JPH0524983A - Manufacture of semiconductor diamond thin film - Google Patents
Manufacture of semiconductor diamond thin filmInfo
- Publication number
- JPH0524983A JPH0524983A JP18607791A JP18607791A JPH0524983A JP H0524983 A JPH0524983 A JP H0524983A JP 18607791 A JP18607791 A JP 18607791A JP 18607791 A JP18607791 A JP 18607791A JP H0524983 A JPH0524983 A JP H0524983A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- diamond
- diamond thin
- ion implantation
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐環境性素子として期
待される半導体ダイヤモンド薄膜の製造方法に関するも
ので、特にn型、p型の半導体を得るためのダイヤモン
ドへのドーパントのイオン打ち込みを利用した薄膜形成
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor diamond thin film, which is expected as an environment-resistant element, and particularly utilizes ion implantation of a dopant into diamond to obtain an n-type or p-type semiconductor. The present invention relates to a thin film forming method.
【0002】[0002]
【従来の技術】従来半導体ダイヤモンドとしては、Bを
含む天然のp型の半導体ダイヤモンド及びBをドープし
た合成ダイヤモンドが報告されているが、n型の半導体
ダイヤモンドの確かな報告はない。また、イオン注入に
よるダイヤモンドの伝導型の制御も達成されていない。
これは、イオンの照射により破壊されたダイヤモンド構
造を熱処理により元に戻すことが困難であることに起因
している。つまり、炭素の平衡状態は黒鉛構造でありダ
イヤモンド構造は準安定状態である為、通常の熱処理に
依って黒鉛が生成されてしまう。ダイヤモンド薄膜はC
VD蒸着法等により形成可能であることが報告されてい
る。(ダイヤモンド薄膜;共立出版、犬塚直夫 著)ダ
イヤモンド薄膜についてはBをドープした半導体ダイヤ
モンド薄膜は報告されているが、n型の半導体ダイヤモ
ンド薄膜の形成は達成されていない。2. Description of the Related Art Conventionally, as semiconductor diamonds, natural p-type semiconductor diamonds containing B and synthetic diamonds doped with B have been reported, but no n-type semiconductor diamonds have been reported. Moreover, control of the conductivity type of diamond by ion implantation has not been achieved.
This is because it is difficult to restore the diamond structure destroyed by the ion irradiation by heat treatment. That is, since the equilibrium state of carbon is a graphite structure and the diamond structure is a metastable state, graphite is generated by a normal heat treatment. Diamond thin film is C
It has been reported that it can be formed by a VD vapor deposition method or the like. (Diamond thin film; Kyoritsu Shuppan, Nao Inuzuka) Regarding diamond thin films, B-doped semiconductor diamond thin films have been reported, but formation of n-type semiconductor diamond thin films has not been achieved.
【0003】[0003]
【発明が解決しようとする課題】半導体ダイヤモンド薄
膜を形成するためには、ダイヤモンド薄膜形成中の効果
的で欠陥の導入の少ないドーピング方法の開発が必要で
ある。またイオン打ち込みに依ってドーパントを打ち込
む場合にイオンによる損傷をできるだけ小さく保ち、打
ち込まれたイオンが効率的に格子位置に入るようにする
事が必要である。本発明は、これらの課題を解決する欠
陥の導入が少なく効率的なドーピングが可能な半導体ダ
イヤモンドの製造方法を提供することを目的とする。In order to form a semiconductor diamond thin film, it is necessary to develop an effective doping method during the formation of a diamond thin film and to introduce few defects. Further, it is necessary to keep the damage caused by the ions as small as possible when the dopant is implanted by the ion implantation so that the implanted ions can efficiently enter the lattice position. It is an object of the present invention to provide a method for manufacturing a semiconductor diamond that solves these problems and that enables efficient doping with few defects introduced.
【0004】[0004]
【課題を解決するための手段】本発明は、比較的低エネ
ルギ−によるイオン打ち込みとCVD蒸着によるダイヤ
モンド薄膜形成を交互に行なうことにより、欠陥の導入
を小さく抑えたうえに高濃度のドーピングを可能とし、
上記課題を解決するものである。According to the present invention, by performing ion implantation with relatively low energy and diamond thin film formation by CVD deposition alternately, it is possible to suppress the introduction of defects and to perform high-concentration doping. age,
This is to solve the above problem.
