JPS63126243A - Integrated circuit element and manufacture thereof - Google Patents

Integrated circuit element and manufacture thereof

Info

Publication number
JPS63126243A
JPS63126243A JP61271773A JP27177386A JPS63126243A JP S63126243 A JPS63126243 A JP S63126243A JP 61271773 A JP61271773 A JP 61271773A JP 27177386 A JP27177386 A JP 27177386A JP S63126243 A JPS63126243 A JP S63126243A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
semiconductor
forming
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61271773A
Other languages
Japanese (ja)
Inventor
Masaharu Aoyama
青山 正治
Jiro Oshima
次郎 大島
Tatsuichi Ko
高 辰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61271773A priority Critical patent/JPS63126243A/en
Priority to KR1019870012886A priority patent/KR910001909B1/en
Publication of JPS63126243A publication Critical patent/JPS63126243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To dissolved an interelement parasitic effect and to lessen a collector resistance by a method wherein an island region isolated completely by a dielectric is provided on a composite semiconductor substrate and a high-concentration semiconductor layer is provided on the side surfaces and bottom surface of the island region. CONSTITUTION:An oxide layer 2 and an undoped poly Si layer 3 are formed on the surface of a P-type semiconductor substrate 1 and after As ions are implanted, an N-type Si semiconductor substrate 4 is bonded on the poly Si layer 3 to obtain a composite semiconductor substrate 5. Then, after the surface of the N-type substrate 4 is polished, an Si oxide layer 6 and a nitride oxide layer 7 are formed and thereafter, an Si oxide layer 8 is formed by a CVD method. Then, a trench pattern 9 surrounding an element forming region is formed to isolate an island region 10 and an As doped poly Si layer 12 is formed on the outside of the trench 9. Then, the interior of the trench is filled with an oxide film 13 and a poly Si layer 14. A transistor consisting of a base 15, an emitter 17 and so on is formed in the island region 10 formed by isolation in such a way.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は集積回路の素子分離に関するもので、特に高速
ならびに高耐圧のバイポーラ型集積回路素子に好適する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to element isolation of integrated circuits, and is particularly suitable for high-speed and high-voltage bipolar integrated circuit elements.

(従来の技術) 従来から、ダイオード、バイポーラトランジスタ等のコ
レクタ接合や2重拡散型MO8FETのドレイン接合等
はPN接合を逆バイアス状態にして使用しており、その
際発生する直列抵抗を減らすのにN千半導体基板を下地
にしたN′″半導体基板との積層構造を採用し、このN
−半導体基板に反対導電型の不純物などを導入して半導
体素子を設け、下地のN千半導体基板の厚さを充分に採
って耐圧向上ならびに機械的強度を増している。しかも
この不純物導入によって得られるPN接合底部と前記N
千半導体基板までの距離を充分取ってこのPN接合動作
時に発生する空乏層による”Reach Throug
h”  による降伏現象を防止するのが一般的である。
(Prior art) Conventionally, collector junctions of diodes, bipolar transistors, etc., drain junctions of double-diffused MO8FETs, etc. have been used with the PN junction in a reverse bias state, and in order to reduce the series resistance generated at that time. Adopting a laminated structure with an N''' semiconductor substrate based on an N,000 semiconductor substrate, this N
- Semiconductor elements are provided by introducing impurities of opposite conductivity type into a semiconductor substrate, and the underlying semiconductor substrate is sufficiently thick to improve breakdown voltage and mechanical strength. Moreover, the bottom of the PN junction obtained by introducing this impurity and the N
"Reach Through" due to the depletion layer generated during this PN junction operation by keeping a sufficient distance to the semiconductor substrate.
It is common practice to prevent the breakdown phenomenon caused by ``h''.

この積層構造を達成するのはいわゆるエピタキシャル成
長法が利用されているが、含有不純物に濃度差があると
下地の半導体基板に含有する不純物の外方拡散(aut
o Diffusion)によりその境界部分に止まら
ず厳格な濃度制御が得られないのが実情である。
The so-called epitaxial growth method is used to achieve this layered structure, but if there is a difference in the concentration of impurities contained in the underlying semiconductor substrate, out-diffusion (out-diffusion) of the impurities contained in the underlying semiconductor substrate occurs.
The reality is that strict concentration control not only at the boundary portion cannot be achieved due to Diffusion.

しかし、含有不純物に濃度差があり導電型の相違に拘ら
ずこの半導体基板を一体にする接合技術がすでに開発さ
れてる。即ち多少湿り気のある半導体基板鏡面を密着す
ると機械的強度が充分にあり、恰も一枚の半導体基板と
して取扱うことが可能な複合半導体基板が得られる技術
である。
However, a bonding technique has already been developed that integrates these semiconductor substrates regardless of the difference in conductivity type due to the difference in concentration of impurities contained therein. In other words, this is a technique that allows the mirror surfaces of semi-moist semiconductor substrates to be brought into close contact with each other to obtain a composite semiconductor substrate that has sufficient mechanical strength and can be handled as a single semiconductor substrate.

この密着面には元(bulk)の結晶と多少違るものが
形成すると想定されるが、熱ならびに電気的な障壁にな
らず、しかもニーに形成するPN接合による機能素子は
必要な電気的特性を充分発揮でき、珪素半導体基板同志
に限らず酸化珪素層ならびに多結晶珪素層も適用可能で
ある。
It is assumed that something slightly different from the original (bulk) crystal will be formed on this adhesion surface, but it will not become a thermal or electrical barrier, and the functional element using the PN junction formed at the knee will have the necessary electrical properties. It can be applied to not only silicon semiconductor substrates but also silicon oxide layers and polycrystalline silicon layers.

