior to the comparative examples according to the conventional technology in terms of moldability, moisture resistance, and crack resistance, and have high added value that can be used industrially.

実施例1〜5 平均粒径が10ミクロン以下で最大粒径が100ミクロ
ン以下の破砕状シリカ(電気化学工業二FS −30)
あるいは球状シリカ(電気化学工業:FB−30)70
部と表面処理剤B()−レ・シリコ−7:5R−240
2、If7す7 f : KR−TrS 、信越:幻M
−13)1部あるいは6部を加熱゛ニーグーを用い、1
20℃、30分混合した後、オルトクレゾールノボラッ
ク型エポキシ樹脂(日本化率: EOCN−1020)
20部・フェノールノボラック(住友ベークライト)1
0部・硬化促進剤(ケーアイ化成PP−360/四国化
成舅=9/1)0.2部・表面処理剤A(チッソ: G
PS−M) 0.3部・顔料(三菱化成)0.5部・離
型剤(ヘキストジャパンヘキストOP/ヘキストS=1
/1)0.4部を混合し80℃の熱ロールで3分混練し
成形材料5種を得た。
Examples 1 to 5 Crushed silica with an average particle size of 10 microns or less and a maximum particle size of 100 microns or less (Denki Kagaku Kogyo 2FS-30)
Or spherical silica (Denki Kagaku Kogyo: FB-30) 70
Part and surface treatment agent B()-Le Silico-7:5R-240
2, If7s7 f: KR-TrS, Shinetsu: Phantom M
-13) Heat 1 part or 6 parts using a Neegoo,
After mixing at 20°C for 30 minutes, ortho-cresol novolac type epoxy resin (Japanese rate: EOCN-1020)
20 parts phenol novolac (Sumitomo Bakelite) 1
0 parts・Curing accelerator (KAI Kasei PP-360/Shikoku Kasei Kaga=9/1) 0.2 parts・Surface treatment agent A (Chisso: G
PS-M) 0.3 parts, pigment (Mitsubishi Kasei) 0.5 parts, mold release agent (Hoechst Japan Hoechst OP/Hoechst S = 1
/1) 0.4 parts were mixed and kneaded for 3 minutes with a hot roll at 80°C to obtain 5 types of molding materials.

これら成形材料の成形性・耐クラツク性・耐湿性を測定
した結果、表のように比較例に比べて優れ  162と
、8ヨ9た。                  4
比較例1〜3 平均粒径が20ミクロンで最大粒径が150ミクロンの
破砕状シリカ([気化学工業:FS−90)あるいは球
状シリカ(電気化学工業:FB−90)70部と表面処
理剤B1部を加熱ニーダ−を用い、120℃、30分混
合した後、エポキシ樹脂20部・フェノールノボラック
10部・硬化促進剤0.2部・表面処理剤A O,3部
・顔料0.5部・離型剤0.4部(いずれも実施例と同
一原料)を実施例と同様に材料化した。この材料の成形
性・耐湿性・耐クラツク性結果は別表の通りで実施例に
比べて耐クラツク性・耐湿性の点で大幅に劣る。
The moldability, crack resistance, and moisture resistance of these molding materials were measured, and as shown in the table, they were superior to the comparative examples: 162, 8.9. 4
Comparative Examples 1 to 3 70 parts of crushed silica (Kikagaku Kogyo: FS-90) or spherical silica (Denki Kagaku Kogyo: FB-90) with an average particle diameter of 20 microns and a maximum particle diameter of 150 microns and a surface treatment agent After mixing 1 part of B at 120°C for 30 minutes using a heating kneader, 20 parts of epoxy resin, 10 parts of phenol novolac, 0.2 parts of curing accelerator, 3 parts of surface treatment agent A, and 0.5 part of pigment were added. - 0.4 part of mold release agent (all the same raw materials as in the example) was made into a material in the same manner as in the example. The moldability, moisture resistance, and crack resistance results of this material are shown in the attached table, and it is significantly inferior to the examples in terms of crack resistance and moisture resistance.

比較例4 破砕状シリカ70部・エポキシ樹脂20部・フェノール
ノボラック10部・硬化促進剤0.2部・表面処理剤A
 0.3部・顔料0.5部・離型剤0.4部(いずれも
実施例と同一原料)を実施例と同様に材料化した。この
材料の成形性・耐湿性・耐クラツク性結果は別表の通り
で実施例に比べて耐湿性・耐クラツク性の点で大幅に劣
る。
Comparative Example 4 70 parts of crushed silica, 20 parts of epoxy resin, 10 parts of phenol novolak, 0.2 part of curing accelerator, surface treatment agent A
0.3 part of pigment, 0.5 part of pigment, and 0.4 part of mold release agent (all the same raw materials as in the example) were made into materials in the same manner as in the example. The moldability, moisture resistance, and crack resistance results of this material are shown in the attached table, and it is significantly inferior to the examples in terms of moisture resistance and crack resistance.

