JPS63114A - Liquid phase epitaxy - Google Patents

Liquid phase epitaxy

Info

Publication number
JPS63114A
JPS63114A JP14136286A JP14136286A JPS63114A JP S63114 A JPS63114 A JP S63114A JP 14136286 A JP14136286 A JP 14136286A JP 14136286 A JP14136286 A JP 14136286A JP S63114 A JPS63114 A JP S63114A
Authority
JP
Japan
Prior art keywords
solution
growth
holder
reservoir
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14136286A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14136286A priority Critical patent/JPS63114A/en
Publication of JPS63114A publication Critical patent/JPS63114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive to easily make uniform the composition and thickness of grown layers by arranging solution tanks of first and second solution reservoirs in a manner that each tank enters into another solution reservoir alternately so the growing solutions filling the solution reservoir communicate with each other. CONSTITUTION:This device is composed of a substrate holder 4 in which an InP substrate 1 is attached to a containing recess, a solution holder 5 provided with InP growing solution reservoirs 9 and InGaAsP growing solution reservoirs 10 which are separated from one anther, and a boat 6 for mounting the substrate holder 4 and the solution holder 5. The InP growing solution reservoir 9 and the InGaAsP growing solution reservoir 10 comprise plural solution tanks 9a-9d and 10a-10d respectively and the solution tanks 9a-9d and 10a-10d extend under a central partition 5a of the solution holder 5 and penetrate through the adjacent growing solution reservoirs 10 and 9. Because a capacity of the growing solution reservoirs 9 and 10 is large, the change of composition due to the exhaustion of a solute becomes small. Accordingly, the modulation of the growing conditions is not neccessary when forming multiple growth layers and the composition and thickness of the layers become uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体の製造に利用される液相成長方法に関
し、さらに具体的に記述すれば、異種の半導体層を繰り
返し多層成長する液相エピタキシー成長方法に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a liquid phase growth method used in the manufacture of semiconductors, and more specifically, a liquid phase growth method for repeatedly growing different types of semiconductor layers in multiple layers. The present invention relates to an epitaxial growth method.

(従来の技術) 従来より、多重量子井戸層や多重半導体層を用いたブラ
ック反射膜のような多数の異種半導体層を繰り返し多層
成長するには、各層の組成、膜厚等の均一化のために1
分子線エピタキシー法や有機金属気相成長法等が主とし
て用いられてきた。
(Prior art) Conventionally, in order to repeatedly grow a large number of different types of semiconductor layers, such as a black reflective film using multiple quantum well layers or multiple semiconductor layers, it has been necessary to make the composition, thickness, etc. of each layer uniform. to 1
Molecular beam epitaxy, organometallic vapor phase epitaxy, etc. have been mainly used.

しかし、成長装置の簡便さ、価格あるいは成長溜の結晶
性等では、現在周知のように、液相成長法が最も優れて
いるので、制御性の良い液相成長方法によって多層成長
溜を形成することが、実用上極めて重要となる。
However, as is currently well known, the liquid phase growth method is the best in terms of the simplicity of the growth equipment, price, crystallinity of the growth tank, etc., so it is recommended to form a multilayer growth tank using the liquid phase growth method, which has good controllability. This is extremely important in practical terms.

従来の多層成長溜を得る液相成長方法について、第4図
ないし第6図により説明する。
A conventional liquid phase growth method for obtaining a multilayer growth reservoir will be explained with reference to FIGS. 4 to 6.

なお、説明を簡単且つ具体化するため、第3図に示すI
nP基板1の表面に、InGaAsP層2およびInP
層3の繰り返し多層成長膜を形成する液相成長法につい
て説明する。
In addition, in order to simplify and make the explanation more concrete, I shown in FIG.
An InGaAsP layer 2 and an InP layer are formed on the surface of the nP substrate 1.
A liquid phase growth method for forming a repeated multilayer growth film of layer 3 will be explained.