一方バイポーラ型集積回w!を素子では高速性及び高耐
圧化が求められており、このバイポーラトランジスタの
接合容量を低く押えるため平面のパターンに加えて深さ
方向の寸法も極めて微細な構造が採用されている。特に
トランジスタのコレクタと半導体基板間の接合容量が大
きな着眼点とされており、その減小手法としては素子間
分離をPN接合に頼らないトレンチアイソレイション(
TrenchIsolation)が脚光を浴びている
。具体的には深くて細い溝を設けその側壁の酸化ならび
に溝への多結晶珪素の埋込みによる平坦化を図るもので
ある。
On the other hand, bipolar type integration times lol! In order to keep the junction capacitance of bipolar transistors low, a bipolar transistor is required to have a structure with an extremely fine depth dimension as well as a planar pattern. In particular, the junction capacitance between the transistor collector and the semiconductor substrate is a major focus, and one way to reduce it is by using trench isolation (which does not rely on PN junctions for isolation between elements).
Trench Isolation) is in the spotlight. Specifically, a deep and narrow groove is provided, the side walls of the groove are oxidized, and polycrystalline silicon is filled into the groove to flatten the groove.

第2図にバイポーラ型集積回路素子の要部断面図を示す
。この素子の製造に当ってはP型(100)Si半導体
基板30を準備し、この表面にn十埋込層31を形成後
nエピタキシャル層32を常法によって被着後通常の手
法によって熱酸化層33を被覆し、更にCVD珪素酸化
物層34を積増しする。次いで集積回路素子の形成予定
位置の周りに位置する熱酸化層33ならびにCVD珪素
酸化物層34を貫通する小さい溝をエツチングによって
設けてからP型半導体基板30に到達するトレンチ溝を
RIE法によって形成し、その側壁には分離用5in2
35を設ける。更にこの溝に多結晶珪素36を埋込んで
(バターニング工程を施す)からこの集積回路素子形成
予定領域表面に被覆する熱酸化層33及びCVD珪素酸
化物層34をエツチング工程によって除去して、次いで
必要な不純物を導入して内部ベース36、外部ベース3
7.37ならびにエミッタ38を設置する。
FIG. 2 shows a sectional view of essential parts of a bipolar integrated circuit element. In manufacturing this device, a P-type (100) Si semiconductor substrate 30 is prepared, an n-type buried layer 31 is formed on its surface, an n-epitaxial layer 32 is deposited by a conventional method, and then thermally oxidized by a conventional method. Layer 33 is coated and a further CVD silicon oxide layer 34 is deposited. Next, a small groove penetrating the thermal oxidation layer 33 and the CVD silicon oxide layer 34 located around the location where the integrated circuit element is to be formed is provided by etching, and then a trench groove reaching the P-type semiconductor substrate 30 is formed by the RIE method. 5in2 for separation on its side wall.
35 will be provided. Further, polycrystalline silicon 36 is buried in this groove (a buttering process is performed), and then the thermal oxidation layer 33 and the CVD silicon oxide layer 34 covering the surface of the area where the integrated circuit element is to be formed are removed by an etching process. Next, necessary impurities are introduced to form the internal base 36 and the external base 3.
7.37 and emitter 38 are installed.

更にこの外部ベース37とエミツタ層38には多結晶珪
素層を接続しそこにA1合金を被覆してベース電極39
、エミッタ電極40を設ける。工程順序が逆になるが、
多結晶珪素埋込RIJ31に到達するディープN土層4
1を予め設け、こ\にも多結晶珪素層とA1合金を積層
してコレクタ電極42を設けて集積回路素子を完成する
Furthermore, a polycrystalline silicon layer is connected to the external base 37 and the emitter layer 38, and the base electrode 39 is coated with A1 alloy.
, an emitter electrode 40 is provided. Although the process order is reversed,
Deep N soil layer 4 reaching polycrystalline silicon embedded RIJ31
1 is provided in advance, and a polycrystalline silicon layer and an A1 alloy are also laminated thereon to provide a collector electrode 42 to complete the integrated circuit element.

(発明が解決しようとする問題点) ところで耐圧特性については前述のvcmit造のうち
下地のN千半導体基板がN−型半導体基板より抵抗が小
さいうえにこの下地半導体基板全体を電極と見做せ、し
かもN−半導体基板に形成するPN接合はその端部を表
面に露出するのでこの端部付近からPN接合湾曲部への
電界はPN接合底部(基板表面に沿った部分)に対する
電界より大きくなり要求する高耐圧を妨げる一因となる
(Problem to be Solved by the Invention) By the way, regarding the withstand voltage characteristics, the underlying N-type semiconductor substrate in the above-mentioned vcmit structure has a lower resistance than the N-type semiconductor substrate, and the entire underlying semiconductor substrate can be regarded as an electrode. Moreover, since the end of the PN junction formed on the N-semiconductor substrate is exposed on the surface, the electric field from near this end to the curved part of the PN junction is larger than the electric field to the bottom of the PN junction (the part along the substrate surface). This becomes a factor that prevents the required high voltage resistance.

エピタキシャル法の利用によって得られるこの積層構造
では前述のようにReach Through現象を避
けるために堆積層の厚さを増しており、この外に空乏層
を堆積層表面に沿った方向に延ばすフィールドリミッテ
ィング構造やPN接合端を被覆する絶縁物層に接合電極
を延長するフィールドプレート構造は集積度向上にとっ
て好ましくない。
In this stacked structure obtained by using the epitaxial method, the thickness of the deposited layer is increased in order to avoid the Reach Through phenomenon as described above, and in addition to this, field limiting is applied to extend the depletion layer in the direction along the surface of the deposited layer. A field plate structure in which a junction electrode is extended to an insulating layer covering a structure or a PN junction end is not preferable for improving the degree of integration.

