JPH0375294A - Molecular beam epitaxial growth of silicon-germanium mixed crystal - Google Patents

Molecular beam epitaxial growth of silicon-germanium mixed crystal

Info

Publication number
JPH0375294A
JPH0375294A JP21229189A JP21229189A JPH0375294A JP H0375294 A JPH0375294 A JP H0375294A JP 21229189 A JP21229189 A JP 21229189A JP 21229189 A JP21229189 A JP 21229189A JP H0375294 A JPH0375294 A JP H0375294A
Authority
JP
Japan
Prior art keywords
silicon
mixed crystal
epitaxial growth
molecular beam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21229189A
Other languages
Japanese (ja)
Other versions
JP2596135B2 (en
Inventor
Hiroyuki Hirayama
平山 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1212291A priority Critical patent/JP2596135B2/en
Publication of JPH0375294A publication Critical patent/JPH0375294A/en
Application granted granted Critical
Publication of JP2596135B2 publication Critical patent/JP2596135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable the selective molecular beam epitaxial growth of an SiGe mixed crystal exclusively to the exposed part of a semiconductor partially covered with an insulation film by using gaseous sources as the source of both Ge and Si. CONSTITUTION:Gaseous sources (e.g. germane and disilane) are used as both Ge and Si sources.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコンゲルマニウム混晶の分子線エピタキ
シャル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for molecular beam epitaxial growth of silicon germanium mixed crystal.

(従来の技術) シリコンゲルマニウム混晶の分子線エピタキシャル成長
法においては従来シリコンおよびゲルマニウム分子線の
発生方法として固体シリコンと固体ゲルマニウムを電子
線加熱する方法が用いられていた。こうした固体ソース
を用いたシリコンゲルマニウム混晶の分子線エピタキシ
ャル成長では、酸化膜等の絶縁膜上にも多結晶のシリコ
ンゲルマニウム膜が堆積してしまう。このため部分的に
絶縁膜で覆われたシリコンやゲルマニウム、シリコンゲ
ルマニウム等の半導体に対し露出部分だけに選択的にシ
リコンゲルマニウム混晶をエピタキシャル成長すること
は不可能であった。
(Prior Art) In the molecular beam epitaxial growth method of silicon-germanium mixed crystal, a method of heating solid silicon and solid germanium with an electron beam has conventionally been used as a method for generating silicon and germanium molecular beams. In molecular beam epitaxial growth of a silicon germanium mixed crystal using such a solid source, a polycrystalline silicon germanium film is deposited even on an insulating film such as an oxide film. For this reason, it has been impossible to epitaxially grow silicon-germanium mixed crystal selectively only on the exposed portions of semiconductors such as silicon, germanium, and silicon-germanium that are partially covered with an insulating film.

(発明が解決しようとする課題) 本発明の目的は、従来の固体ソース分子線エピタキシャ
ル成長方法では不可能であったシリコンゲルマニウム混
晶の選択エピタキシャル成長を実現することである。
(Problems to be Solved by the Invention) An object of the present invention is to realize selective epitaxial growth of silicon germanium mixed crystal, which has been impossible with conventional solid source molecular beam epitaxial growth methods.

(課題を解決するための手段) 本発明ではシリコンゲルマニウム混晶を分子線エピタキ
シャル成長させる際にシリコン、ゲルマニウムのソース
としていづれもガスソースを用いる。ゲルマニウムソー
スガスとしてはゲルマンなど、シリコンソースガスとし
てはジシランやシラン等を用いる。このようにすれば部
分的に酸化膜等の絶縁膜で覆われたシリコン、ゲルマニ
ウム、シリコンゲルマ・ニウム等の半導体露出部分だけ
に選択的にエピタキシャル成長できる。
(Means for Solving the Problems) In the present invention, a gas source is used as a source of silicon and germanium when a silicon germanium mixed crystal is grown by molecular beam epitaxial growth. Germane or the like is used as the germanium source gas, and disilane, silane, or the like is used as the silicon source gas. In this way, epitaxial growth can be selectively performed only on exposed portions of semiconductors such as silicon, germanium, silicon germanium, etc. that are partially covered with an insulating film such as an oxide film.