【0005】[0005]
【作用】CVD等のダイヤモンド薄膜形成過程において
はダイヤモンド以外の構造を有する部分(黒鉛構造な
ど)の選択除去作用が働き、イオン打ち込みに依って形
成された欠陥の部分が除去される。この除去された部分
にはすぐにダイヤモンドが形成されてイオン打ち込みの
損傷が膜中に残らない。イオン打ち込みの損傷は上記イ
オンエネルギ−範囲においては基板表面近傍に形成さ
れ、イオンの停止位置よりも表面寄りにおもに分布して
いると考えられる。このため上記選択除去によりドーパ
ントが除去される確率は小さく、一方損傷はほぼ完全に
除去される。In the process of forming a diamond thin film such as CVD, a portion having a structure other than diamond (graphite structure or the like) is selectively removed, and a portion of a defect formed by ion implantation is removed. Diamond is immediately formed in the removed portion, and ion implantation damage does not remain in the film. It is considered that the damage due to the ion implantation is formed in the vicinity of the surface of the substrate in the above ion energy range and is mainly distributed closer to the surface than the ion stop position. Therefore, the probability that the dopant is removed by the selective removal is small, while the damage is almost completely removed.
【0006】[0006]
【実施例】本発明は基板上にダイヤモンド薄膜を形成す
る過程とイオン打ち込みの過程を交互に行なって薄膜を
成長させて行く。図1に示すごとく、基板1上にダイヤ
モンド薄膜2をまずCVD蒸着法により形成する。適当
な膜厚になったらガスの導入を止めダイヤモンド薄膜形
成をストップし、真空度を10ー4Torr以下に上げ
る。次にイオン打ち込みを行なう。ここで打ち込むイオ
ン3はB,Al,Ga,In等のIII族元素叉はN,
P,As,Sb等のV族元素が有効であることを確認し
た。イオンのエネルギ−は50eV以上100keV以
下が有効であることを確認した。50eV以下ではドー
パントがダイヤモンド中に打ち込まれず、100keV
以上ではダイヤモンドに損傷を与えすぎる。イオンの入
射方向をダイヤモンドの<110>、<100>、<1
21>方向などのチャンネリング方向とすると低損傷の
深いドーピングができ有効であることも確認した。EXAMPLE In the present invention, a process of forming a diamond thin film on a substrate and a process of ion implantation are alternately performed to grow a thin film. As shown in FIG. 1, a diamond thin film 2 is first formed on a substrate 1 by a CVD vapor deposition method. When the film thickness becomes appropriate, the gas introduction is stopped and the diamond thin film formation is stopped, and the vacuum degree is raised to 10-4 Torr or less. Next, ion implantation is performed. The ions 3 implanted here are group III elements such as B, Al, Ga, In or N,
It was confirmed that Group V elements such as P, As and Sb were effective. It has been confirmed that the ion energy is effectively 50 eV or more and 100 keV or less. Below 50 eV, the dopant is not driven into the diamond and 100 keV
The above damages the diamond too much. The direction of ion incidence is diamond <110>, <100>, <1
It was also confirmed that the channeling direction such as the 21> direction is effective because deep doping with low damage can be performed.
【0007】このイオン打ち込みによるドーピングの過
程の次にダイヤモンド薄膜4の形成をもう一度行なう。
CVD等のダイヤモンド薄膜形成過程においてはダイヤ
モンド以外の構造を有する部分(黒鉛構造など)の選択
除去作用が働き、イオン打ち込みに依って形成された欠
陥の部分5が除去される。この除去された部分にはすぐ
にダイヤモンドが形成されてイオン打ち込みの損傷が膜
中に残らない。イオン打ち込みの損傷は上記イオンエネ
ルギ−範囲においては基板表面近傍に形成され、イオン
の停止位置6よりも表面寄りにおもに分布していると考
えられる。このため上記選択除去によりドーパントが除
去される確率は小さく、一方損傷はほぼ完全に除去され
る。After the doping process by ion implantation, the diamond thin film 4 is formed again.
In the process of forming a diamond thin film such as CVD, a portion having a structure other than diamond (graphite structure or the like) is selectively removed, and the defect portion 5 formed by ion implantation is removed. Diamond is immediately formed in the removed portion, and ion implantation damage does not remain in the film. It is considered that the damage due to the ion implantation is formed in the vicinity of the surface of the substrate in the above ion energy range and is mainly distributed closer to the surface than the ion stop position 6. Therefore, the probability that the dopant is removed by the selective removal is small, while the damage is almost completely removed.
