JPS63122116A - Manufacture of modulated doped superlattice structure - Google Patents

Manufacture of modulated doped superlattice structure

Info

Publication number
JPS63122116A
JPS63122116A JP26815286A JP26815286A JPS63122116A JP S63122116 A JPS63122116 A JP S63122116A JP 26815286 A JP26815286 A JP 26815286A JP 26815286 A JP26815286 A JP 26815286A JP S63122116 A JPS63122116 A JP S63122116A
Authority
JP
Japan
Prior art keywords
type
doped
superlattice structure
silicon
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26815286A
Other languages
Japanese (ja)
Inventor
Keitaro Fujimori
啓太郎 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26815286A priority Critical patent/JPS63122116A/en
Publication of JPS63122116A publication Critical patent/JPS63122116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form P-type and N-type modulated doped superlattice structures in one superlattice forming step by simultaneously performing P-type and N-type modulated dopings on a substrate formed stereoscopically by an MBE device having two types of P-type and N-type impurity sources having different incident directions and at least two types of material sources. CONSTITUTION:A P-type dopant inlet 1, a silicon material inlet 2 for SiH2, a germanium material inlet 3 for GeH4, and N-type dopant inlet 4 are provided in an MEB device for a modulated doped superlattice structure. A P-type dopant is supplied from a direction 21 while supplying silicon in a direction 22, and an N-type dopant is supplied from a direction 23 into a chamber while supplying the silicon and the germanium from a direction 22. At this time, P-type and N-type impurities are simultaneously charged to a section 24, but since no N-type impurity is incident to the section 24, it is doped in the P-type, and since a P-type impurity is not incident to a section 26, it is doped in N-type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、P型とn型の変調ドーピング超格子構造の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing P-type and n-type modulated doping superlattice structures.

〔従来の技術〕[Conventional technology]

変調ドーピング超格子構造は、1970年ZSakiら
によりて提案され、1978年Ding1eらによって
、GaA3/AtXGa 1−XA5t系でそれが実現
された。その後、多くの報告があるが、S i / G
 eJ X 311−X fAなどでも2次元電子ガス
、2次元ホールガスの存在が確認されている。
A modulated doping superlattice structure was proposed by ZSaki et al. in 1970, and was realized in the GaA3/AtXGa 1-XA5t system by Dingle et al. in 1978. Since then, there have been many reports, but S i / G
The existence of two-dimensional electron gas and two-dimensional hole gas has also been confirmed in eJ X 311-X fA and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、変調ドーピングは、結晶成長時、すなわち超格
子構造作成中に限り行なうことが可能であるために、同
一基板上へP型とn型の変調ドーピングを行うためには
、少なくとも2回の結晶成長工程が必要とされる。A 
L x G a 1−X A a系ではホールの移動度
が小さいため、P型変調ドーピングはあまり注目されて
−ないが、8l−Ge系など、電子とホールの移動度が
どちらもある程度大きい材料では、変調ドーピング超格
子構造に、Pfiもn型も利用価値が大きい、すなわち
相補型の変調ドーピング超格子トランジスタによる高速
で低消費電力動作する集積回路が可能となる。しかし2
回にわたる超格子構造の形成は相補型のトランジスタの
形成を困難にするばかりでなく、スループットが小さい
超格子構造形成に大きな負担となる。本発明はこのよう
な問題点を解決するもので、その目的とするところは、
P型とn型の変調ドーピング超格子構造を1回の超格子
構造形成工程で行う方法を提供するところにある。
However, since modulation doping can only be performed during crystal growth, that is, during the creation of a superlattice structure, in order to perform modulation doping of P-type and n-type on the same substrate, it is necessary to conduct the crystal at least twice. A growing process is required. A
In the L x Ga 1-X A a system, the mobility of holes is small, so P-type modulation doping has not received much attention, but materials such as the 8l-Ge system, in which both electron and hole mobilities are high to some extent, Now, in the modulation doping superlattice structure, both Pfi and n-type have great utility value, that is, it is possible to create an integrated circuit that operates at high speed and with low power consumption using complementary modulation doping superlattice transistors. But 2
Forming a superlattice structure over multiple times not only makes it difficult to form complementary transistors, but also puts a heavy burden on superlattice structure formation with low throughput. The present invention is intended to solve these problems, and its purpose is to:
The object of the present invention is to provide a method for forming P-type and n-type modulation doped superlattice structures in one superlattice structure formation process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の変調ドーピング超格子構造の製造方法はP型と
n型の2種類の入射方向が異なる不純物源と、少なくと
も2種類の原材料源を備えたMBE装置に於いて、立体
的に加工された基板を用いて、P型に変調ドープされた
超格子構造の部分と、n型に変調ドープされた超格子構
造の部分を1回の超格子構造形成工程で作成する。すな
わち、分子線の直進性を利用することによりP型とn型
の不純物を同時に高真空チャンバー中に導入しても各々
の不純物が同時にとりこまれてしまわない機に、2個の
不純物導入口の位置を離し、2種類の分子線が同時に入
射しない形状に基板を加工を施すことによる。
The method for manufacturing a modulated doping superlattice structure of the present invention is performed using an MBE apparatus equipped with two types of impurity sources, P-type and n-type, with different incident directions, and at least two types of raw material sources. Using a substrate, a P-type modulation-doped superlattice structure part and an n-type modulation-doping superlattice structure part are created in one superlattice structure forming process. In other words, by utilizing the straightness of molecular beams, even if P-type and N-type impurities are simultaneously introduced into a high vacuum chamber, each impurity will not be taken in at the same time. By separating the positions and processing the substrate into a shape that prevents two types of molecular beams from being incident at the same time.