第5図は、従来の液相成長方法に用いられる成長ボート
の断面図で、成長ボートは、InP基板1を取り付ける
収容凹みを設けた基板ホルダ4、成長溶液をいれる溶液
ホルダ5、上記の基板ホルダ4と溶液ホルダ5を載せる
ボート台6から構成されており、溶液ホルダ5には3つ
の溶液槽が設けられ両端の溶液槽にInP成長溶液71
,7□が、中央の溶液槽にInGaAsP成長溶液8が
それぞれ収容されている。
FIG. 5 is a cross-sectional view of a growth boat used in a conventional liquid phase growth method. It consists of a boat stand 6 on which a holder 4 and a solution holder 5 are placed, and the solution holder 5 is provided with three solution tanks, and the InP growth solution 71 is placed in the solution tanks at both ends.
, 7□ respectively contain an InGaAsP growth solution 8 in the central solution tank.

成長条件は、水素雰囲気中で液温620℃の溶液に1時
間浸漬後、冷却速度0.7℃/分で液温600℃まで降
下させ成長を行うものである。
The growth conditions are such that after being immersed in a solution with a liquid temperature of 620°C in a hydrogen atmosphere for 1 hour, the liquid temperature is lowered to 600°C at a cooling rate of 0.7°C/min to perform growth.

このような成長ボートを用いた液相成長方法について説
明する。まず、基板ホルダ4を左の方向に引き出して収
容凹みにInP基板1を取付けた後右方向に摺動させ、
InP基板1を左端の溶液槽の下に止め、InP成長溶
液71に成長時間t□の間接触させてInP層2を成長
させる0次に、基板ホルダ4を右方向に摺動させ、図に
示すように中央の溶液槽の下にInP基板1を止め、I
nGaAsP溶液8に成長時間t2の間接触させてIn
GaAsP層3を成長させる0次に、基板ホルダ4を続
けて右方向に摺動させ右端のInP溶液7□に成長時間
t、の間接触させてInP層2を成長させる。再び基板
ホルダ4を左方向に摺動させ、InP基板1を順次隣接
する溶液槽の下に止め、成長溶液8,7□、8,7.・
・・の順にInGaAsP成長溶液8およびInP成長
溶液7□および72に接触させて第4図に示した多層成
長溜を得ることができる。
A liquid phase growth method using such a growth boat will be explained. First, pull out the substrate holder 4 to the left, attach the InP substrate 1 to the accommodation recess, and then slide it to the right.
The InP substrate 1 is kept under the solution tank at the left end and brought into contact with the InP growth solution 71 for a growth time t□ to grow the InP layer 2.Next, the substrate holder 4 is slid to the right, and as shown in the figure. As shown, the InP substrate 1 is placed under the central solution tank, and the I
In is brought into contact with the nGaAsP solution 8 for a growth time t2.
Growth of GaAsP layer 3 Next, the substrate holder 4 is continuously slid to the right and brought into contact with the InP solution 7□ at the right end for a growth time t, thereby growing the InP layer 2. The substrate holder 4 is again slid to the left, and the InP substrates 1 are sequentially stopped under the adjacent solution baths, and the growth solutions 8, 7□, 8, 7, .・
By contacting the InGaAsP growth solution 8 and the InP growth solutions 7□ and 72 in this order, the multilayer growth reservoir shown in FIG. 4 can be obtained.

(発明が解決しようとする問題点) しかしながら、順次成長溜を形成していくうちに、成長
溶液中の溶質が枯渇して来るため、成長速度が変化する
ので、溶質の枯渇に応じて成長時間t□t ts* t
iを調整する必要があるという問題があった。なお、 
InGaAsP成長溶液の場合は。
(Problem to be solved by the invention) However, as the growth reservoirs are successively formed, the solute in the growth solution is depleted, and the growth rate changes. t□t ts* t
There was a problem in that it was necessary to adjust i. In addition,
For InGaAsP growth solution.

組成変動も生じ、最初の成長溜と最後の成長溜とでは組
成が著しく異なるという問題もあった。従って、成長条
件が複雑な詐りでなく 、 InGaAsP層の場合に
は、組成の変動が本質的に防げないという問題があった
There was also a problem that compositional fluctuations occurred, and the compositions were significantly different between the first growth reservoir and the last growth reservoir. Therefore, in the case of an InGaAsP layer where the growth conditions are not complicated, there is a problem in that compositional fluctuations are essentially unavoidable.