(作用) ガスソース分子線エピタキシャル成長では成長中の真空
度は1O−5Torr以下であり、このような高真空下
では気体は基板温度と熱平衡状態にない。
(Function) In gas source molecular beam epitaxial growth, the degree of vacuum during growth is 10-5 Torr or less, and under such a high vacuum, the gas is not in thermal equilibrium with the substrate temperature.

また気体分子同士の衝突確率も極めて小さい。このため
気相中でソースガス分子が解離して基板にいたる通常の
化学気相反応成長法における成長過程は適用されない。
Also, the probability of collision between gas molecules is extremely small. For this reason, the growth process in the usual chemical vapor phase reaction growth method, in which source gas molecules dissociate in the gas phase and reach the substrate, cannot be applied.

ガスソース分子線エピタキシャル成長ではソースガス分
子は全て気相中で分解することなしに基板に到達する。
In gas source molecular beam epitaxial growth, all source gas molecules reach the substrate without being decomposed in the gas phase.

これらのソースガス分子は基板において熱エネルギーを
受は取り解離吸着することによって成長に寄与する。基
板表面の解離吸着は半導体表面の化学的に活性なダング
リングボンドと気体分子の反応によって起こる。この解
離吸着過程に必要な活性なダングリングボンドは清浄な
半導体表面には存在するが絶縁膜上には存在しない。従
って選択的にエピタキシャル膜を形成することが可能と
なる。シリコンゲルマニウム混晶の選択エピタキシャル
成長を行う場合にはシリコンソースガスとしてジシラン
やシラン等ゲルマニウムソースガスとしてゲルマン等を
用い、これらのソースガスは半導体表面が露出した部分
のみ表面のダングリングボンドにより解離吸着してシリ
コンゲルマニウム混晶の選択成長が開始され、その後も
成長じたシリコンゲルマニウム混晶表面のダングリング
ボンドによって解離吸着が進行するため絶縁膜パターン
の開口部分にはシリコンゲルマニウム混晶が成長する。
These source gas molecules contribute to growth by receiving and dissociating and adsorbing thermal energy on the substrate. Dissociative adsorption on the substrate surface occurs due to the reaction between chemically active dangling bonds on the semiconductor surface and gas molecules. The active dangling bonds necessary for this dissociation and adsorption process exist on the clean semiconductor surface, but not on the insulating film. Therefore, it becomes possible to selectively form an epitaxial film. When selective epitaxial growth of silicon germanium mixed crystal is performed, disilane or silane is used as a silicon source gas, and germane is used as a germanium source gas, and these source gases are dissociated and adsorbed by dangling bonds on the surface only where the semiconductor surface is exposed. Selective growth of the silicon germanium mixed crystal is started, and thereafter, dissociation and adsorption proceed due to dangling bonds on the surface of the grown silicon germanium mixed crystal, so that the silicon germanium mixed crystal grows in the opening portion of the insulating film pattern.

一方絶縁膜上には化学的に活発なダングリングボンドが
存在しないためにジシラン、シラン、ゲルマンともに解
離吸着せず、結果としてシリコンゲルマニウム混晶の選
択エピタキシャル成長が実現される。
On the other hand, since there are no chemically active dangling bonds on the insulating film, neither disilane, silane, nor germane are dissociated and adsorbed, and as a result, selective epitaxial growth of silicon-germanium mixed crystal is realized.

(実施例) 第1図は、本発明の詳細な説明するためのガスソース分
子線成長装置の概要図である。基板として表面に厚さ5
000Aの酸化膜パターンが形成された4インチn型5
i(100)基板1を用いた。この基板はガスソースシ
リコン分子線成長装置2にロードされる。
(Example) FIG. 1 is a schematic diagram of a gas source molecular beam growth apparatus for explaining the present invention in detail. Thickness 5 on the surface as a substrate
4 inch n-type 5 with 000A oxide film pattern formed
i(100) substrate 1 was used. This substrate is loaded into a gas source silicon molecular beam growth apparatus 2.

