JPS63120477A - Nanufacture of photodetector - Google Patents

Nanufacture of photodetector

Info

Publication number
JPS63120477A
JPS63120477A JP61266930A JP26693086A JPS63120477A JP S63120477 A JPS63120477 A JP S63120477A JP 61266930 A JP61266930 A JP 61266930A JP 26693086 A JP26693086 A JP 26693086A JP S63120477 A JPS63120477 A JP S63120477A
Authority
JP
Japan
Prior art keywords
layer
etching
light absorption
region
leaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266930A
Other languages
Japanese (ja)
Inventor
Kenichi Matsuda
賢一 松田
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61266930A priority Critical patent/JPS63120477A/en
Publication of JPS63120477A publication Critical patent/JPS63120477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make the manufacture of a device possible wherein the disconnection of a wiring does not occur in spite of a mesa structure in which electrical separation is easy at the time of integration with other elements, by a method wherein a low- resistance layer and a light absorption layer are grown on a semi-insulating InP substrate, and a window layer is grown after the light absorption layer is eliminated by etching, leaving a part of its region. CONSTITUTION:At least two layers i.e. a low resistance layer 12 and a light absorption layer 13 are grown by opitaxial growth on a semi-insulating InP substrate 11. After the light absorption layer 13 is eliminated by etching, leaving a part of its region, a window layer 14 is grown by epitaxy. The window layer 14 is eliminated by etching, leaving a part of its region containing a region where the light absorption layer 13 is left. The low-resistance layer 12 is eliminated by etching leaving a part of its region containing a region where the window layer 14 is left. For example, on an InP substrate 11, the following are formed in order by epitaxial growth; an N-InGaAsP low- resistance layer 12 and an N-InGaAs light obsorption layer 13. the light absorption layer 13 is eliminated by etching leaving a part of its region. An N-InP window layer 14 is grown by epitaxy and the window layer 14 and the low-resistance layer 15 are subjected to mesa etching in order.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、受光素子と電気素子を集積化した光集積回路
への適用が容易な受光素子の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a light receiving element that can be easily applied to an optical integrated circuit in which a light receiving element and an electric element are integrated.

従来の技術 2べ一部 InP基板上にエピタキシアル成長されたI n G 
a A s層を光吸収領域とする受光素子の構造および
製造方法については、従来より種々のものが提案されて
いる。この中で、InGaAs層上にさらにInP層を
エピタキシアル成長して、いわゆるウィンドウ付き構造
としたものとして第3図に示すものがある(例えば、H
,Ighihara他:l′High−tempera
ture aging tests onplanar
stiucture InGaAs/InP PIN 
photodiodeswith Ti/Pt and
 Ti/Au  contac7t、” Iレクトロニ
クス・レターズ(Electron、Lett 、 )
、 vol 。
Conventional technology 2 InG epitaxially grown on a part InP substrate
Various structures and manufacturing methods of light-receiving elements in which the a As layer is used as a light absorption region have been proposed in the past. Among these, there is a structure shown in Fig. 3 in which an InP layer is epitaxially grown on the InGaAs layer to form a so-called windowed structure (for example, H
, Ighihara et al.: l'High-tempera
ture aging tests onplanar
structure InGaAs/InP PIN
photodiodes with Ti/Pt and
Ti/Au contact7t, ”I Electron, Lett, )
, vol.

20、p、654(1984)1第3図に示す受光素子
の製造方法としては、まずn −I n P基板1上に
n −I n Pバッフ7層2、n−InGaAs光吸
収層3、n −I n Pウィンドウ層4を順次エピタ
キシアル成長する。次にZnを部分的に拡散してP+領
域5を形成する。さらにS i N/S i Oのパッ
シベーション膜6を堆積後、p側電極7、n側電極8を
蒸着する。
20, p. 654 (1984) 1 As a method for manufacturing the light receiving element shown in FIG. The n-I n P window layer 4 is epitaxially grown in sequence. Next, Zn is partially diffused to form P+ region 5. Furthermore, after depositing a passivation film 6 of S i N/S i O, a p-side electrode 7 and an n-side electrode 8 are deposited.