上記の成長溶液中の溶質の枯渇を防ぐ対策として、第5
図に示すように、溶液ホルダ5に積層数に相当する溶液
槽を設け、InP溶液7□、72・・・7□いInGa
AsP溶液8.・・・81.を交互に収容し、基板ホル
ダ4を左から右へ一方向に摺動させて多層成長溜を形成
する方法も考えられるが、InP成長溶液およびInG
aAsP成長溶液の組成を均一化することは実際上不可
能であり、また、溶液槽を積層数に合せて設けることは
、成長ボートの長さが際限なく大きくなってしまうと言
う問題もある。
As a measure to prevent the depletion of solutes in the above growth solution, the fifth
As shown in the figure, solution tanks corresponding to the number of laminated layers are provided in the solution holder 5, and InP solutions 7□, 72...7□ and InGa
AsP solution8. ...81. It is also possible to form a multilayer growth reservoir by accommodating the InP growth solution and InG growth solution alternately and sliding the substrate holder 4 in one direction from left to right.
It is practically impossible to make the composition of the aAsP growth solution uniform, and there is also the problem that the length of the growth boat will become infinitely large if the solution tanks are provided in accordance with the number of stacked layers.

本発明は上記の問題点を解決するもので、各成長溜の組
成および膜厚の均一化が図れる液相成長方法を提供する
ものである。
The present invention solves the above-mentioned problems and provides a liquid phase growth method in which the composition and film thickness of each growth reservoir can be made uniform.

(問題点を解決するための手段) 上記の問題点を解決するために、本発明の成長ボートは
、第1の半導体成長溜を形成する複数の溶液槽を有する
第1の溶液溜と、上記の第1の半導体と異なる組成の第
2の半導体成長溜を形成する上記の第1の溶液溜とは隔
離された複数の溶液槽を有する第2の溶液溜とを設け、
上記の第1および第2の溶液溜のそれぞれの溶液槽を交
互に他方の溶液溜中に槽を入り込むように配列し、且つ
各溶液溜毎に成長溶液を互いに連通ずる如く満たすもの
である。
(Means for Solving the Problems) In order to solve the above problems, the growth boat of the present invention includes a first solution tank having a plurality of solution tanks forming a first semiconductor growth tank, and a second solution reservoir having a plurality of solution tanks isolated from the first solution reservoir forming a second semiconductor growth reservoir having a composition different from that of the first semiconductor;
Each of the first and second solution reservoirs is arranged so as to alternately fit into the other solution reservoir, and each solution reservoir is filled with the growth solution so as to communicate with each other.

(作 用) このような構成により、第1および第2の半導体成長溜
を成長させるとともに、複数の溶液槽の成長溶液は、そ
れぞれ第1および第2の溶液溜内で混ざり合うため、多
層成長溜の各半導体の組成や膜厚を容易に均一化するこ
とが可能となる。
(Function) With this configuration, the first and second semiconductor growth reservoirs are grown, and the growth solutions in the plurality of solution tanks are mixed in the first and second solution reservoirs, so that multilayer growth is possible. It becomes possible to easily equalize the composition and film thickness of each semiconductor in the reservoir.

(実施例) 本発明の一実施例を第1図、第2図および第4図により
説明する。第4図は従来例の説明に具体例として用いた
ものであるが、本実施例も第4図によって説明する。
(Example) An example of the present invention will be described with reference to FIGS. 1, 2, and 4. Although FIG. 4 is used as a specific example to explain the conventional example, this embodiment will also be explained with reference to FIG.

第1図は本発明による成長ボートの斜視図で。FIG. 1 is a perspective view of a growth boat according to the present invention.

成長ボートは、 InP基板1を収容凹みに取り付けた
基板ホルダ4と、相互に隔離されたInP成長溶液溜9
およびInGaAsP成長溶液溜10が設けられた溶液
ホルダ5と、上記の基板ホルダ4および溶液ホルダ5を
載せるボート台6から構成されている。
The growth boat includes a substrate holder 4 in which an InP substrate 1 is attached to a recess, and an InP growth solution reservoir 9 isolated from each other.
and a solution holder 5 provided with an InGaAsP growth solution reservoir 10, and a boat stand 6 on which the substrate holder 4 and solution holder 5 described above are placed.