高速のバイポーラトランジスタは現在も実用に供されて
いるものの、埋込拡散層と半導体基板間に接合容量が存
在するために素子動作の遅延時間の基になり、次にコレ
クタの直列抵抗を低くするのに深いn十拡散層が必要と
なる。この結果横方向拡散ならびに埋込層の滲み出しに
よって微細化に制限を与える。更には高集積度を狙って
半導体基板全面に埋込み拡散層を設けると、トレンチ分
離溝を埋込み層に到達するまで深く形成する必要がある
ことや、島領域間の寄生効果を抑制するためには溝の下
側に反転防止層を配置せざるを得なくなり工程が複雑に
なる。
Although high-speed bipolar transistors are still in practical use, the presence of junction capacitance between the buried diffusion layer and the semiconductor substrate causes a delay time in device operation, and the series resistance of the collector must be lowered. Therefore, a deep n0 diffusion layer is required. As a result, miniaturization is limited by lateral diffusion and seepage of the buried layer. Furthermore, if a buried diffusion layer is provided over the entire surface of a semiconductor substrate with the aim of achieving high integration, it is necessary to form trench isolation grooves deep enough to reach the buried layer, and in order to suppress parasitic effects between island regions, The reversal prevention layer must be disposed below the groove, which complicates the process.

本発明は、トレンチ素子分離で得られるよりも更に高速
でしかも高耐圧のトランジスタ特性を得るのにコレクタ
と半導体基板間の接合容量を抑制すると共に、高濃度の
コレクタ導出にも配慮する外に素子面積の低減を促進す
ることを目的とする。
The present invention suppresses the junction capacitance between the collector and the semiconductor substrate in order to obtain transistor characteristics that are faster and have higher breakdown voltage than can be obtained by trench element isolation. The purpose is to promote area reduction.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この目的を達成するのに本発明では前述の接合技術を採
用した複合半導体基板を利用して、断面がほぼ直方体の
島領域の側面ならびに底面を誘電体で埋め、しかもこの
側面及び底面に隣接して不純物濃度I X 10” a
n−3以上の半導体層を設ける。
(Means for Solving the Problem) In order to achieve this object, the present invention utilizes a composite semiconductor substrate employing the above-described bonding technology, and the side and bottom surfaces of the island region having a substantially rectangular parallelepiped cross section are made of dielectric material. Filled with impurity concentration I
Provide n-3 or more semiconductor layers.

この島領域に設置する半導体素子電極はこの側面に設置
する高濃度の半導体層も利用して島領域表面側から導出
する手法を採用する。その具体的な形成手段としては前
述の接合技術により複合半導体基板を得、この接合面付
近には下地の半導体基板酸化物層高濃度の半導体層及び
島領域をこの順に設けてから複合半導体基板表面を被覆
する絶縁物層にこの島領域を囲むトレンチ溝を設け、こ
の溝側壁にのみ高濃度(I X 10” CIl+−3
以上)の半導体層を形成する。
A method is adopted in which the semiconductor element electrodes installed in this island region are led out from the surface side of the island region by also utilizing the highly concentrated semiconductor layer installed on the side surface. As a specific method for forming it, a composite semiconductor substrate is obtained by the above-mentioned bonding technique, and a base semiconductor substrate oxide layer, a semiconductor layer with a high concentration, and an island region are provided in this order near the bonding surface, and then the composite semiconductor substrate is A trench groove surrounding this island region is provided in the insulating layer covering the insulator layer, and a high concentration (I
A semiconductor layer (above) is formed.

その後の溝内を絶縁物層で埋めると共に平坦化工程を施
し、島領域内に半導体素子用の不純物領域を形成し、こ
れらに接続する電極を前記側壁に設ける高濃度(I X
 10111an−3以上)の半導体層をも利用して集
積回路素子を完成する。
After that, the trench is filled with an insulating layer and a planarization process is performed to form an impurity region for a semiconductor element in the island region, and an electrode connected to the impurity region is provided on the side wall with a high concentration (I
10111an-3 or higher) is also utilized to complete an integrated circuit device.

(作 用) 本発明に係る集積回路素子は高速、高耐圧素子を1指し
ており、このために誘電体層によって周りを完全に分離
し、断面がほぼ直方体形状の島領域を設けしかもこの側
面ならびに底面にはI X 10” an−3以上の高
不純物濃度の半導体層を形成する。この島領域に設ける
半導体素子用電極は側面に形成する高不純物濃度の半導
体層も利用して島領域表面から導出する手法を採用して
いる。
(Function) The integrated circuit device according to the present invention is a high-speed, high-voltage device, and for this purpose, the surroundings are completely separated by a dielectric layer, and an island region having a substantially rectangular parallelepiped cross section is provided. In addition, a semiconductor layer with a high impurity concentration of I x 10" an-3 or more is formed on the bottom surface. The electrode for the semiconductor element provided in this island region is formed on the surface of the island region by also utilizing the semiconductor layer with a high impurity concentration formed on the side surface. We have adopted a method to derive it from

この島領域に形成するバイポーラ型トランジスタのコレ
クタ導出抵抗はMax150Ωに抑制しうろことが判明
した。その2次元寸法を10μs×15μmとし底面な
らびに側面に設ける半導体層の厚さを0.37mとすれ
ば不純物濃度はI X 1.011Icyn−”以上が
必要となるので本発明における限定理由とする。しかも
周波数特性はカットオフ周波数換算で1501+Z〜2
0GH2ニ改善されており、知圧も200V −300
V 、!:内向上ることが明らかである。
It has been found that the collector lead-out resistance of the bipolar transistor formed in this island region can be suppressed to a maximum of 150Ω. If its two-dimensional dimensions are 10 μs×15 μm and the thickness of the semiconductor layer provided on the bottom and side surfaces is 0.37 m, the impurity concentration must be I x 1.011 Icyn-” or more, which is the reason for limitation in the present invention. Moreover, the frequency characteristics are 1501 + Z ~ 2 in terms of cutoff frequency.
0GH2 has been improved, and the intellectual pressure is also 200V -300
V,! : It is clear that the internal level improves.