発明が解決しようとする問題点 3 t−7 第3図に示す受光素子は、ブレーす構造であると同時に
高感度、低暗電流であり、単体の受光素子として用いる
限り何ら問題はない。1〜かし、他の電気素子と集積化
して光集積回路を構成しようとすると電気的分離の問題
が生じてくる。最も筒中な分離方法は、InP基板を半
絶縁性とi〜で受光素子をメサ構造としてし甘うことで
あるが、この際メサの高さが高くなるとp側電極7から
の配線がメサ部で断線する。一方、光吸収を十分行わせ
るためには光吸収層の厚さは2μm以上必要であり、メ
サの高さをこれ以下にすることはできない。
Problem to be Solved by the Invention 3 t-7 The light-receiving element shown in FIG. 3 has a brazed structure, high sensitivity, and low dark current, and there is no problem as long as it is used as a single light-receiving element. However, when an optical integrated circuit is constructed by integrating the optical element with other electrical elements, the problem of electrical isolation arises. The most straightforward separation method is to use a semi-insulating InP substrate and make the photodetector into a mesa structure, but in this case, if the height of the mesa becomes high, the wiring from the p-side electrode 7 will be connected to the mesa part. The wire is disconnected. On the other hand, in order to achieve sufficient light absorption, the thickness of the light absorption layer must be 2 μm or more, and the height of the mesa cannot be lower than this.

問題点を解決するだめの手段 本発明は上記問題点を解決するだめに、半絶縁性InP
基板上に低抵抗層と光吸収層との少なくとも2層をエピ
タキシアル成長する工程と、前記光吸収層を一部領域を
残してエツチング除去する工程と、ウィンドウ層をエピ
タキシアル成長する工程と、前記光吸収層が残された領
域を含む一部領域を残しで前記ウィンドウ層をエツチン
グ除去する工程と、前記ウィンドウ層が残された領域を
含む一部領域を残して前記低抵抗層をエツチング除去す
る工程とを含むような方法で受光素子を製造するという
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses semi-insulating InP.
a step of epitaxially growing at least two layers, a low resistance layer and a light absorption layer, on a substrate; a step of etching away the light absorption layer leaving a partial region; and a step of epitaxially growing a window layer. a step of etching away the window layer leaving only a partial area including the area where the light absorption layer is left, and etching away the low resistance layer leaving a partial area including the area where the window layer is left. The light-receiving element is manufactured by a method that includes the steps of:

作  用 本発明の受光素子d:半絶縁性InP基板上に低抵抗層
、光吸収層、ウィンドウ層の3層が積層されたものをメ
サ構造にしているが、第3図に示した従来の受光素子を
メサ構造にした場合と以下の点で異なっている。第1に
、ウィンドウ層が形成されていない状態で光吸収層をメ
ツエツチングするので、ホトレジスト でメサの斜面を緩斜面とすることができる。すなわち、
最も厚い光吸収層のメサ側面を緩斜面とすることで配線
の断線が生じにくくなる。一方、第3図のように先にウ
ィンドウ層が形成されたものに対してメサエッチングを
施すとウィンドウ層がマスクとなって光吸収層がエツチ
ングされるので光吸収層のメサ側面は緩斜面にならない
、、第2に、本発明の製造方法によれば、各層ごとにメ
サ領域5・、−7 の大きさを変えることができるので、メサの段差を複数
の段差に分割することが可能である。段差を複数にすれ
ば、メサ全体の高さは同じでも一段当りの高さは低くな
るので断線しにくくなる。以上の2点から本発明の製造
方法によればメサ構造でありながら配線の断線が生じな
い受光素子が製造できる。
Function: The photodetector d of the present invention has a mesa structure in which three layers, a low resistance layer, a light absorption layer, and a window layer are laminated on a semi-insulating InP substrate. This differs from the case where the light receiving element has a mesa structure in the following points. First, since the light absorption layer is etched without the window layer being formed, the slope of the mesa can be made into a gentle slope using photoresist. That is,
By making the mesa side surface of the thickest light absorption layer a gentle slope, disconnection of the wiring becomes less likely to occur. On the other hand, when mesa etching is performed on a structure on which a window layer has been formed first, as shown in Figure 3, the window layer acts as a mask and the light absorption layer is etched, so the mesa side of the light absorption layer becomes a gentle slope. Second, according to the manufacturing method of the present invention, it is possible to change the size of the mesa region 5, -7 for each layer, so it is possible to divide the step of the mesa into a plurality of steps. be. If there are multiple steps, even if the overall height of the mesa is the same, the height of each step will be lower, making it less likely that the wire will break. In view of the above two points, according to the manufacturing method of the present invention, a light-receiving element that does not cause disconnection of wiring can be manufactured even though it has a mesa structure.