InP成長溶液溜9およびInGaAsP成長溶液溜1
0にはそれぞれ、複数個の溶液槽9a、 9b、 9c
、 9dおよび10a、 10b、 10c、 10d
が設けられており、それぞれの溶液槽9aないし9dお
よび10aないし10dは溶液ホルダ5の中央隔壁5a
の下を潜り、隣接する成長溶液溜10および9の中を貫
通延長されている。
InP growth solution reservoir 9 and InGaAsP growth solution reservoir 1
0 have a plurality of solution tanks 9a, 9b, 9c, respectively.
, 9d and 10a, 10b, 10c, 10d
are provided, and the respective solution tanks 9a to 9d and 10a to 10d are connected to the central partition wall 5a of the solution holder 5.
and extend through adjacent growth reservoirs 10 and 9.

第2図(a)および(b)は、第1図に示すInP成長
溶液溜9およびInGaAsP成長溶液溜10の中心面
を通るA−A’およびB−B’切断面を手前から見たそ
れぞれの断面図である。
2(a) and 2(b) are views of A-A' and B-B' cut planes passing through the center planes of the InP growth solution reservoir 9 and InGaAsP growth solution reservoir 10 shown in FIG. 1 from the front, respectively. FIG.

第2図(a)のInP成長溶液溜9に入れたInP成長
溶液7は、それぞれの溶液槽9a、 9b、 9cおよ
び9dに満たされるほか、第2図(b)に示す溶液槽9
a。
The InP growth solution 7 placed in the InP growth solution reservoir 9 shown in FIG. 2(a) is filled in each of the solution tanks 9a, 9b, 9c, and 9d, as well as the solution tanks 9 shown in FIG. 2(b).
a.

9b、 9cおよび9dをも中央隔壁5aの下を潜って
満たしている。−方、第2図(b)のInGaAsP成
長溶液溜10にいれたInGaAsP成長溶液8は、そ
れぞれの溶液槽10a、 10b、 10cおよび10
dに満たされるほか、第2図(a)に示す溶液槽10a
、 10b、 10cおよび10dをも中央隔壁5aの
下を潜って満たしている。各成長溶液溜9,10の複数
の溶液槽中の成長溶液は。
9b, 9c and 9d are also filled under the central partition wall 5a. - On the other hand, the InGaAsP growth solution 8 placed in the InGaAsP growth solution reservoir 10 in FIG.
In addition to the solution tank 10a shown in FIG.
, 10b, 10c and 10d are also filled under the central partition wall 5a. The growth solutions in the plurality of solution tanks of each of the growth solution reservoirs 9 and 10 are as follows.

上記の貫通部の上方で互いに連通ずる。各成長溶液溜9
および10の容量が大きいので、溶質の枯渇による組成
の変化が少ない。従って、多層成長溜の形成に際し、成
長条件の調整を必要とせず、各層の組成および膜厚が均
一となる。
They communicate with each other above the above-mentioned through-hole. Each growth solution reservoir 9
And since the capacity of 10 is large, there is little change in composition due to solute depletion. Therefore, when forming a multilayer growth reservoir, there is no need to adjust the growth conditions, and the composition and thickness of each layer can be made uniform.

さらに、成長溶液の組成が安定するので、多層成長溜の
層数に応じた溶液槽を設ける必要がなく、基板ホルダ4
を前後に動かし、成長溶液に順次接触させることが可能
となる。
Furthermore, since the composition of the growth solution is stable, there is no need to provide solution tanks according to the number of layers in the multilayer growth tank, and the substrate holder 4
can be moved back and forth to sequentially contact the growth solution.

なお、本実施例では積層する半導体層をInPとInG
aAsPの2種類としたが、3種類以上の半導体層を繰
り返し成長することも可能である。また、本実施例のI
nPとInGaAsPの組合せに限らず、AlGaAs
とGaA、ANGaSbとGaSbその他の組合せでも
宜しいことは勿論である。
In this example, the semiconductor layers to be laminated are InP and InG.
Although two types of aAsP are used, it is also possible to repeatedly grow three or more types of semiconductor layers. In addition, I
Not limited to the combination of nP and InGaAsP, but also AlGaAs
Of course, combinations of ANGaSb and GaA, ANGaSb and GaSb, and other combinations are also suitable.