〔実施例〕〔Example〕

以下、本発明について実施例に基づいて詳細に説明する
。第1図は本発明の変調ドーピング超格子構造の製造方
法を実施するためのMBK装置の概略図である。高真空
排気系1分析装置、ウェハ導入系等の部分は省略しであ
る。また、実施例では5i−Ge系のガスソースのMB
Fiについて説明するが、AtxGai−xAa系や蒸
発セル等を用いた固体ソースのMBK、さらには、各セ
ルにイオン化装置や、J、 O’、 Bean  らに
よる(J。
Hereinafter, the present invention will be described in detail based on examples. FIG. 1 is a schematic diagram of an MBK apparatus for carrying out the method of manufacturing a modulation-doped superlattice structure of the present invention. Portions such as the high vacuum evacuation system 1 analysis device and wafer introduction system are omitted. In addition, in the example, MB of the 5i-Ge gas source
Regarding Fi, we will discuss MBK with a solid source using the AtxGai-xAa system or an evaporation cell, as well as an ionization device in each cell, as described by J, O', Bean et al. (J.

vac  Soc  Tech  20 157 19
82)のような中性粒子トラップを用いたイオンソース
な用いても、本発明の製造方法が利用できることは明ら
かである。1はP型ドーパントの導入口、2はSiH4
等のシリコン原料導入口、3はG e H4等のゲルマ
ニウム原料導入口、4はn型ドーパントの導入口である
。これらの原料ガスを必要に応じて5,6,7.8の各
熱分解室で加熱しt奄、9.10,11,12の各ガス
吹出し口から高真空チャンバー16に導入するようにな
っている。
vac Soc Tech 20 157 19
It is clear that the manufacturing method of the present invention can also be used with an ion source using a neutral particle trap such as 82). 1 is the introduction port for P-type dopant, 2 is SiH4
3 is a germanium raw material inlet such as G e H4, and 4 is an n-type dopant inlet. These raw material gases are heated in the pyrolysis chambers 5, 6, and 7.8 as necessary, and then introduced into the high vacuum chamber 16 from the gas outlets 9.10, 11, and 12. ing.

13はシリコン基板、14はサセプタであり、15は排
気口で高真空排気系に接続されている。
13 is a silicon substrate, 14 is a susceptor, and 15 is an exhaust port connected to a high vacuum exhaust system.

特に注意すべきことは、P型ドーパント吹出し口とn型
ドーパント吹出口がシリコン基板に対して、別方向に設
けられている点である0次にこの装置を用いて変調ドー
ピング超格子構造を作成する方法について説明する。
What should be noted in particular is that the P-type dopant outlet and the N-type dopant outlet are provided in different directions with respect to the silicon substrate. Using this device to create a modulation doping superlattice structure This section explains how to do this.