実施例 第1図は本発明の受光素子の製造方法の一実施例を示す
断面図である。本実施例を第1図に従って説明すると、
捷ず第1図(a)に示すように半絶縁性InP基板11
土にn−InGaAsP低抵抗層12、n −I n 
G a A s光吸収層13を順次エピタキシアル成長
する。次に、第1図(b)に示すように光吸収層13を
一部領域を残してエツチング除去する。とのメサ・エツ
チングはホトレジストをマスクと1〜で行うが、これに
よってメサ斜面を緩斜面とするととができる,、これは
、InGaAsとホトレジストの界面の密着が悪く、I
 n G a A sが垂直方向にエツチングされる以
」二に水平方向にエラ6ハ・−7 チングされるためである。この後、第1図fc)に示す
ように全面にn−I n Pウィンドウ層14をエピタ
キシアル成長し、第1図(d)、fe)に示すようにウ
ィンドウ層14、低抵抗層15をII次メザ・エツチン
グする。この際、メサの大きさが光吸収層13、ウィン
ドウ層14、低抵抗層15の順に大きくなるようにして
おけば、メサの段差は3段となり、最大の段差は光吸収
層で生じる。この光吸収層の段差は緩斜面となっている
ので、メサ上部から基板表面への配線は問題なく行うこ
とができる。これ以後は従来の製造方法と同様の方法で
第1図ff)のような受光素子が完成する。すなわち、
メサ上部にZn等の拡散を行ってp型領域16を形成し
、Cr/Pt/Au等のp側電極17、A u −Sn
等のn側電極18蒸着後、S s N等のパッシベーシ
ョン膜19を堆積し、最後にT i /A u等の配線
2oを形成する。
Embodiment FIG. 1 is a sectional view showing an embodiment of the method of manufacturing a light receiving element of the present invention. This embodiment will be explained according to Fig. 1.
As shown in FIG. 1(a), the semi-insulating InP substrate 11 is
n-InGaAsP low resistance layer 12 on soil, n -I n
A GaAs light absorption layer 13 is epitaxially grown in sequence. Next, as shown in FIG. 1(b), the light absorbing layer 13 is removed by etching, leaving only a partial region. Mesa etching is performed using photoresist as a mask, but this allows the mesa to have a gentle slope.This is because the adhesion between the InGaAs and photoresist interface is poor, and
This is because since nGaAs is etched in the vertical direction, it is also etched in the horizontal direction. After this, an n-I n P window layer 14 is epitaxially grown on the entire surface as shown in FIG. 1 fc), and a window layer 14 and a low resistance layer 15 are grown as shown in FIG. Second mesa etching. At this time, if the size of the mesa increases in the order of light absorption layer 13, window layer 14, and low resistance layer 15, the mesa will have three steps, with the largest step occurring in the light absorption layer. Since the step of this light absorption layer has a gentle slope, wiring from the upper part of the mesa to the substrate surface can be performed without any problem. Thereafter, a light receiving element as shown in FIG. 1ff) is completed using the same method as the conventional manufacturing method. That is,
A p-type region 16 is formed by diffusing Zn or the like in the upper part of the mesa, and a p-side electrode 17 of Cr/Pt/Au or the like, Au-Sn
After the n-side electrode 18 is deposited, a passivation film 19 such as S s N is deposited, and finally a wiring 2o such as T i /A u is formed.

なお、以上の説明で低抵抗層12の材料をInGaAs
Pとしたが、受光素子の機能上は低抵抗のn型であれば
InPあるいはInGaAsであって7ヘー/ もよい。しかし、製造上は低抵抗層をInGaAsPと
しておくと大きな利点がある。何故なら、第1図(b)
に示す光吸収層13のメサ・エツチング、同図(d)に
示すウィンドウ層14のメサ・エツチングおよび同図(
elに示す低抵抗層12のメサ・エツチングのいずれに
おいても選択エツチングが可能になるからである。まず
、光吸収層および低抵抗層のエツチングには、例えばH
2SO4:H2O2:H20=1:1:5(体積比)を
用いる。このエツチング液のエツチング速度はInP、
InGaAsP。
In the above explanation, the material of the low resistance layer 12 is InGaAs.
Although P is used, InP or InGaAs may be used as long as it is n-type with low resistance in terms of the function of the light-receiving element. However, in terms of manufacturing, there is a great advantage in using InGaAsP as the low resistance layer. This is because Fig. 1(b)
Mesa etching of the light absorbing layer 13 shown in FIG. 2, mesa etching of the window layer 14 shown in FIG.
This is because selective etching is possible in any mesa etching of the low resistance layer 12 shown in el. First, for etching the light absorption layer and the low resistance layer, for example, H
2SO4:H2O2:H20=1:1:5 (volume ratio) is used. The etching speed of this etching solution is InP,
InGaAsP.