比較例5.6 破砕状シリカ70部・エポキシ樹脂20部・フェノール
ノボラックlO部Φ硬化促進剤0.2部・表面処理剤A
O13部・表面処理剤B1部・顔料0,5部・離型剤0
.4部(いずれも実施例と同一原料)を混合し80℃の
熱ロールで3分混練し成形材料2種を得た。この材料の
成形性・耐湿性・耐クラツク性結果は別表の通りで実施
例に比べて耐湿性・耐クラツク性の点で大幅に劣る。
Comparative Example 5.6 70 parts of crushed silica, 20 parts of epoxy resin, 10 parts of phenol novolac, 0.2 parts of Φ hardening accelerator, surface treatment agent A
13 parts O, 1 part surface treatment agent B, 0.5 parts pigment, 0 mold release agent
.. 4 parts (all the same raw materials as in the example) were mixed and kneaded for 3 minutes with a hot roll at 80°C to obtain two types of molding materials. The moldability, moisture resistance, and crack resistance results of this material are shown in the attached table, and it is significantly inferior to the examples in terms of moisture resistance and crack resistance.

*L  16 pin DIPを成形した時のリードビ
ン上のパリ発生程度で判定タイバ一部までの距離のh以
下の時A 、 l−賜の時B1Q〜%の時C1乞以上(
タイバーを超えた)D *27CT、 4m+X 9mの大きさの模擬素子を封
止した1 6 pin DIP K−65℃(30分)
、室温(5分)2150℃(30分)なる熱衝撃を20
0サイクル与えクラック発生数/総数で判定 *3TST、4111X6mの大きさの模擬素子を封止
した1 6 pin DIFに一165℃(2分):1
50℃(2分)なる熱衝撃を200サイクル与えクラッ
ク発生数/総数で判定 *4耐湿性、アルミ模擬素子を封止した1 6 pin
 DIFを135℃、100%の条件で1000hr保
管しアルミ腐食による不良率/&:数で判定
* Judgment on the degree of paris on the lead bin when molding L 16 pin DIP When the distance to a part of the tie bar is less than h A, When L is less than B1 When Q~% is more than C1 (
D
, a thermal shock of 2150℃ (30 minutes) at room temperature (5 minutes)
Judging by the number of cracks generated/total number given by 0 cycles
200 cycles of thermal shock at 50°C (2 minutes) and judgment based on the number of cracks generated/total number *4 Moisture resistance, 16 pin sealed with aluminum simulated element
DIF was stored for 1000 hours at 135℃ and 100% condition, and the defective rate due to aluminum corrosion was determined by the number /&:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は大きな充埴材の影響による
半導体製品の不良モデル断面図である。 −’>RR− 第1図 第2図 ス 第3図 口開 ・Y■X1
FIGS. 1, 2, and 3 are cross-sectional views of defective semiconductor products due to the influence of large fillers. -'>RR- Figure 1 Figure 2 Figure 3 Mouth opening ・Y■X1

Claims (1)

【特許請求の範囲】[Claims]  表面をアルコキシシラン類又は及びチタネート類で疎
水化処理を施した重量平均粒径が15ミクロン以下で最
大粒径が100ミクロン以下の破砕状もしくは球状のシ
リカを充填材として用いることを特徴とする半導体封止
用エポキシ樹脂組成物。
A semiconductor characterized by using as a filler crushed or spherical silica having a weight average particle size of 15 microns or less and a maximum particle size of 100 microns or less, the surface of which has been hydrophobized with alkoxysilanes or titanates. Epoxy resin composition for sealing.
JP23501184A 1984-11-09 1984-11-09 Epoxy resin composition for semiconductor sealing use Granted JPS61113642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23501184A JPS61113642A (en) 1984-11-09 1984-11-09 Epoxy resin composition for semiconductor sealing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23501184A JPS61113642A (en) 1984-11-09 1984-11-09 Epoxy resin composition for semiconductor sealing use

Publications (2)

Publication Number Publication Date
JPS61113642A true JPS61113642A (en) 1986-05-31
JPH032390B2 JPH032390B2 (en) 1991-01-14

