JPS6312392B2 - - Google Patents
Info
- Publication number
- JPS6312392B2 JPS6312392B2 JP2886282A JP2886282A JPS6312392B2 JP S6312392 B2 JPS6312392 B2 JP S6312392B2 JP 2886282 A JP2886282 A JP 2886282A JP 2886282 A JP2886282 A JP 2886282A JP S6312392 B2 JPS6312392 B2 JP S6312392B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gaalas
- gaalas layer
- gaas
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
本発明は動作速度が速く消費電力の小さい化合
物半導体電界効果トランジスタに関するものであ
る。
物半導体電界効果トランジスタに関するものであ
る。
従来マイクロ波帯で動作させる電界効果トラン
ジスタ(以下FETという)としてn型GaAs
FETが用いられているが、さらに高速度で動作
するFETとして変調ドーピングによつて生じる
2次元電子ガスをソース・ドレイン間の電流の担
体として利用したハイ・エレクトロン・モビリテ
イ・トランジスタ(以下HEMTという)が発表
されている。
ジスタ(以下FETという)としてn型GaAs
FETが用いられているが、さらに高速度で動作
するFETとして変調ドーピングによつて生じる
2次元電子ガスをソース・ドレイン間の電流の担
体として利用したハイ・エレクトロン・モビリテ
イ・トランジスタ(以下HEMTという)が発表
されている。
HEMTではチヤネルを構成する半導体層の不
純物濃度は1×1016/cm3以下であるが、通常の
GaAs FETでは5×1016/cm3以上である。従つ
てHEMTの方が電流の担体である電子に対する
不純物散乱が少なく電子の移動度が大きい。
HEMTの相互コンダクタンスは室温で通常の
GaAs FETの相互コンダクタンスの1.2倍あり77
〓では5倍以上ある。また電流の遮断周波数も
HEMTの方が高くなる。このようなHEMTの動
作原理や特性上の利点については例えば「ジヤパ
ニーズ・ジヤーナル・オブ・アプライド・フイジ
ツクス」の1980年5月号、L225〜L227に発表さ
れている。
純物濃度は1×1016/cm3以下であるが、通常の
GaAs FETでは5×1016/cm3以上である。従つ
てHEMTの方が電流の担体である電子に対する
不純物散乱が少なく電子の移動度が大きい。
HEMTの相互コンダクタンスは室温で通常の
GaAs FETの相互コンダクタンスの1.2倍あり77
〓では5倍以上ある。また電流の遮断周波数も
HEMTの方が高くなる。このようなHEMTの動
作原理や特性上の利点については例えば「ジヤパ
ニーズ・ジヤーナル・オブ・アプライド・フイジ
ツクス」の1980年5月号、L225〜L227に発表さ
れている。
HEMTは電流の遮断周波数が高いことから高
速で動作する論理回路に適用することができる。
論理回路のインバータを構成するスイツチングト
ランジスタとしてはノーマリオフのFETの方が
消費電力を小さくし回路構成を簡単にするためノ
ーマリオンのFETよりも好ましい。
速で動作する論理回路に適用することができる。
論理回路のインバータを構成するスイツチングト
ランジスタとしてはノーマリオフのFETの方が
消費電力を小さくし回路構成を簡単にするためノ
ーマリオンのFETよりも好ましい。
第1図はGaAsとGaAlAsのヘテロ接合を用い
たノーマリオフの従来のHEMTを示すものであ
り、1はクロームなどをドープしたGaAsの半絶
縁性基板、2はノンドープのGaAs層でドナー濃
度は1×1016/cm3以下であり厚さは2000Åであ
る。3はn型のGaAlAs層でドナー濃度が1×
1018/cm3であり厚さが600Åである。n型の
GaAlAs層3の不純物であるドナーから発生した
電子がGaAs層2に入りより高い移動度で走行す
るように、n型のGaAlAs層3の中のAlAsのモ
ル分率は0.25〜0.35にしてある。4はn型の
GaAs層でドナー濃度のピークは2×1018/cm3で
あり厚さは500Åである。このn型のGaAs層4
はその上のソース電極5およびドレイン電極6と
の間でオーム性接触状態にある。7はゲート電極
でn型のGaAlAs層3との界面はシヨツトキ接合
になつており、ゲート電極7のソース電極5との
電位差がシヨツトキ接合のビルトインポテンシヤ
ルからしきい値電位を引いた電圧すなわちピンチ
オフ電圧を越えると順方向の電流が流れる。通常
このビルトインポテンシヤルは0.9V程度である。
たノーマリオフの従来のHEMTを示すものであ
り、1はクロームなどをドープしたGaAsの半絶
縁性基板、2はノンドープのGaAs層でドナー濃
度は1×1016/cm3以下であり厚さは2000Åであ
る。3はn型のGaAlAs層でドナー濃度が1×