第2図は立体的に加工されたシリコン基板上にP型とn
型の変調ドーピング超格子構造を形成する方法を簡単に
説明するためのものである。21はMBK装置中に於け
るP型ドーパントの入射方向を示すもので、22はシリ
コン及びゲルマニウム、23はn型ドーパントそれぞれ
の入射方向を示している。27は井戸型あるいはストラ
イプ状に加工されたシリフン基板断面図である。Si/
G e x S i l−x系の変調ドーピング超格子
構造では、G e x S i L−x層あるいはSi
層中にドーパントを導入し、2次元電子ガス及び2次元
ホールガスを形成する。ノンドープ81層の成長時には
、22の方向からシリコンのみを供給する。Ge、 s
 1l−xFIJの成長も22の方向から、シリコン層
形成時にn型ドーピングを行なうが、22の方向からシ
リコンを供給しなか、ら、21の方向からP型ドーパン
トを供給し、シリコンとゲルマニウムを供給しなから2
3の方向からngドーパントをチャンバー内に導入する
。このとき、24の部分には、P型とn型の不純物が同
時にとりこまれるが、25の部分はn型不純物が入射し
ないためにP型にドーピングされ、260部分はP型不
純物が入射しないため、n型にドーピングされる。
Figure 2 shows P type and n type on a three-dimensionally processed silicon substrate.
This is intended to briefly explain the method of forming a type of modulation doped superlattice structure. Reference numeral 21 indicates the direction of incidence of the P-type dopant in the MBK device, 22 indicates the direction of incidence of silicon and germanium, and 23 indicates the direction of incidence of the n-type dopant. 27 is a sectional view of a silicon substrate processed into a well shape or a stripe shape. Si/
In the modulation-doped superlattice structure of the G e x S i l-x system, the G e x S i L-x layer or the Si
A dopant is introduced into the layer to form a two-dimensional electron gas and a two-dimensional hole gas. When growing the non-doped layer 81, only silicon is supplied from the direction 22. Ge, s
In the growth of 1l-xFIJ, n-type doping is performed from the direction 22 when forming the silicon layer, but while silicon is supplied from the direction 22, P-type dopant is supplied from the direction 21, and silicon and germanium are supplied. Shinaka 2
NG dopant is introduced into the chamber from direction 3. At this time, P-type and n-type impurities are incorporated into the 24 part at the same time, but the 25 part is doped with P type because no n-type impurity is incident on it, and the 260 part is doped with P-type impurities. Therefore, it is doped to be n-type.

従って、通常の変調ドーピング超格子構造を形成する1
回の工程で、P、n両タイ、プの変調ドーピング超格子
構造を形成することが可能となる。各々のドーピング量
の制御も独立に行うことも可能である。
Therefore, 1 forming a normal modulation-doped superlattice structure
It is possible to form modulation-doped superlattice structures of both P and n types in just one step. It is also possible to control each doping amount independently.

第3図は基板に傾きをつけることにより、第2図と同様
な効果を得るための基板の加工例であるがこの他にも種
々の加工方法が考えられるのは明らかである。
Although FIG. 3 shows an example of processing a substrate to obtain the same effect as in FIG. 2 by tilting the substrate, it is obvious that various other processing methods are possible.

第4図は変調ドーピング超格子構造を形成するときのシ
リコン、ゲルマニウム、P9ドーパント、n型ドーパン
トのそれぞれの分子amの時間的変化を模式的に描いた
ものである。
FIG. 4 schematically depicts temporal changes in the molecules am of silicon, germanium, P9 dopant, and n-type dopant when forming a modulation doping superlattice structure.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、P型とn型の2種類
の入射方向が異なる不純物源と少なくとも2種類の原料
源を備えたMBK装置に於いて、立体的に加工された基
板に対してP型とn型の変調ドーピングを同時に行うこ
とができることによりて、2次元電子ガスと2次元ホー
ルガスな利用した相補型トランジスタを製造するために
必要なP型とn型の変調ドーピング超格子構造を1回の
止り+4− ニー h← d5 〒 μm−A ユ;(
! −ト ’1  ψ L ^;−嘔志 −出ηも! 
ニー格子構造作成中でしか不純物のドーピングが行なえ
ない。従って、P型とn型の変調ドーピングが同時にで
きることは相補型のトランジスタを作成するためには本
発明の方法は、必要条件ともいえる。
As described above, according to the present invention, in an MBK apparatus equipped with two types of impurity sources, P-type and n-type, with different incident directions, and at least two types of raw material sources, a three-dimensionally processed substrate can be On the other hand, since P-type and n-type modulation doping can be performed simultaneously, the P-type and n-type modulation doping can be superimposed, which is necessary to manufacture complementary transistors using two-dimensional electron gas and two-dimensional hole gas. The lattice structure has one stop + 4- Knee h← d5 〒 μm-A Yu; (
! -To '1 ψ L ^;-Oshi -Out η too!
Doping with impurities can only be performed during the creation of the knee lattice structure. Therefore, the ability to perform P-type and n-type modulation doping simultaneously can be said to be a necessary condition for the method of the present invention in order to create complementary transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の変調ドーピング超格子を製造するため
に必要なMBE装置の概略図。 第2図は本発明の製造方法による変調ドーピングされた
シリコン基板断面図。 第3図は、本発明による変調ドーピング超格子構造製造
用のシリコン基板の断面図。 第4図は、変調ドーピング超格子構造製造中の各々の分
子線量の時間変化を模式的に描いた図である。 以  上 出聞人  セイコーエプソン株第412÷Kki717
JlrHζ−一五、1シニーーノ7+u−ノ”a/%−
−(−/j−%−ζ:”d@/Q++ITGrJ構造の
作成はスループットが非常に悪いうえに超代理人 弁理
士最上筋(他1名) 第3図
FIG. 1 is a schematic diagram of an MBE apparatus necessary for manufacturing the modulation-doped superlattice of the present invention. FIG. 2 is a sectional view of a silicon substrate subjected to modulation doping according to the manufacturing method of the present invention. FIG. 3 is a cross-sectional view of a silicon substrate for manufacturing a modulated doping superlattice structure according to the present invention. FIG. 4 is a diagram schematically depicting temporal changes in each molecular dose during the production of a modulated doping superlattice structure. Interviewer: Seiko Epson stock No. 412 ÷ Kki 717
JlrHζ−15, 1 sinino 7+u−ノ”a/%−
-(-/j-%-ζ:”d@/Q++ Creating the ITGrJ structure has very poor throughput and requires a super agent (one other person) Figure 3