と言うのは従来素子に比較して前述の特徴をもつので、
コレクタ容量の低減や埋込層の滲み出しによる弊害を除
去できるために優れた特性が発揮できると想定される。
This is because it has the above-mentioned characteristics compared to conventional elements.
It is assumed that excellent characteristics can be exhibited because the collector capacitance can be reduced and the problems caused by seepage of the buried layer can be eliminated.

又この構造を実現するに当っては接合技術の適用に加え
て島領域側面にトレンチ溝を形成する際RIE法による
エツチングにおいて酸化珪素との選択性が有利となり、
前記接合技術によって得られる接合面付近の珪素酸化物
で停止できしかも垂直な側壁が形成可能となる利点をも
つ。
In addition to the application of bonding technology to realize this structure, the selectivity with respect to silicon oxide is advantageous in etching by RIE when forming trench grooves on the side surfaces of the island regions.
This bonding technique has the advantage that it can be stopped at the silicon oxide near the bonding surface and that vertical sidewalls can be formed.

(実施例) 第1図イ〜チにより本発明に係る実施例を詳述するが先
ず接合技術について説明する。この接合技術を適用する
珪素半導体基板のうち下地になるそれは(イ)比抵抗2
5〜50Ω―のP(100)Si基板表面を厚さ1.0
μmに酸化後厚さ400nmのアンドープ多結晶を設け
、こ−にドーズ量1×1018cm−2のAs+をイオ
ン注入する。他の例(ロ)としては比抵抗25〜50 
Q an (7) P (100)SL基板ニトーズ量
10”−19オーダのO+をイオン注入して厚さ約0.
5−の5jO2層を設は更にドーズ量I X 1010
1Ga”のAs十をイオン注入して2層を形成した半導
体基板も適用可能であり、又(イ)のAs+インプラ工
程を省いた半導体基板(ハ)でも差支えない。
(Example) An example according to the present invention will be described in detail with reference to FIGS. Among the silicon semiconductor substrates to which this bonding technology is applied, those that serve as the base are (a) specific resistance 2
5-50Ω- P (100) Si substrate surface with a thickness of 1.0
An undoped polycrystalline film having a thickness of 400 nm after oxidation is provided in the .mu.m region, and As+ is ion-implanted at a dose of 1.times.10@18 cm@-2. Another example (b) is a specific resistance of 25 to 50
Q an (7) P (100) SL substrate O+ ions with a Nitose amount of 10"-19 order are implanted to a thickness of about 0.
5-5jO2 layer is further provided with a dose of I x 1010
A semiconductor substrate in which two layers are formed by ion-implanting 1 Ga'' of As is also applicable, and a semiconductor substrate (c) in which the As+ implantation process of (a) is omitted may also be used.

一方、被接合半導体基板は(イ)(ロ)(ハ)の下地半
導体基板に対応して若干の例がある。(イ)(ロ)に対
しては比抵抗1.5Ω〜2Ω■のN”(100)Si基
板を利用し、その表面と前記多結晶珪素層表面を接合し
、(ハ)に対しては矢張り比抵抗1.5Ω〜2Ω口のN
”(100)Si基板にドーズ量I XIO”cm−”
のAs”を注入してN十層を形成するか、Asドープト
多結晶珪素層をDepo してN+層を設けて酸化物層
表面とこのN+層表面を接合する。
On the other hand, there are some examples of semiconductor substrates to be bonded corresponding to the underlying semiconductor substrates (a), (b), and (c). For (a) and (b), an N'' (100) Si substrate with a specific resistance of 1.5Ω to 2Ω is used, and its surface and the surface of the polycrystalline silicon layer are bonded, and for (c), Arrow specific resistance 1.5Ω~2Ω N
”(100) Dosage amount I XIO”cm-” on Si substrate
Either As'' is implanted to form an N layer, or an As-doped polycrystalline silicon layer is deposited to provide an N+ layer, and the surface of the oxide layer and this N+ layer are bonded.

さて、実際の接合工程では接合面となる多結晶珪素層酸
化物表面を研磨して粗さ500Å以下の鏡面を形成し、
この研磨工程後の表面状態によっては油脂分等を前処理
として除去する。次いで清浄な水で数分程度水洗してか
ら室温のもとてスピンナ処理のような脱水処理を行って
前記鏡面に吸着していると想定される水分はそのま\残
し、過剰な水分を除去するが、この吸着水分が殆んど揮
散する100℃以上の加熱乾燥は避ける。
Now, in the actual bonding process, the polycrystalline silicon layer oxide surface that will be the bonding surface is polished to form a mirror surface with a roughness of 500 Å or less.
Depending on the surface condition after this polishing step, oils and fats may be removed as a pretreatment. Next, after washing with clean water for several minutes, a dehydration treatment such as a spinner treatment is performed at room temperature to remove excess moisture while leaving the moisture that is assumed to have been adsorbed on the mirror surface as it is. However, avoid heating and drying at temperatures above 100°C, where most of this adsorbed moisture will evaporate.