1018/cm3であり厚さが600Åである。n型の
GaAlAs層3の不純物であるドナーから発生した
電子がGaAs層2に入りより高い移動度で走行す
るように、n型のGaAlAs層3の中のAlAsのモ
ル分率は0.25〜0.35にしてある。4はn型の
GaAs層でドナー濃度のピークは2×1018/cm3で
あり厚さは500Åである。このn型のGaAs層4
はその上のソース電極5およびドレイン電極6と
の間でオーム性接触状態にある。7はゲート電極
でn型のGaAlAs層3との界面はシヨツトキ接合
になつており、ゲート電極7のソース電極5との
電位差がシヨツトキ接合のビルトインポテンシヤ
ルからしきい値電位を引いた電圧すなわちピンチ
オフ電圧を越えると順方向の電流が流れる。通常
このビルトインポテンシヤルは0.9V程度である。
第2図はこのようなノーマリオフのHEMTを
論理回路に応用したもので直接結合型のインバー
タの2段縦続接続回路であり、10および11はス
イツチングトランジスタ、12および13は負荷
抵抗、14は論理信号入力端子、15は結合点で
ある。スイツチングトランジスタ10,11をよ
り高速で動作させるにはドレインバイアス電圧
VDDを高くする必要がある。しかしドレインバイ
アス電圧VDDを高くし結合点15の電位がピンチ
オフ電圧を越えるとスイツチングトランジスタ1
0がオフの状態でもスイツチングトランジスタ1
1のゲートからソース電流が流れるのでスイツチ
ングトランジスタ11の消費電力が増えるという
欠点がある。
論理回路に応用したもので直接結合型のインバー
タの2段縦続接続回路であり、10および11はス
イツチングトランジスタ、12および13は負荷
抵抗、14は論理信号入力端子、15は結合点で
ある。スイツチングトランジスタ10,11をよ
り高速で動作させるにはドレインバイアス電圧
VDDを高くする必要がある。しかしドレインバイ
アス電圧VDDを高くし結合点15の電位がピンチ
オフ電圧を越えるとスイツチングトランジスタ1
0がオフの状態でもスイツチングトランジスタ1
1のゲートからソース電流が流れるのでスイツチ
ングトランジスタ11の消費電力が増えるという
欠点がある。
このようにゲートに流れる順方向電流をなくす
ためにはゲートのシヨツトキ接合をMIS構造すな
わち金属−絶縁膜−半導体構造にすればよい、第
1図でいえばゲート電極7とn型のGaAlAs層3
の間に絶縁膜を介在させればよい。しかしなが
ら、化合物半導体においてはこのようなMIS構造
をゲートに用いた場合、絶縁膜の電荷容量が信号
周波数によつて大きく変化したり信号電圧の変化
の履歴が残つてしまうので、FETとして十分な
性能が得られないことは周知の事実である。
ためにはゲートのシヨツトキ接合をMIS構造すな
わち金属−絶縁膜−半導体構造にすればよい、第
1図でいえばゲート電極7とn型のGaAlAs層3
の間に絶縁膜を介在させればよい。しかしなが
ら、化合物半導体においてはこのようなMIS構造
をゲートに用いた場合、絶縁膜の電荷容量が信号
周波数によつて大きく変化したり信号電圧の変化
の履歴が残つてしまうので、FETとして十分な
性能が得られないことは周知の事実である。
本発明はこのような欠点を除去するため、ゲー
ト電極とキヤリアとなる電子を発生させるドナー
を含む半導体層の間にバンドギヤツプの大きいノ
ンドープの半導体層を介在させたものであり、以
下詳細に説明する。
ト電極とキヤリアとなる電子を発生させるドナー
を含む半導体層の間にバンドギヤツプの大きいノ
ンドープの半導体層を介在させたものであり、以
下詳細に説明する。
第3図は本発明の一実施例を示すものであり、
ゲート電極7とn型のGaAlAs層3との間にノン
ドープで比抵抗の高いGaAlAs層8を介在させた
ものである。第1図と同じものは同一番号を付し
ている。
ゲート電極7とn型のGaAlAs層3との間にノン
ドープで比抵抗の高いGaAlAs層8を介在させた
ものである。第1図と同じものは同一番号を付し
ている。
第4図は第3図のA−A′−A″の位置における
AlAsのモル分率とドナー濃度を示したものであ
り、GaAlAs層8中のAlAsのモル分率はn型の
GaAlAs層3中のモル分率からゆつくりと変化さ
せることによりGaAlAs層8の結晶性が悪くなる
のを防いでいる。GaAlAs中の電子移動度は
GaAlAs中のAlAsのモル分率が0.3から0.4に増え
ると1/10になる。従つてGaAlAs層8中のAlAs
のモル分率を0.4以上にすることによつて、AlAs
のモル分率が0.3のn型のGaAlAs層3よりも比抵
抗を10倍以上にすることができる。また第4図に
示すようにドナー濃度NDとアクセプタ濃度NAの
差ND−NAが1×1014/cm3の場合、移動度が700
cm2/V・S程度でありGaAlAs層8の比抵抗は
100Ωcm程度になる。従つてGaAlAs層8の厚さ
を5000Å、そのソース電極5−ドレイン電極6方
向の長さを1μm、ゲート幅を10μmとした場合、
ゲート電極7とn型のGaAlAs層3の間に入る抵
抗は50KΩ程度になる。またゲート電極7と
GaAlAs層8との界面はシヨツトキ接合を形成し