【0008】このダイヤモンド薄膜形成過程により、5
00nmの膜厚(これ以下ならイオン打ち込みのエネル
ギ−との関係で任意に選べる)となったら成長をやめ、
再びイオン打ち込みの過程を繰り返す。500nm以上
の膜厚までダイヤモンドを形成すると、次に行なうイオ
ン打ち込みにより一様なドーパントプロファイルを得る
ことができない。By this diamond thin film forming process, 5
When the film thickness is 00 nm (if it is less than this, it can be arbitrarily selected in relation to the energy of ion implantation), the growth is stopped,
The process of ion implantation is repeated again. If diamond is formed to a film thickness of 500 nm or more, a uniform dopant profile cannot be obtained due to the subsequent ion implantation.
【0009】このようにダイヤモンド薄膜形成過程とイ
オン打ち込み過程を繰り返すことにより、損傷の少ない
ドーピング制御されたダイヤモンド薄膜が任意の膜厚に
形成できた。By repeating the diamond thin film forming process and the ion implantation process in this way, a doping-controlled diamond thin film with little damage could be formed to an arbitrary thickness.
【0010】以下、具体的実施例を挙げて本発明をより
詳細に説明する。
(実施例1)本発明の第1の実施例を説明する。Si基
板を用いマイクロ波プラズマCVD法によりまず1μm
の膜厚のダイヤモンド薄膜を形成する。次に、真空度を
1x10−4TorrとしBを5keVのエネルギ−で
1x1015のド−ズ量でイオン打ち込みした。次にま
たマイクロ波CVD法で100nmの膜厚のダイヤモン
ド薄膜を形成した。次にまた、上記と同様のBのイオン
打ち込みを行ない、イオン打ち込みーダイヤモンド薄膜
形成のサイクルを10回繰り返した。最終的にp型の電
気伝導を示す2μmのダイヤモンド薄膜を得た。上記他
のイオンについても同様の結果を得た。The present invention will be described in more detail with reference to specific examples. (Embodiment 1) A first embodiment of the present invention will be described. First, 1 μm by a microwave plasma CVD method using a Si substrate.
Forming a diamond thin film having a thickness of. Next, the degree of vacuum was set to 1 × 10 −4 Torr, and B was ion-implanted with an energy of 5 keV and a dose amount of 1 × 10 15. Next, a diamond thin film having a film thickness of 100 nm was formed by the microwave CVD method. Next, the same ion implantation of B as described above was performed, and the cycle of ion implantation-diamond thin film formation was repeated 10 times. Finally, a 2 μm diamond thin film showing p-type electrical conductivity was obtained. Similar results were obtained for the other ions described above.
【0011】(実施例2)ダイヤモンド単結晶を基板と
し、まずその表面に100nmのダイヤモンド薄膜をマ
イクロ波CVD法により形成した。次に実施例1と同様
の条件でBをイオン打ち込みした。イオン打ち込みーダ
イヤモンド薄膜形成のサイクルを10回繰り返した。最
終的にp型の電気伝導を示す1μmのダイヤモンド単結
晶薄膜をホモエピタキシャル成長により得た。上記他の
イオンについても同様の結果を得た。Example 2 Using a diamond single crystal as a substrate, a 100 nm diamond thin film was first formed on the surface of the substrate by a microwave CVD method. Next, B was ion-implanted under the same conditions as in Example 1. The cycle of ion implantation-diamond thin film formation was repeated 10 times. Finally, a 1 μm diamond single crystal thin film showing p-type electrical conductivity was obtained by homoepitaxial growth. Similar results were obtained for the other ions described above.
【0012】[0012]
【発明の効果】本発明の半導体ダイヤモンド薄膜の製造
方法によりダイヤモンドのn型、p型を利用した半導体
素子の形成が可能となり、耐環境性の半導体素子が得ら
れ本発明の工業的価値は高い。According to the method for producing a semiconductor diamond thin film of the present invention, it is possible to form a semiconductor element using n-type and p-type of diamond, an environment-resistant semiconductor element is obtained, and the industrial value of the present invention is high. .
【図1】半導体ダイヤモンド薄膜の製造方法の手順を示
す断面図FIG. 1 is a sectional view showing a procedure of a method for producing a semiconductor diamond thin film.
1 基板 2 ダイヤモンド薄膜 3 イオン打ち込みされるイオン 4 ダイヤモンド薄膜 1 substrate 2 Diamond thin film 3 Ions to be implanted 4 diamond thin film
Claims (5)
に照射する過程と、ダイヤモンド薄膜を成長させるCV
D蒸着等の過程を、交互に行なうことを特徴とする半導
体ダイヤモンド薄膜の製造方法。1. A process of irradiating diamond with accelerated particles other than carbon, and a CV for growing a diamond thin film.