このシリコン基板に対して超高真空の分子線成長装置内
で基板裏側のヒーター3により900°C,10分間の
加熱を行う。このプロセスによって基板表面の初期清浄
化が実現される。表面の清浄さは高速電子銃4と蛍光ス
クリーン5で構成される反射高速電子線回折装置の回折
パターンにおいて、清浄な5i(100)面に特徴的な
2×1表面超構造と酸化膜に起因するハローな回折パタ
ーンが観察されることで確認した。この基板に対して基
板温度を550°Cに保ってシリコンソースガスである
ジシランおよびゲルマニウムソースガスであるゲルマン
の混合ガスをガスセル6から供給する。混合ガスのゲル
マンとジシランの混合比はサブチェンバー7に供給され
るジシランガス流量とゲルマンガス流量の比で決定され
る。今回サブチェンバーに供給されるジシラン流量は7
secm、ゲルマン流量はlsecmとした。
This silicon substrate is heated at 900° C. for 10 minutes using a heater 3 on the back side of the substrate in an ultra-high vacuum molecular beam growth apparatus. This process provides initial cleaning of the substrate surface. The cleanliness of the surface is due to the 2×1 surface superstructure and oxide film characteristic of the clean 5i (100) plane in the diffraction pattern of the reflection high-speed electron diffractometer, which consists of a high-speed electron gun 4 and a fluorescent screen 5. This was confirmed by observing a halo diffraction pattern. A mixed gas of disilane, which is a silicon source gas, and german, which is a germanium source gas, is supplied from the gas cell 6 to this substrate while maintaining the substrate temperature at 550°C. The mixing ratio of germane and disilane in the mixed gas is determined by the ratio of the disilane gas flow rate and the germane gas flow rate supplied to the subchamber 7. The disilane flow rate supplied to the subchamber this time is 7
secm, and the germane flow rate was lscm.

この時出来るシリコンゲルマニウム混晶中の組成比はX
線回折およびX線光電子分光により決定した。今回の場
合Si1−xGex混晶の混晶比Xは0.2であった。
The composition ratio of the silicon germanium mixed crystal produced at this time is
Determined by line diffraction and X-ray photoelectron spectroscopy. In this case, the Si1-xGex mixed crystal ratio X was 0.2.

第2図に以上の方法によって厚さ5000Aの酸化膜パ
ターン21によって覆われた5i(100)基板1上に
作成した膜厚aoooAのシリコンゲルマニウム混晶の
選択エピタキシャル成長膜20の断面の2次電子走査顕
微鏡観察の結果を示す。図から明らかなようにシリコン
基板の開口部にだけ選択的にエピタキシャル膜が成長じ
ていることがわかる。
FIG. 2 shows a secondary electron scan of a cross section of a selective epitaxial growth film 20 of silicon germanium mixed crystal having a film thickness of aoooA formed on a 5i (100) substrate 1 covered with an oxide film pattern 21 having a thickness of 5000A by the above method. The results of microscopic observation are shown. As is clear from the figure, it can be seen that the epitaxial film grows selectively only in the openings of the silicon substrate.

なお、本実施例では絶縁膜としてシリコン酸化膜を用い
たがシリコン窒化膜でもよい。
Note that although a silicon oxide film is used as the insulating film in this embodiment, a silicon nitride film may also be used.

(発明の効果) 以上詳しく説明したように本発明を用いれば部分的に絶
縁膜で覆われた半導体に対し露出部分だけに選択的にシ
リコンゲルマニウム混晶膜をエピタキシャル成長させる
ことができる。
(Effects of the Invention) As described above in detail, by using the present invention, it is possible to epitaxially grow a silicon germanium mixed crystal film selectively only on the exposed portions of a semiconductor partially covered with an insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのガスソース方式
のシリコン分子線エピタキシャル成長装置の装置概略図
である。 図において、lは4インチn型5i(100)基板、2
はシリコン分子線成長装置、3は基板ヒーター、4は反
射高速電子線回折用高速電子銃、5は反射高速電子線回
折パターン観測用蛍光スクリーン、6はガスセル、7は
サブチェンバー、8.9はソースガス流量制御のための
マスフローコントローラー、10はジシランガスボンベ
、11はゲルマンガスボンベである。 第2図は第1図の装置を用いて得られた選択的に成長じ
たシリコンゲルマニウム混晶エピタキシャル膜の断面を
2次電子走査顕微鏡で観察した結果を示す図である。 図において、20はシリコンゲルマニウム混晶エピタキ
シャル膜、21は酸化膜パターンである。
FIG. 1 is a schematic diagram of a gas source type silicon molecular beam epitaxial growth apparatus for explaining the present invention in detail. In the figure, l is a 4-inch n-type 5i (100) substrate, 2
3 is a silicon molecular beam growth apparatus, 3 is a substrate heater, 4 is a high-speed electron gun for reflective high-speed electron diffraction, 5 is a fluorescent screen for observing reflective high-speed electron diffraction patterns, 6 is a gas cell, 7 is a subchamber, 8.9 is a A mass flow controller for controlling the flow rate of source gas, 10 a disilane gas cylinder, and 11 a germane gas cylinder. FIG. 2 is a diagram showing the result of observing a cross section of a selectively grown silicon germanium mixed crystal epitaxial film obtained using the apparatus shown in FIG. 1 using a secondary electron scanning microscope. In the figure, 20 is a silicon germanium mixed crystal epitaxial film, and 21 is an oxide film pattern.