この処理を経たSi半導体基板を例えばクラス1以下の
清浄な大気雰囲気に設けて前記鏡面間に異物(ゴミ)が
実質的に介在しない状態で相互に密着接合して複合半導
体基板を形成する。この複合半導体基板を200℃以上
好ましくは1000’C乃至1200℃に加熱処理して
接合強度を増すこともでき、接合工程時の雰囲気は大気
のほかに酸素もしくは両者の混合雰囲気も適用可能であ
り、接合強度を増す際にもこの雰囲気を採用できる。
The Si semiconductor substrates subjected to this treatment are placed in a clean atmosphere of class 1 or lower, for example, and are closely bonded to each other with substantially no foreign matter (dust) interposed between the mirror surfaces to form a composite semiconductor substrate. The bonding strength can be increased by heat-treating this composite semiconductor substrate at 200°C or higher, preferably 1000'C to 1200°C, and the atmosphere during the bonding process can be air, oxygen, or a mixture of both. This atmosphere can also be used to increase bonding strength.

ところで、この接合工程では前記鏡面に対する水洗工程
によって極性基が形成し、これによる結合によってBu
lk組識と異なる接合層が生まれるために複合半導体基
板が得られると想定される。この接合層は付加する熱負
荷に応じてその境界が変動することも考えられるので、
本発明における接合層は積層構造の半導体基板の導電型
と不純物濃度差の有無に拘らずその境界を画然と区分す
ることだけを意味するものでなく前述の変動状態を包含
するものである。
By the way, in this bonding process, polar groups are formed by the water washing process on the mirror surface, and the bonding caused by this causes the Bu
It is assumed that a composite semiconductor substrate can be obtained because a bonding layer different from the lk structure is created. The boundary of this bonding layer may change depending on the applied heat load, so
The bonding layer in the present invention does not only mean clearly demarcating the boundaries of the semiconductor substrates having a stacked structure, regardless of the presence or absence of a difference in conductivity type and impurity concentration, but also includes the above-mentioned fluctuation state.

この複合半導体基板を形成するに当っては第1図イに示
すようにP型(100)比抵抗25〜50Ω■のSi半
導体基板1の表面に厚さ1.0μmの酸化層2を設け、
次いで厚さ400nmのアンドープ多結晶珪素r3を形
成し、こ\にドーズ量1×1018cm−2のAs+を
イオン注入する。一方、N型(100)比抵抗1.5〜
2Ω口のSi半導体基板4を準備してこの表面と前記多
結晶珪素層表面を前述の接合工程により一体として複合
半導体基板旦を得る。
In forming this composite semiconductor substrate, as shown in FIG.
Next, undoped polycrystalline silicon r3 with a thickness of 400 nm is formed, and As+ is ion-implanted at a dose of 1.times.10@18 cm@-2. On the other hand, N type (100) specific resistance 1.5~
A Si semiconductor substrate 4 with a diameter of 2 Ω is prepared, and its surface and the surface of the polycrystalline silicon layer are integrated by the above-described bonding process to obtain a composite semiconductor substrate.

この被接合Si半導体基板即ちN型(100)Si半導
体基板4を厚さが1μs〜5卯の所望の値になるまでラ
ッピング等の機械的研磨手段により削り取ってから(第
1図イ参照)、この研磨面に厚さ1100nの珪素酸化
物層6を熱酸化法で、次いで減圧CVD法により窒化珪
素層7を厚さ1100nを連続して堆積後素子を形成す
る予定領域外の窒化珪素層をエツチングにより除去する
パターニングを施す。
This Si semiconductor substrate to be bonded, that is, the N-type (100) Si semiconductor substrate 4 is scraped off by mechanical polishing means such as lapping until the thickness reaches a desired value of 1 μs to 5 μs (see FIG. 1A). A silicon oxide layer 6 with a thickness of 1100 nm is deposited on this polished surface by a thermal oxidation method, and then a silicon nitride layer 7 is successively deposited with a thickness of 1100 nm by a low pressure CVD method. Patterning is applied to remove by etching.

更に、この表面にはCVD法により珪素酸化物層8を積
増してから素子形成予定領域を囲む珪素酸化物層6なら
びにCVD珪素酸化物層8を貫通した幅1.5μmの溝
を形成後、積増したCVD珪素酸化物層8をマスクとし
てN型Si基板4及び埋込多結晶珪素層3に垂直な断面
をもっトレンチパターン9を形成して素子を形成する島
領域10を分離する。
Furthermore, a silicon oxide layer 8 is deposited on this surface by the CVD method, and a groove with a width of 1.5 μm is formed through the silicon oxide layer 6 surrounding the area where the element is to be formed and the CVD silicon oxide layer 8. Using the accumulated CVD silicon oxide layer 8 as a mask, a trench pattern 9 having a cross section perpendicular to the N-type Si substrate 4 and the buried polycrystalline silicon layer 3 is formed to separate island regions 10 in which elements will be formed.

この工程はRIE法を適用するが、選択比が取れるので
複合半導体基板旦の下地となるP型(100)基板1に
形成した珪素酸化物層2で停止可能となると同時に断面
垂直なトレンチ溝側壁11が得られるので後述する半瀉
体素子特性にとって有利になる。
This process applies the RIE method, but since it has a selectivity, it can be stopped on the silicon oxide layer 2 formed on the P-type (100) substrate 1, which is the base of the composite semiconductor substrate, and at the same time, it can be stopped on the side walls of the trench with a vertical cross section. 11 can be obtained, which is advantageous for the characteristics of the semi-diaphragm element, which will be described later.