A method for producing a semiconductor diamond thin film, characterized in that a process such as D vapor deposition is alternately performed.
a,In等のIII族元素叉はN,P,As,Sb等の
V族元素であることを特徴とする請求項1記載の半導体
ダイヤモンド薄膜の製造方法。2. Particles other than accelerated carbon are B, Al, G.
The method for producing a semiconductor diamond thin film according to claim 1, wherein the group III element such as a and In or the group V element such as N, P, As and Sb is a group V element.
50eV以上100keV以下である事を特徴とする請
求項1記載の半導体ダイヤモンド薄膜の製造方法。3. The method for producing a semiconductor diamond thin film according to claim 1, wherein the energy of the accelerated particles other than carbon is 50 eV or more and 100 keV or less.
への入射方向がダイヤモンドの<110>、<100
>、<121>方向等のチャンネリング方向であること
を特徴とする請求項1記載の半導体ダイヤモンド薄膜の
製造方法。4. The incident direction of accelerated particles other than carbon to diamond is <110> or <100 of diamond.
2. The method for producing a semiconductor diamond thin film according to claim 1, wherein the direction is a channeling direction such as a> or <121> direction.
過程での形成膜の厚さが1サイクルあたり500nm以
下であることを特徴とする請求項1記載の半導体ダイヤ
モンド薄膜の製造方法。5. The method for producing a semiconductor diamond thin film according to claim 1, wherein the thickness of the formed film in the process of forming the diamond thin film by CVD deposition is 500 nm or less per cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18607791A JPH0524983A (en) | 1991-07-25 | 1991-07-25 | Manufacture of semiconductor diamond thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18607791A JPH0524983A (en) | 1991-07-25 | 1991-07-25 | Manufacture of semiconductor diamond thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0524983A true JPH0524983A (en) | 1993-02-02 |
Family
ID=16181983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18607791A Pending JPH0524983A (en) | 1991-07-25 | 1991-07-25 | Manufacture of semiconductor diamond thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0524983A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6414338B1 (en) * | 1998-11-30 | 2002-07-02 | Sandia National Laboratories | n-Type diamond and method for producing same |
-
1991
- 1991-07-25 JP JP18607791A patent/JPH0524983A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6414338B1 (en) * | 1998-11-30 | 2002-07-02 | Sandia National Laboratories | n-Type diamond and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100515180B1 (en) | METHOD FOR PRODUCING RELAXED SiGe SUBSTRATE | |
JPH06338507A (en) | Semiconductor substrate and solid-state image-pickup device and manufacture thereof | |
JP2006032962A (en) | METHOD OF FORMING RELAXED SiGe LAYER | |
JP2008211222A (en) | Process for controlling dopant diffusion in semiconductor layer and semiconductor device formed thereby | |
JP2004363592A (en) | Method of forming substantially relaxed, high-quality sige-on-insulator substrate material, substrate material, and hetero structure | |
US8450194B2 (en) | Method to modify the shape of a cavity using angled implantation | |
JPS6338859B2 (en) | ||
KR20070084075A (en) | Method for producing semiconductor wafer | |
JP7416270B2 (en) | Epitaxial silicon wafer and its manufacturing method, and semiconductor device manufacturing method | |
JPH0524983A (en) | Manufacture of semiconductor diamond thin film | |
JPH04264724A (en) | Manufacture of semiconductor substrate | |
US6518150B1 (en) | Method of manufacturing semiconductor device | |
KR101503000B1 (en) | A Method of fabricating strain-relaxed Si-Ge buffer layer and Si-Ge buffer layer fabricated thereby | |
JPH0410544A (en) | Manufacture of semiconductor device | |
JPS6392030A (en) | Manufacture of semiconductor device | |
JPH0319218A (en) | Formation process and device of soi substrate | |
JP3550665B2 (en) | Method for producing silicon carbide thin film | |
JPH05251378A (en) | Manufacture of semiconductor device | |
Bohringer et al. | Electronic properties of a-Si: H and a-Si: F films produced by ion implantation | |
JP7259706B2 (en) | Passivation effect evaluation method for epitaxial silicon wafers | |
WO2024048239A1 (en) | Semiconductor substrate and method for manufacturing semiconductor substrate | |
JP2536472B2 (en) | Solid phase growth method for polycrystalline semiconductor film | |
JP2005093797A (en) | Semiconductor substrate and its manufacturing method | |
JPH01147830A (en) | Manufacture of semiconductor device | |
JP2003282471A (en) | Method for manufacturing semiconductor substrate |