Claims (1)

【特許請求の範囲】[Claims] (1)ゲルマニウムおよびシリコンのソースとしていづ
れもガスソースを用いることを特徴とするシリコンゲル
マニウム混晶の分子線エピタキシャル成長方法。
(1) A method for molecular beam epitaxial growth of silicon-germanium mixed crystal, characterized in that gas sources are used as germanium and silicon sources.
JP1212291A 1989-08-18 1989-08-18 Molecular beam epitaxial growth method of silicon germanium mixed crystal Expired - Lifetime JP2596135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212291A JP2596135B2 (en) 1989-08-18 1989-08-18 Molecular beam epitaxial growth method of silicon germanium mixed crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212291A JP2596135B2 (en) 1989-08-18 1989-08-18 Molecular beam epitaxial growth method of silicon germanium mixed crystal

Publications (2)

Publication Number Publication Date
JPH0375294A true JPH0375294A (en) 1991-03-29
JP2596135B2 JP2596135B2 (en) 1997-04-02

Family

ID=16620161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212291A Expired - Lifetime JP2596135B2 (en) 1989-08-18 1989-08-18 Molecular beam epitaxial growth method of silicon germanium mixed crystal

Country Status (1)

Country Link
JP (1) JP2596135B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313378A (en) * 1986-07-04 1988-01-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPS63122116A (en) * 1986-11-11 1988-05-26 Seiko Epson Corp Manufacture of modulated doped superlattice structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313378A (en) * 1986-07-04 1988-01-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPS63122116A (en) * 1986-11-11 1988-05-26 Seiko Epson Corp Manufacture of modulated doped superlattice structure

Also Published As

Publication number Publication date
JP2596135B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
EP0430280B1 (en) Selective and non-selective deposition of Si1-x Gex on a Si substrate that is partially masked with Si O2
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
Hatayama et al. Time-resolved reflection high-energy electron diffraction analysis in initial stage of 3C-SiC growth on Si (001) by gas source molecular beam epitaxy
JP2798576B2 (en) Silicon film growth method
JPH0375294A (en) Molecular beam epitaxial growth of silicon-germanium mixed crystal
Caymax et al. Low thermal budget chemical vapour deposition techniques for Si and SiGe
EP0684632B1 (en) Method of forming a film at low temperature for a semiconductor device
JPH01134912A (en) Manufacture of semiconductor thin film
Glowacki et al. Single wafer epitaxy of Si and SiGe using UHV-CVD
Shiralagi et al. Selective InAs growth by chemical beam epitaxy
CAYMAX WY LEONG
US7910468B1 (en) Methods and compositions for preparing Ge/Si semiconductor substrates
JPH0645257A (en) Method for forming semiconductor thin film
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH06112124A (en) Organometallic molecular-beam epitaxial growth method
JP2741859B2 (en) Molecular beam epitaxy
Abe et al. Characterization of Tensile Strained Si1-yCy Alloy Grown by Photo-and Plasma Chemical Vapor Deposition at Very Low Temperature
JPH02296797A (en) Formation of selective boron-doped layer
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0461380A (en) Semiconductor device and manufacture method of semiconductor device
JP3008455B2 (en) Method for manufacturing crystalline silicon film
Meguro et al. Analytical Study on Interface of Epitaxial Si on Si Substrate Grown by CO 2 Laser CVD
JPH0243720A (en) Molecular beam epitaxial growth method
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPH02291127A (en) Cleaning method for silicon surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13