Family

ID=16979741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23501184A Granted JPS61113642A (en) 1984-11-09 1984-11-09 Epoxy resin composition for semiconductor sealing use

Country Status (1)

Country Link
JP (1) JPS61113642A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296020A (en) * 1985-06-26 1986-12-26 Toshiba Corp Epoxy resin liquid composition for sealing electronic part
JPS63108021A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPS63128020A (en) * 1986-11-18 1988-05-31 Hitachi Ltd Epoxy resin composition and resin-sealed type semiconductor device
JPS6411355A (en) * 1987-07-06 1989-01-13 Hitachi Ltd Resin sealed semiconductor device
JPH02209949A (en) * 1989-02-09 1990-08-21 Shin Etsu Chem Co Ltd Epoxy resin composition and cured material for sealing of semiconductor
GB2345803A (en) * 1997-08-19 2000-07-19 Taiyo Yuden Kk Electronic component with a hydrophobic surface treated resin additive
US6198373B1 (en) 1997-08-19 2001-03-06 Taiyo Yuden Co., Ltd. Wire wound electronic component
JP2008062010A (en) * 2006-08-11 2008-03-21 Kokuyo Co Ltd Desk and office constituting system
JP2008119333A (en) * 2006-11-15 2008-05-29 Kokuyo Co Ltd Furniture with top board
JP2008142517A (en) * 2006-11-15 2008-06-26 Kokuyo Co Ltd Supporting body and furniture having top board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296020A (en) * 1985-06-26 1986-12-26 Toshiba Corp Epoxy resin liquid composition for sealing electronic part
JPS63108021A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH0554865B2 (en) * 1986-11-18 1993-08-13 Hitachi Ltd
JPS63128020A (en) * 1986-11-18 1988-05-31 Hitachi Ltd Epoxy resin composition and resin-sealed type semiconductor device
JPH0680863A (en) * 1986-11-18 1994-03-22 Hitachi Ltd Epoxy resin composition
JPS6411355A (en) * 1987-07-06 1989-01-13 Hitachi Ltd Resin sealed semiconductor device
JPH02209949A (en) * 1989-02-09 1990-08-21 Shin Etsu Chem Co Ltd Epoxy resin composition and cured material for sealing of semiconductor
GB2345803A (en) * 1997-08-19 2000-07-19 Taiyo Yuden Kk Electronic component with a hydrophobic surface treated resin additive
US6198373B1 (en) 1997-08-19 2001-03-06 Taiyo Yuden Co., Ltd. Wire wound electronic component
GB2329762B (en) * 1997-08-19 2001-06-06 Taiyo Yuden Kk Wire wound electronic component
GB2345803B (en) * 1997-08-19 2001-06-20 Taiyo Yuden Kk Wire wound electronic component
JP2008062010A (en) * 2006-08-11 2008-03-21 Kokuyo Co Ltd Desk and office constituting system
JP2008119333A (en) * 2006-11-15 2008-05-29 Kokuyo Co Ltd Furniture with top board
JP2008142517A (en) * 2006-11-15 2008-06-26 Kokuyo Co Ltd Supporting body and furniture having top board

Also Published As

Publication number Publication date
JPH032390B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
GB2086134A (en) Resin encapsulated electronic devices
JPS61113642A (en) Epoxy resin composition for semiconductor sealing use
JP5220981B2 (en) Finely basic silica powder, method for producing the same, and resin composition
TWI666246B (en) Resin for resin composition, paste composition containing reed, and resin composition containing reed
JPS63245426A (en) Epoxy resin composition and resin-sealed semiconductor device
JP3468996B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
US6288169B1 (en) Butadiene rubber particles with secondary particle sizes for epoxy resin encapsulant
JP2773955B2 (en) Semiconductor device
JP5141857B2 (en) Epoxy resin composition and semiconductor device
JPS62149743A (en) Epoxy resin molding material for use in sealing semiconductor
JPS61203160A (en) Epoxy resin composition for sealing semiconductor
JPS5837939A (en) Semiconductor device
KR101526001B1 (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2633856B2 (en) Resin-sealed semiconductor device
JP2947072B2 (en) Method for producing surface-treated alumina
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JPH0142631B2 (en)
JP2001139771A (en) Epoxy resin molding material and semiconductor device
JPS627143A (en) Epoxy resin molding material for sealing semiconductor
JPS61190550A (en) Epoxy resin molding compound for semiconductor sealing
JP2635621B2 (en) Resin composition for semiconductor device encapsulation
JPS61243853A (en) Epoxy resin composition