ている。よつて第3図の実施例に示した本発明の
構造のHEMTにおいてはソース・ドレイン間が
オンの時のゲート電流を従来のHEMTの1/1000
以下にすることができる。
AlAsのモル分率とドナー濃度を示したものであ
り、GaAlAs層8中のAlAsのモル分率はn型の
GaAlAs層3中のモル分率からゆつくりと変化さ
せることによりGaAlAs層8の結晶性が悪くなる
のを防いでいる。GaAlAs中の電子移動度は
GaAlAs中のAlAsのモル分率が0.3から0.4に増え
ると1/10になる。従つてGaAlAs層8中のAlAs
のモル分率を0.4以上にすることによつて、AlAs
のモル分率が0.3のn型のGaAlAs層3よりも比抵
抗を10倍以上にすることができる。また第4図に
示すようにドナー濃度NDとアクセプタ濃度NAの
差ND−NAが1×1014/cm3の場合、移動度が700
cm2/V・S程度でありGaAlAs層8の比抵抗は
100Ωcm程度になる。従つてGaAlAs層8の厚さ
を5000Å、そのソース電極5−ドレイン電極6方
向の長さを1μm、ゲート幅を10μmとした場合、
ゲート電極7とn型のGaAlAs層3の間に入る抵
抗は50KΩ程度になる。またゲート電極7と
GaAlAs層8との界面はシヨツトキ接合を形成し
ている。よつて第3図の実施例に示した本発明の
構造のHEMTにおいてはソース・ドレイン間が
オンの時のゲート電流を従来のHEMTの1/1000
以下にすることができる。
このように第3図の実施例に示したHEMTは、
ソース・ドレイン間の電流がオンの時にゲートに
流れる電流が小さく、その時のソース・ゲート間
の抵抗は数10KΩ以上であり、ソース・ドレイン
抵抗は5KΩ以下である。従つて第2図に示す論
理回路にこの本発明のHEMTを適用すれば、結
合点15の電圧がピンチオフ電圧より高くてもス
イツチングトランジスタ11のシヨツトキ接合に
流れる電流を十分小さくできるので消費電力を小
さくできる。さらにソース・ゲート間の寄生容量
を従来のHEMTより低減できるので電流の遮断
周波数を高くすることができより高速の動作が可
能となる。
ソース・ドレイン間の電流がオンの時にゲートに
流れる電流が小さく、その時のソース・ゲート間
の抵抗は数10KΩ以上であり、ソース・ドレイン
抵抗は5KΩ以下である。従つて第2図に示す論
理回路にこの本発明のHEMTを適用すれば、結
合点15の電圧がピンチオフ電圧より高くてもス
イツチングトランジスタ11のシヨツトキ接合に
流れる電流を十分小さくできるので消費電力を小
さくできる。さらにソース・ゲート間の寄生容量
を従来のHEMTより低減できるので電流の遮断
周波数を高くすることができより高速の動作が可
能となる。
本発明は、ゲート電極と不純物がドーピングさ
れたGaAlAs層との間にAlAsのモル分率が高く
かつ比抵抗も高いGaAlAs層を介在させているの
で、ゲート電流を低減できかつより高速の動作が
可能となるので、高周波トランジスタや高速で動
作する論理回路などに利用できる。
れたGaAlAs層との間にAlAsのモル分率が高く
かつ比抵抗も高いGaAlAs層を介在させているの
で、ゲート電流を低減できかつより高速の動作が
可能となるので、高周波トランジスタや高速で動
作する論理回路などに利用できる。
第1図は従来の化合物半導体電界効果トランジ
スタの説明図、第2図は直接結合型のインバータ
の2段縦続接続回路図、第3図は本発明の一実施
例の化合物半導体電界効果トランジスタの説明
図、第4図はそのモル分率とドナー濃度を示す図
である。 2…GaAs層、3…n型のGaAlAs層、7…ゲ
ート電極、8…GaAlAs層。
スタの説明図、第2図は直接結合型のインバータ
の2段縦続接続回路図、第3図は本発明の一実施
例の化合物半導体電界効果トランジスタの説明
図、第4図はそのモル分率とドナー濃度を示す図
である。 2…GaAs層、3…n型のGaAlAs層、7…ゲ
ート電極、8…GaAlAs層。
Claims (1)
- 1 半絶縁性基板上に設けられた、チヤネルとな
るノンドープのGaAs層と、このGaAs層の上に
形成された一導電型の不純物がドーピングされた
第1GaAlAs層と、この第1GaAlAs層よりAlAsの
モル分率及び比抵抗がこの第1GaAlAs層から連
続的に高くなるようにこの第1GaAlAs層上に形
成された第2GaAlAs層と、この第2GaAlAs層の
上に形成されたシヨツトキゲート電極とを有する
ことを特徴とする化合物半導体電界効果トランジ
スタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2886282A JPS58147158A (ja) | 1982-02-26 | 1982-02-26 | 化合物半導体電界効果トランジスタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2886282A JPS58147158A (ja) | 1982-02-26 | 1982-02-26 | 化合物半導体電界効果トランジスタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58147158A JPS58147158A (ja) | 1983-09-01 |