尚マスクとなるCVD珪素酸化物層8の膜厚はトレンチ
溝の深さに応じて減少するが、最終膜厚を1000〜2
000人に保持するように初期膜厚を設定する。(第1
図口) 次いで、全面にAsをドープした多結晶珪素層を厚さ3
00nmに被覆後RIE法により全面にエッチバック法
を施してトレンチ外側ならびに溝底面のAsドープ多結
晶層をエツチングにより除去してトレンチ溝側壁11に
だけAsドープ多結晶珪素層12を残す。(第1図ハ)
尚このAS濃度はI X 10111a11−”以上と
しP型(100)Si半導体基板1に設けた多結晶珪素
層3とほぼ等しい濃度となり又互に連続する形状となる
Note that the film thickness of the CVD silicon oxide layer 8 serving as a mask decreases depending on the depth of the trench, but the final film thickness is 1000-2.
The initial film thickness is set to keep it at 000. (1st
(Fig.
After coating to a thickness of 0.00 nm, the entire surface is etched back by RIE to remove the As-doped polycrystalline layer on the outside of the trench and on the bottom surface of the trench, leaving the As-doped polycrystalline silicon layer 12 only on the sidewalls 11 of the trench. (Figure 1 C)
The AS concentration is I x 10111a11-'' or more, which is approximately the same concentration as that of the polycrystalline silicon layer 3 provided on the P-type (100) Si semiconductor substrate 1, and has a mutually continuous shape.

前記残存窒化珪素層7をマスクとしていわゆるフィール
ド絶縁膜が1.0μsとなる様に選択酸化(LOGO5
)を実施すると同時にトレンチ溝側壁11に被着するA
sドープ多結晶珪素層12ならびに島領域10の底部に
あるAsドープ多結晶珪素層3から島領域10内にAs
の拡散層(図示せず)を設け、同時にトレンチ溝内には
厚さ約1 、2 pmの酸化膜13が形成−される。(
第1図二) この酸化工程ではトレンチ溝内部が完全に埋まり切らな
いので、LPCVD法によってアンドープの多結晶珪素
層14を200nm堆積し、再度のエッチバック工程に
よってトレンチ溝外のアンドープ多結晶珪素層を除去し
て完全に埋込む。
Using the remaining silicon nitride layer 7 as a mask, selective oxidation (LOGO5
) is applied to the trench side wall 11 at the same time.
As is formed in the island region 10 from the s-doped polycrystalline silicon layer 12 and the As-doped polycrystalline silicon layer 3 at the bottom of the island region 10.
A diffusion layer (not shown) is provided, and at the same time, an oxide film 13 with a thickness of about 1 to 2 pm is formed in the trench groove. (
(Fig. 1 2) Since the inside of the trench groove is not completely filled in this oxidation process, an undoped polycrystalline silicon layer 14 of 200 nm is deposited by the LPCVD method, and an undoped polycrystalline silicon layer outside the trench groove is removed by another etch-back process. Remove and completely embed.

この埋込んだアンドープ多結晶珪素層14の表面を厚さ
200nmに酸化後残存する窒化珪素層7に積層する珪
素酸化物層の厚さに相当するものを全面にわたって等方
性エツチング手段により除去して第1図ホを得る。
After the surface of the buried undoped polycrystalline silicon layer 14 is oxidized to a thickness of 200 nm, a layer corresponding to the thickness of the silicon oxide layer laminated on the remaining silicon nitride layer 7 is removed by isotropic etching over the entire surface. Figure 1 shows E.

次にこの窒化珪素層7をマスクとして再度200nmに
LOCO5酸化を追加してから窒化珪素層7ならびにバ
ッファ酸化物層をエツチング工程により除去する。(第
1図へ) 以上の工程を連続的に処理することによって断面がほぼ
直方体形状を示し、その側面及び底面を誘電体(珪素酸
化物)で完全に分離しその側面ならびに底面に隣接する
位置に高濃度の半導体層をもつ島領域を設けることがで
きる。この島領域し二はバイポーラトランジスタを始め
とする種々の能動もしくは受動素子を形成して集積回路
素子カス完成する。実施例では単一の島領域について説
明したが、ν1然であるが複数個を同時に形成できる。
Next, using this silicon nitride layer 7 as a mask, LOCO5 oxidation is again added to a thickness of 200 nm, and then the silicon nitride layer 7 and the buffer oxide layer are removed by an etching process. (See Figure 1) By performing the above steps continuously, the cross section becomes almost a rectangular parallelepiped, and the side and bottom surfaces are completely separated by a dielectric (silicon oxide), and the positions adjacent to the side and bottom surfaces are completely separated. An island region having a highly concentrated semiconductor layer can be provided in the semiconductor layer. Various active or passive elements such as bipolar transistors are formed in this island region 2 to complete the integrated circuit element base. In the embodiment, a single island region has been described, but it is natural that a plurality of island regions can be formed at the same time.

次にこの島領域にバイポーラトランジスタを設置する例
を記述する。
Next, an example of installing a bipolar transistor in this island area will be described.

前述のようにAs十が多結晶珪素層からの拡散層をもつ
N (100)半導体基板4はこのトランジスタのコレ
クタ層として機能するもので、その表面製置は1014
〜” atoms/ccであり、こ\に内部ベース層1
5を表面濃度5 X 101017ato/ccに形成
するが得られるPN接合端はL OG OS酸化によっ
て得たフィールド酸化膜によって保護する。
As mentioned above, the N (100) semiconductor substrate 4 having a diffusion layer from the polycrystalline silicon layer functions as the collector layer of this transistor, and its surface is formed with 1014
~” atoms/cc, and this is the internal base layer 1
5 is formed to a surface concentration of 5×101017 ato/cc, and the resulting PN junction end is protected by a field oxide film obtained by LOGOS oxidation.