InGaAsの順に大きくなり、しかもその差は十分に
大きいので、InGaAs光吸収層あるいはI nG 
a、A s P低抵抗層を選択的にエツチングできる。
InGaAs light absorbing layer or InGaAs light absorption layer or InG
a, A s P low resistance layer can be selectively etched.

また、InPウィンドウ層は例えばHCl:H3P04
=1:4(体積比)によって選択的にエツチングするこ
とができる。このエツチング液では工1AIIP低抵抗
層はほとんどエツチングされないためである。
In addition, the InP window layer is, for example, HCl:H3P04
Selective etching can be performed by using a ratio of 1:4 (volume ratio). This is because this etching solution hardly etches the AIIP low resistance layer.

第2図は本発明の受光素子の製造方法の第2の実施例を
示す断面図である。基本的には第1図に示したものと同
じであるが、受光素子と接合形電界効果トランジスタ(
1−FET)を同一基板上に集積化するためにn −I
 n G aへ8PよりなるFET層21が新たに付加
されている。このため選択エツチングの観点から低抵抗
層12をn−InPとしている。以下第2図に従って製
造方法を説明すると、まず、半絶縁性InP基板11上
にn −InGaAsPFET層21、n −I n 
P低抵抗層12、n−InGaAs光吸収層13を順次
エピタキシアル成長する(第2図(a))。次いで光吸
収層13をメサ・エツチングしく第2図(b))、ウィ
ンドウ層14をエピタキシアル成長する(第2図(C)
)。さらにウィンドウ層14と低抵抗層12を同時にメ
サ・エツチングした後(第2図(d))、FET層21
をメサ・エツチングする(第2図(e))。
FIG. 2 is a sectional view showing a second embodiment of the method for manufacturing a light receiving element of the present invention. It is basically the same as shown in Figure 1, except for the light receiving element and the junction field effect transistor (
1-FET) on the same substrate.
A FET layer 21 made of 8P is newly added to nGa. Therefore, from the viewpoint of selective etching, the low resistance layer 12 is made of n-InP. The manufacturing method will be explained below according to FIG.
A P low resistance layer 12 and an n-InGaAs light absorption layer 13 are epitaxially grown in sequence (FIG. 2(a)). Next, the light absorption layer 13 is mesa-etched (FIG. 2(b)), and the window layer 14 is epitaxially grown (FIG. 2(C)).
). Furthermore, after mesa etching the window layer 14 and the low resistance layer 12 at the same time (FIG. 2(d)), the FET layer 21
Mesa etching is performed (Fig. 2(e)).

この際、FET層21はl−FETを形成する部分にも
残しておく。この後の受光素子の加工は第1の実施例と
同じであるが、J−FETは拡散によってゲート22を
形成し、受光素子と同時にp側電極、n側電極、配線を
形成する(第2図(f))。
At this time, the FET layer 21 is also left in the portion where the l-FET is to be formed. The subsequent processing of the light-receiving element is the same as in the first embodiment, but in the J-FET, the gate 22 is formed by diffusion, and the p-side electrode, n-side electrode, and wiring are formed at the same time as the light-receiving element (second Figure (f)).

9ペーノ′ 本実施例は、本発明の受光素子の製造方法を電気素子と
の集積化のために適用した一例を示したものであるが、
集積化する電気素子の構造が本実施例に限定されるもの
ではない。
9Peno' This example shows an example in which the method for manufacturing a light receiving element of the present invention is applied for integration with an electric element.
The structure of the electric element to be integrated is not limited to this embodiment.

発明の効果 以上述べてきたように、本発明によれば他の素子と集積
化した際の電気的分離が容易なメサ構造であシながら、
配線の断線を生じない受光素子を製造することが可能に
なる。まだ、製造される受光素子は高量子効率、低暗電
流のウィンドウ付き構造となる。
Effects of the Invention As described above, according to the present invention, although the mesa structure is easy to electrically isolate when integrated with other elements,
It becomes possible to manufacture a light receiving element that does not cause disconnection of wiring. However, the photodetector that will be manufactured will have a windowed structure with high quantum efficiency and low dark current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の受光素子の製造方法を示す
断面図、第2図は本発明の第2の実施例の受光素子の製
造方法を示す断面図、第3図は従来の受光素子の断面図
である。 11・・・・・・InP基板、12・・・・・・低抵抗
層、13・・・・・・光吸収層、14・・・・・・ウィ
ンドウ層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名冑 
    さ へl    ?%         聾へ7厚中中:ム 峠戯7h −心 心       1 \            〜 \\ 〜\     
      (’J へIN ゝ−厚中中諷 〜N ’−++          〜 (’−z\ 
◇q \             \ CXJ  ’
−。 InP基板 バッファ層 先吸収層 ウィンドウ層 P+領域 パッシベーション膜 P(t’1電極 n側電極
FIG. 1 is a cross-sectional view showing a method for manufacturing a light-receiving element according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing a light-receiving element according to a second embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view of a light receiving element. 11...InP substrate, 12...Low resistance layer, 13...Light absorption layer, 14...Window layer. Name of agent: Patent attorney Toshio Nakao and one other person
Sae l? % To the Deaf 7 Thick Junior High School: Mutogegi 7h - Shinshin 1 \ 〜 \\ 〜\
('J to IN ゝ-Atsuchuchujim ~N '-++ ~ ('-z\
◇q \ \ CXJ'
−. InP substrate buffer layer first absorption layer window layer P+ region passivation film P (t'1 electrode n-side electrode