JPS6312392B2 true JPS6312392B2 (ja) | 1988-03-18 |
Family
ID=12260182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2886282A Granted JPS58147158A (ja) | 1982-02-26 | 1982-02-26 | 化合物半導体電界効果トランジスタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58147158A (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59968A (ja) * | 1982-06-25 | 1984-01-06 | Fujitsu Ltd | 半導体装置 |
JPS594085A (ja) * | 1982-06-30 | 1984-01-10 | Fujitsu Ltd | 半導体装置 |
JPS59106160A (ja) * | 1982-12-11 | 1984-06-19 | Nippon Telegr & Teleph Corp <Ntt> | 電界効果トランジスタ |
JPS59181673A (ja) * | 1983-03-31 | 1984-10-16 | Fujitsu Ltd | 半導体装置 |
JPH0789584B2 (ja) * | 1984-12-19 | 1995-09-27 | 日本電気株式会社 | 半導体装置 |
JPH0793322B2 (ja) * | 1985-09-27 | 1995-10-09 | 株式会社日立製作所 | 半導体装置 |
US4855797A (en) * | 1987-07-06 | 1989-08-08 | Siemens Corporate Research And Support, Inc. | Modulation doped high electron mobility transistor with n-i-p-i structure |
JP2765843B2 (ja) * | 1987-12-18 | 1998-06-18 | 株式会社日立製作所 | 半導体装置 |
-
1982
- 1982-02-26 JP JP2886282A patent/JPS58147158A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58147158A (ja) | 1983-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5705827A (en) | Tunnel transistor and method of manufacturing same | |
JP2773487B2 (ja) | トンネルトランジスタ | |
JPH0258773B2 (ja) | ||
EP0334006A1 (en) | Stacked channel heterojunction fet | |
US4807001A (en) | Heterojunction field-effect device | |
JPS6312392B2 (ja) | ||
US4652896A (en) | Modulation doped GaAs/AlGaAs field effect transistor | |
US4903091A (en) | Heterojunction transistor having bipolar characteristics | |
JPH0558580B2 (ja) | ||
JPH023540B2 (ja) | ||
US4593300A (en) | Folded logic gate | |
JP2671790B2 (ja) | 微分負性抵抗トランジスタ | |
JP2553673B2 (ja) | 電界効果トランジスタ | |
JPS60259021A (ja) | 論理回路装置 | |
JP2792295B2 (ja) | トンネルトランジスタ | |
JP2695832B2 (ja) | ヘテロ接合型電界効果トランジスタ | |
JPS6196770A (ja) | 半導体装置 | |
JPH0261149B2 (ja) | ||
JP2991297B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
JPS6211512B2 (ja) | ||
JPS62268165A (ja) | 電界効果トランジスタ | |
JP3438347B2 (ja) | 半導体装置 | |
JP2778447B2 (ja) | トンネルトランジスタおよびその製造方法 | |
JP2671856B2 (ja) | トンネルトランジスタ及びその製造方法 | |
JPS6159877A (ja) | 半導体集積回路 |