第3図は本発明方法に使用する装置の第2の実施例の模
式的斜視図で、第1図と同種の符号は同種部分を示す。
FIG. 3 is a schematic perspective view of a second embodiment of the apparatus used in the method of the present invention, in which the same reference numerals as in FIG. 1 indicate the same parts.

同図において、5bはジグザグ状に形成した中央隔壁で
、それによって、成長溶液溜9.10の互いに対向して
いる部分が交互に他の成長溶液溜の中に入り込むように
なる。その互いに入り込む長さくまたは巾)は、基板1
上に形成する層の巾に応じて決定される。この実施例に
おいては、各溶液槽中の成長溶液は、溶液ホルダーの側
壁に面した部分で連通ずる。
In the figure, reference numeral 5b denotes a central partition wall formed in a zigzag pattern, so that mutually opposing portions of the growth solution reservoirs 9 and 10 are inserted into other growth solution reservoirs alternately. The length or width of their mutual penetration is the length or width of the substrate 1
It is determined depending on the width of the layer formed above. In this embodiment, the growth solution in each solution bath communicates with the portion facing the side wall of the solution holder.

(発明の効果) 以上説明したように、本発明によれば、複数の半導体層
を繰り返し成長させる多層成長方法で、各成長溜の組成
および膜厚を、複雑な調整を要せず容易に均一化するこ
とが可能である。
(Effects of the Invention) As explained above, according to the present invention, by using a multilayer growth method in which multiple semiconductor layers are repeatedly grown, the composition and film thickness of each growth reservoir can be easily uniformized without requiring complicated adjustments. It is possible to convert

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液相成長方法に使用する成長ボートの
斜視図、第2図(a)および(b)はそれぞれ第1図に
示したA−A’およびB−B’切断面の断面図、第3図
は本発明方法に使用する成長ボートの他の例の斜視図、
第4図は多層成長溜の構造図、第5図および第6図は従
来の成長ボートの断面図である。 1 ・・・InP基板、 2 ・・・InP層、 3 
・・・、  InGaAsP層、 4 ・・・基板ホル
ダ、 5 ・・・溶液ホルダ、5a・・・隔壁、 6 
・・・ボート台、  7,71,7.、?、、、−In
P成長溶液、8* 81r 8.− InGaAsP成
長溶液、9 − InP成長溶液溜、  9a、 9b
、 9c、 9d。 10a、 10b、 10c、 10d−溶液槽、10
−・・InGaAsP成長溶液溜。 特許出願人 松下電器産業株式会社 第1図 p′ 6−一一ボート6 9−−− inp底支容涜眉 υ−1nGaAsPA+m?L溜 第2図 (a) 第3図 第4図 第5図
FIG. 1 is a perspective view of a growth boat used in the liquid phase growth method of the present invention, and FIGS. 2(a) and (b) are cross sections of A-A' and B-B' shown in FIG. 1, respectively. A sectional view, FIG. 3 is a perspective view of another example of a growth boat used in the method of the present invention,
FIG. 4 is a structural diagram of a multilayer growth tank, and FIGS. 5 and 6 are sectional views of a conventional growth boat. 1...InP substrate, 2...InP layer, 3
..., InGaAsP layer, 4... substrate holder, 5... solution holder, 5a... partition, 6
...Boat stand, 7,71,7. ,? ,,,-In
P growth solution, 8*81r 8. - InGaAsP growth solution, 9 - InP growth solution reservoir, 9a, 9b
, 9c, 9d. 10a, 10b, 10c, 10d-solution tank, 10
- InGaAsP growth solution reservoir. Patent applicant Matsushita Electric Industrial Co., Ltd. Figure 1 p' 6-11 Boat 6 9--- inp bottom support eyebrow υ-1nGaAsPA+m? L reservoir Fig. 2 (a) Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 基板を取り付ける基板ホルダと、溶液を収容する溶液ホ
ルダを有し、上記の基板ホルダと溶液ホルダが相対的に
摺動可能な成長ボートを用い、異種の半導体層を繰り返
し多層成長するに際し、第1の半導体層形成用の複数の
溶液槽を設けた第1の成長溶液溜と、上記の第1の半導
体層と異なる組織の第2の半導体層形成用で、上記の第
1の成長溶液溜と隔離された複数の溶液槽を設けた第2
の成長溶液溜とを溶液ホルダに設け、上記の複数の両溶
液槽を交互に一方の成長溜の溶液槽が他方の成長溶液溜
中入り込むように配置し、且つ各成長溶液を上記各成長
溶液溜毎に上記複数の溶液槽が互いに連通する如く満た
し、上記の基板ホルダを溶液ホルダに対して摺動し、基
板ホルダに取り付けた基板を上記の第1および第2の成
長溶液溜の溶液槽で、第1および第2の成長溶液に順次
接触させて、上記の基板の表面に第1および第2の半導
体層を積層形成することを特徴とする液相成長方法。
When repeatedly growing multiple semiconductor layers of different types using a growth boat that has a substrate holder for attaching a substrate and a solution holder for storing a solution, and in which the substrate holder and the solution holder are movable relative to each other, the first step is to a first growth solution reservoir provided with a plurality of solution tanks for forming a semiconductor layer, and a second growth solution reservoir for forming a second semiconductor layer having a structure different from that of the first semiconductor layer; A second tank with multiple isolated solution tanks
A growth solution reservoir is provided in the solution holder, and the plurality of both solution tanks are arranged alternately so that the solution tank of one growth solution enters the other growth solution reservoir, and each growth solution is placed in the solution holder. Fill each reservoir so that the plurality of solution tanks are in communication with each other, slide the substrate holder against the solution holder, and place the substrate attached to the substrate holder into the solution tanks of the first and second growth solution reservoirs. A liquid phase growth method, characterized in that first and second semiconductor layers are laminated on the surface of the substrate by sequentially contacting the first and second growth solutions.
JP14136286A 1986-06-19 1986-06-19 Liquid phase epitaxy Pending JPS63114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14136286A JPS63114A (en) 1986-06-19 1986-06-19 Liquid phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14136286A JPS63114A (en) 1986-06-19 1986-06-19 Liquid phase epitaxy