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性InP基板上に低抵抗層と光吸収層との少なく
とも2層をエピタキシアル成長する工程と、前記光吸収
層を一部領域を残してエッチング除去する工程と、ウィ
ンドウ層をエピタキシアル成長する工程と、前記光吸収
層が残された領域を含む一部領域を残して前記ウィンド
ウ層をエッチング除去する工程と、前記ウィンドウ層が
残された領域を含む一部領域を残して前記低抵抗層をエ
ッチング除去する工程とを含んでなる受光素子の製造方
法。
A step of epitaxially growing at least two layers, a low resistance layer and a light absorption layer, on a semi-insulating InP substrate, a step of etching away the light absorption layer leaving only a part of the layer, and epitaxial growth of a window layer. a step of etching away the window layer leaving a partial region including the region where the light absorption layer is left; and a step of removing the low resistance by etching the window layer leaving a partial region including the region where the window layer is left. A method for manufacturing a light receiving element, comprising a step of etching and removing a layer.
JP61266930A 1986-11-10 1986-11-10 Nanufacture of photodetector Pending JPS63120477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266930A JPS63120477A (en) 1986-11-10 1986-11-10 Nanufacture of photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266930A JPS63120477A (en) 1986-11-10 1986-11-10 Nanufacture of photodetector

Publications (1)

Publication Number Publication Date
JPS63120477A true JPS63120477A (en) 1988-05-24

Family

ID=17437655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266930A Pending JPS63120477A (en) 1986-11-10 1986-11-10 Nanufacture of photodetector

Country Status (1)

Country Link
JP (1) JPS63120477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183167A (en) * 1989-12-12 1991-08-09 Hikari Keisoku Gijutsu Kaihatsu Kk Photodetector and manufacture thereof
JP2006295216A (en) * 1995-02-02 2006-10-26 Sumitomo Electric Ind Ltd Pin type light-receiving device, and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183167A (en) * 1989-12-12 1991-08-09 Hikari Keisoku Gijutsu Kaihatsu Kk Photodetector and manufacture thereof
JP2006295216A (en) * 1995-02-02 2006-10-26 Sumitomo Electric Ind Ltd Pin type light-receiving device, and method of manufacturing same

Similar Documents

Publication Publication Date Title
US4625225A (en) Integrated light detection or generation means and amplifying means
JPS60106183A (en) Photodetecting ic
JP2001144278A (en) Light receiving element array
JP2599131B2 (en) Integrated photodetector-amplifier device
JPH0335556A (en) Combinations of photodiode and field effect transistor
KR910013515A (en) Photoelectric integrated circuit for receiving and manufacturing method thereof
GB2168528A (en) PIN-diode and FET
JPS63120477A (en) Nanufacture of photodetector
JPH0582829A (en) Semiconductor light receiving element
TWI637532B (en) Light-emitting diode
JPH02199877A (en) Optical receiver and photoelectric integrated circuit
JP2626149B2 (en) Optoelectronic integrated circuit manufacturing method
JP2570424B2 (en) Semiconductor light receiving element
JPS6360562A (en) Manufacture of optical semiconductor device
JP3014006B2 (en) Semiconductor device
JPH01196182A (en) Photodiode
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS59202676A (en) Planar type light-emitting element
JPS63228767A (en) Photodetector and manufacture thereof
JPS6262477B2 (en)
JPH01239879A (en) Monolithic light receiver
JPS6396955A (en) Manufacture of opto-electronic integrated circuit
JPH0644614B2 (en) Method for manufacturing optoelectronic integrated circuit
JPS62189750A (en) Semiconductor light emitting device
JPS62247563A (en) Manufacture of semiconductor device