次に外部ベース層1.6.16をこの内部ベース層内に
表面濃度I X 101019ato/ccとして設は
更にその中間にエミツタ層17を表面濃度2 X 1.
0”atoms/ccとして形成する。この各不純物導
入によって得られる各領域は何れもいわゆるブレーナ構
造とし、このベース層エミツタ層はそれぞれ電極18,
1.4]を形成し又側壁11に設置する多結晶珪素層1
2とLOCO’S酸化膜表面酸化膜厚面間クタ電極20
を形成してバイポーラ型集積回路素子を完成する。又第
1図チに示すように接合工程を終えてから施す研磨工程
に次いで全面にsbを導入して更にN型を示し比抵抗1
.5〜2Ω■を持つ薄いエピタキシャル層21を成長し
て前述の諸工程を実施することも可能である。尚外部ベ
ース層及びエミツタ層の厚さは0.2〜0.3庫外部ベ
ース層のそれは1μs〜0.5μmとす。
Next, an external base layer 1.6.16 is provided within this internal base layer with a surface concentration of I.times.101019ato/cc, and an emitter layer 17 is further provided in the middle thereof with a surface concentration of 2.times.1.6.1.
0"atoms/cc. Each region obtained by introducing each impurity has a so-called brainer structure, and this base layer and emitter layer are formed with electrodes 18 and 18, respectively.
1.4] and placed on the side wall 11
2 and LOCO'S oxide film surface oxide film thickness interplane electrode 20
is formed to complete a bipolar integrated circuit device. In addition, as shown in Figure 1H, after the bonding process is completed, sb is introduced over the entire surface of the polishing process, which further shows an N-type property and a resistivity of 1.
.. It is also possible to grow a thin epitaxial layer 21 with a thickness of 5 to 2 Ω and carry out the steps described above. The thickness of the external base layer and the emitter layer is 0.2 to 0.3, and that of the external base layer is 1 μs to 0.5 μm.

〔発明の効果〕〔Effect of the invention〕

本発明は複合半導体基板を利用してしかも誘電体で完全
に分離した島領域を設けしかも側面ならびに底面に高濃
度の半導体層を設けたので朱子間の寄生効果も解消され
る外に、コレクタ抵抗も軽減され従来カットオフ周波数
換算で10〜146H2の高周波特性に対して15〜2
0GH2に改善され、又LSIの回路やパターンの設計
がし易い利点があるのでシステムとしての特性向上が期
待できる。更に高速デバイスだけでなく高耐圧デバイス
への応用も可能であり、20〜300■も達成可能であ
る。
The present invention utilizes a composite semiconductor substrate, provides island regions completely separated by a dielectric material, and provides highly concentrated semiconductor layers on the side and bottom surfaces, which eliminates the parasitic effect between satin particles, as well as collector resistance. The cut-off frequency has been reduced to 15-2 compared to the conventional cut-off frequency of 10-146H2.
0GH2, and has the advantage of making it easy to design LSI circuits and patterns, so improvements in system characteristics can be expected. Furthermore, it can be applied not only to high-speed devices but also to high-voltage devices, and 20 to 300 μm can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ乃至チは本発明に係る実施例の製造経過を示す
断面図、第2図は従来の集積回路要部を示す断面図であ
る。
FIGS. 1A to 1H are cross-sectional views showing the manufacturing process of an embodiment according to the present invention, and FIG. 2 is a cross-sectional view showing the main parts of a conventional integrated circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)第1の半導体基板と、この半導体基板表面から内
部に向けて設ける断面ほぼ直方体の複数の島領域と、こ
の島領域間に配置する誘電体層と、前記島領域の側部な
らびに底部に設ける1×10^1^8cm^−^3以上
の不純物濃度をもつ半導体層と、前記半導体基板表面の
反対側に位置するこの半導体層表面側に形成する接合層
と、この接合層に固定する第2半導体基板と、前記第1
の半導体基板表面を覆う絶縁物層と、この絶縁物層を除
去して露出する前記島領域に不純物を導入して形成する
複数のPN接合と、前記絶縁物層が覆うこのPN接合端
と、前記島領域側部に設ける半導体層ならびに前記半導
体基板表面を接続して形成する電極と、前記PN接合で
囲む領域に配置する他の電極とを具備することを特徴と
する集積回路素子。
(1) A first semiconductor substrate, a plurality of island regions having a substantially rectangular cross section provided from the surface of the semiconductor substrate inward, a dielectric layer disposed between the island regions, and side and bottom portions of the island regions. A semiconductor layer having an impurity concentration of 1×10^1^8 cm^-^3 or more provided in the semiconductor substrate, a bonding layer formed on the surface side of the semiconductor layer located on the opposite side of the semiconductor substrate surface, and a bonding layer fixed to the bonding layer. a second semiconductor substrate;
an insulating layer covering the surface of the semiconductor substrate, a plurality of PN junctions formed by introducing impurities into the island region exposed by removing the insulating layer, and an end of the PN junction covered by the insulating layer; An integrated circuit element comprising: an electrode formed by connecting a semiconductor layer provided on the side of the island region and a surface of the semiconductor substrate; and another electrode arranged in a region surrounded by the PN junction.
(2)被接合半導体基板ならびに他の半導体基板を準備
する工程と、この他の半導体基板を酸化層を形成する工
程と、何れか一方の半導体基板表面に1×10^1^8
cm^−^3以上の不純物濃度をもつ半導体層を形成す
る工程と、この半導体層表面と何れか一方の前記半導体
基板表面を接合して複合半導体基板を形成する工程と、
この複合半導体基板を構成する前記被接合半導体基板の
露出表面に厚さを減小する手段を施す工程と、この手段
を施した複合半導体基板にマスクパターンを形成する工
程と、残存するマスク以外の表面から前記半導体層に達
するトレンチ溝を形成する工程と、このトレンチ溝側壁
に1×10^1^8cm^−^3以上の不純物濃度をも
つ半導体層を形成する工程と、酸化工程と、前記トレン
チ溝内に酸化物を充填してから前記複合半導体基板表面
を平坦化すると共に余分の半導体層を除去する工程と、
前記マスク層を除去すると共にバッファ酸化物層を除去
する工程と、露出する島領域に不純物を導入する工程と
、これにより得られるPN接合に囲まれる領域に電極を
形成する工程と、前記トレンチ溝側壁に形成する半導体
層と前記複合半導体基板表面を接続する他の電極を形成
する工程とを具備することを特徴とする集積回路素子の
製造方法。
(2) A step of preparing a semiconductor substrate to be bonded and another semiconductor substrate, a step of forming an oxide layer on the other semiconductor substrate, and a step of forming an oxide layer of 1×10^1^8 on the surface of one of the semiconductor substrates.
a step of forming a semiconductor layer having an impurity concentration of cm^-^3 or more, and a step of bonding the surface of this semiconductor layer to the surface of one of the semiconductor substrates to form a composite semiconductor substrate;
A step of applying a means to reduce the thickness of the exposed surface of the semiconductor substrate to be bonded constituting this composite semiconductor substrate, a step of forming a mask pattern on the composite semiconductor substrate to which the method has been applied, a step of forming a trench groove reaching the semiconductor layer from the surface; a step of forming a semiconductor layer having an impurity concentration of 1×10^1^8 cm^-^3 or more on the side wall of the trench; an oxidation step; filling the trench groove with oxide and then planarizing the surface of the composite semiconductor substrate and removing the excess semiconductor layer;
a step of removing the mask layer and the buffer oxide layer; a step of introducing impurities into the exposed island region; a step of forming an electrode in the region surrounded by the resulting PN junction; A method of manufacturing an integrated circuit device, comprising the step of forming another electrode connecting a semiconductor layer formed on a side wall and a surface of the composite semiconductor substrate.
JP61271773A 1986-11-17 1986-11-17 Integrated circuit element and manufacture thereof Pending JPS63126243A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61271773A JPS63126243A (en) 1986-11-17 1986-11-17 Integrated circuit element and manufacture thereof
KR1019870012886A KR910001909B1 (en) 1986-11-17 1987-11-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271773A JPS63126243A (en) 1986-11-17 1986-11-17 Integrated circuit element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63126243A true JPS63126243A (en) 1988-05-30