Claims (1)

【特許請求の範囲】[Claims] P型とn型の2種類の入射方向が異なる不純物源と、少
なくとも2種類の原料源を備えたMBE装置に於いて、
立体的に加工された基板を利用してP型の部分とn型の
部分を同時に形成することを特徴とする変調ドーピング
超格子構造の製造方法。
In an MBE apparatus equipped with two types of impurity sources, P-type and n-type, with different incident directions, and at least two types of raw material sources,
A method for manufacturing a modulation-doped superlattice structure, characterized in that a P-type portion and an N-type portion are simultaneously formed using a three-dimensionally processed substrate.
JP26815286A 1986-11-11 1986-11-11 Manufacture of modulated doped superlattice structure Pending JPS63122116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26815286A JPS63122116A (en) 1986-11-11 1986-11-11 Manufacture of modulated doped superlattice structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26815286A JPS63122116A (en) 1986-11-11 1986-11-11 Manufacture of modulated doped superlattice structure

Publications (1)

Publication Number Publication Date
JPS63122116A true JPS63122116A (en) 1988-05-26

Family

ID=17454615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26815286A Pending JPS63122116A (en) 1986-11-11 1986-11-11 Manufacture of modulated doped superlattice structure

Country Status (1)

Country Link
JP (1) JPS63122116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375294A (en) * 1989-08-18 1991-03-29 Nec Corp Molecular beam epitaxial growth of silicon-germanium mixed crystal
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375294A (en) * 1989-08-18 1991-03-29 Nec Corp Molecular beam epitaxial growth of silicon-germanium mixed crystal
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6194047B1 (en) 1992-11-19 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium

Similar Documents

Publication Publication Date Title
KR101905299B1 (en) Methods for making a semiconductor device including atomic layer structures using n₂o as an oxygen source
US9721790B2 (en) Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
CN104781919A (en) Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
US11978771B2 (en) Gate-all-around (GAA) device including a superlattice
JPS63122116A (en) Manufacture of modulated doped superlattice structure
Hwang et al. Conversion of InP/In0. 53Ga0. 47As superlattices to Zn3P2/In1− x Ga x As and Zn3P2/Zn3As2 superlattices by Zn diffusion
JP2002217413A (en) Method for manufacturing semiconductor device
WO2011078240A1 (en) Method for selectively growing doped epitaxial film, and method for selectively growing doped epitaxial film
CN107611221A (en) The method for improving the class super crystal lattice material quality of antimonide base II
JPS62232122A (en) Manufacture of semiconductor device
CN107731915A (en) Semiconductor devices and the method that diamond p-type electric-conducting raceway groove is formed using abrupt heterojunction
JPH03131020A (en) Manufacture of semiconductor device
CN107845567A (en) Graphene double heterojunction and preparation method thereof
JPH04168722A (en) Manufacture of semiconductor element
CN108010840A (en) The preparation method and semiconductor devices of doped semiconductor device
JPH03178164A (en) Manufacture of semiconductor device
JP2005072464A (en) Method of manufacturing semiconductor substrate, and method of manufacturing semiconductor device
JPH03218622A (en) Doping with impurity
JPH01129413A (en) Introduction of impurity into semiconductor substrate
JPS63192227A (en) Epitaxial growth method of compound semiconductor
JP2934665B2 (en) Method for manufacturing semiconductor device
JPH0524983A (en) Manufacture of semiconductor diamond thin film
JPH0256925A (en) Manufacture of semiconductor device
JPH01120815A (en) Heating of semiconductor wafer
Somogyi et al. Selectively etched series of pn junctions in GaAs