Publications (1)

Publication Number Publication Date
JPS63114A true JPS63114A (en) 1988-01-05

Family

ID=15290215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14136286A Pending JPS63114A (en) 1986-06-19 1986-06-19 Liquid phase epitaxy

Country Status (1)

Country Link
JP (1) JPS63114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170302A (en) * 1990-05-07 1992-12-08 Mitsubishi Denki Kabushiki Kaisha Thin-film magnetic head with multiple interconnected coil layers
JPH0522061U (en) * 1991-08-31 1993-03-23 太陽誘電株式会社 Pin transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170302A (en) * 1990-05-07 1992-12-08 Mitsubishi Denki Kabushiki Kaisha Thin-film magnetic head with multiple interconnected coil layers
JPH0522061U (en) * 1991-08-31 1993-03-23 太陽誘電株式会社 Pin transfer device

Similar Documents

Publication Publication Date Title
US4371968A (en) Monolithic injection laser arrays formed by crystal regrowth techniques
JPS63114A (en) Liquid phase epitaxy
JPS6235260B2 (en)
JPH04960B2 (en)
JPH1168238A (en) Semiconductor optical element and its manufacture
US5340793A (en) Layer-by-layer process for forming Bi -containing oxide superconducting films
JPS5944797B2 (en) Manufacturing method of semiconductor laser device
US4397260A (en) Boat for the epitaxial growth of several layers from the liquid phase
JPS635516A (en) Liquid growth
JPS62128522A (en) Liquid growth method
US4632709A (en) Process for preventing melt-back in the production of aluminum-containing laser devices
JPH04142730A (en) Boat for liquid growth
JPS643051B2 (en)
JPS62266827A (en) Liquid phase epitaxy equipment
JPS6281785A (en) N-type electrode of p-type substrate semiconductor laser
JPS6179281A (en) Manufacture of semiconductor laser
JPS61268023A (en) Manufacture of semiconductor element
JPH0318736B2 (en)
JPH0476491B2 (en)
JPS6321283A (en) Liquid phase epitaxy
JPS61171121A (en) Equipment of manufacturing semiconductor device
JPH0216785A (en) Crystal growth of semiconductor laser and semiconductor laser
JPH05102616A (en) Semiconductor laser array and manufacture thereof
JPS63119227A (en) Liquid growth method
JPS63308313A (en) Manufacturing equipment for semiconductor