Family

ID=17504647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271773A Pending JPS63126243A (en) 1986-11-17 1986-11-17 Integrated circuit element and manufacture thereof

Country Status (2)

Country Link
JP (1) JPS63126243A (en)
KR (1) KR910001909B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112746A (en) * 1987-10-27 1989-05-01 Nippon Denso Co Ltd Semiconductor device
JPH0258873A (en) * 1988-08-25 1990-02-28 Toshiba Corp Lamination structure semiconductor substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497997A (en) * 1972-05-12 1974-01-24
JPS5731171A (en) * 1980-07-31 1982-02-19 Fujitsu Ltd Semiconductor device
JPS6064481A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Semiconductor device
JPS615544A (en) * 1984-06-19 1986-01-11 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497997A (en) * 1972-05-12 1974-01-24
JPS5731171A (en) * 1980-07-31 1982-02-19 Fujitsu Ltd Semiconductor device
JPS6064481A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Semiconductor device
JPS615544A (en) * 1984-06-19 1986-01-11 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112746A (en) * 1987-10-27 1989-05-01 Nippon Denso Co Ltd Semiconductor device
JPH0258873A (en) * 1988-08-25 1990-02-28 Toshiba Corp Lamination structure semiconductor substrate

Also Published As

Publication number Publication date
KR910001909B1 (en) 1991-03-30
KR880006769A (en) 1988-07-25

Similar Documents

Publication Publication Date Title
US6835629B2 (en) Power integrated circuit with vertical current flow and related manufacturing process
US5449946A (en) Semiconductor device provided with isolation region
JP2003309261A (en) Semiconductor device
JPS6276645A (en) Structure of composite semiconductor crystal
JP2000196103A (en) Soi element and its manufacture
US6506638B1 (en) Vertical double gate transistor structure
US7071530B1 (en) Multiple layer structure for substrate noise isolation
JP3014012B2 (en) Method for manufacturing semiconductor device
US5358884A (en) Dual purpose collector contact and isolation scheme for advanced bicmos processes
JP3582890B2 (en) Semiconductor device
US5641691A (en) Method for fabricating complementary vertical bipolar junction transistors in silicon-on-sapphire
JP2012238741A (en) Semiconductor device and manufacturing method for the same
KR20030091523A (en) Method of forming a SOI substrate using wafer bonding techniques and method of manufacturing a high voltage complementary bipolar transistor using the SOI substrate
KR101206628B1 (en) Thick oxide region in a semiconductor device and method of forming same
KR100319615B1 (en) Isolation method in seconductor device
JPS63126243A (en) Integrated circuit element and manufacture thereof
US6175135B1 (en) Trench contact structure of silicon on insulator
JP2500630B2 (en) Semiconductor device
JP3243071B2 (en) Dielectric separated type semiconductor device
JPS61164238A (en) Composite semiconductor device
JPH05506749A (en) Method for manufacturing isolated single crystal silicon islands
US11348944B2 (en) Semiconductor wafer with devices having different top layer thicknesses
JPH11233616A (en) Semiconductor device and its manufacturing method
KR100268866B1 (en) Semiconductor device and method for fabricating the same
CN116130405A (en) Semiconductor-on-insulator structure and method for manufacturing same