JPS6321283A - Liquid phase epitaxy - Google Patents
Liquid phase epitaxyInfo
- Publication number
- JPS6321283A JPS6321283A JP16580186A JP16580186A JPS6321283A JP S6321283 A JPS6321283 A JP S6321283A JP 16580186 A JP16580186 A JP 16580186A JP 16580186 A JP16580186 A JP 16580186A JP S6321283 A JPS6321283 A JP S6321283A
- Authority
- JP
- Japan
- Prior art keywords
- growth
- solution
- substrate
- solution reservoir
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004943 liquid phase epitaxy Methods 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 18
- 239000007791 liquid phase Substances 0.000 claims description 9
- 238000004090 dissolution Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 99
- 230000004888 barrier function Effects 0.000 description 22
- 239000000203 mixture Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は光通信システムの光源として用いられる半導体
レーザ等、オプトエレエクトロニクス分野の光デバイス
の作成に用いられる液相エピタキシャル成長法に関する
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid phase epitaxial growth method used for producing optical devices in the field of optoelectronics, such as semiconductor lasers used as light sources in optical communication systems.
31\−/゛
従来の技術
最近光通信システムの光源等として用−られる半導体レ
ーザは実用化が進む中で、結晶成長技術の進歩により、
より高性能なものの開発が進んでいる。例えば発光領域
に厚さ数nm〜数士nmの異種の結晶を交互に積層した
超格子を用いた半導体レーザもその一つで、一般に多重
量子井戸レーザ(Multj、−Quantum We
ll Iaser、以下MQWレーザと記す)と呼ばれ
る。このMQWレーザは厚さが薄い超格子構造を有する
ため分子線エピタキシー (MB E )ヤ有機金属気
相成長法(MOVPりなどの超薄膜成長の可能な新しい
結晶成長技術の応用として登場した。従来、半導体レー
ザ等の作成に用いられる結晶成長法としては液相エピタ
キシャル成長法が最も一般的であるが、この成長法は前
記MBE法やMOCVD法と比較し成長速度が速いため
超格子構造の成長には適さないとされてきた。しかじ液
相エピタキシャル成長は前記値の二つの成長法に比べ良
質な結晶が得られることや簡便であること、また材料系
でみるとGaAβA11l/GaAs系では前記値の二
つの成長方法でMQWレーザに関して多数の報告がある
が、InGILASP/rnP 系では完成されていな
いことから佐々井等は液相エピタキシャル成長でMQW
レーザの成長を試み良好な特性を得ている( Nati
onalTechnical Report Vol、
32 No、2 Apr1986 255−26
1 )。佐々井等の方法を第5図を参照して説明する
と、61はスライダー、52はn−InP基板、53は
溶液溜、54はn−InP成長溶液、551L 、55
1)はノンドープInGaAs Pバリア層成長溶液(
波長1.1 μm ) 56はノンドープInGaAs
P井戸層成長溶液(波長1.3 pm )、57はP−
InP成長溶液、58はP −In(raAsP成長溶
液である。n −InP基板62は最初にn−InP成
長溶液54よりも左側に位置させておき、所定の温度に
寿ったらスライダー61をn−1nP基板52がn−1
nP成長溶液54の直下にくるようにスライドさせて成
長を行なう。次に超格子構造の成長としてノンドープI
nGaAsPバリア層成長溶液65zL 、55b及び
5ベーノ
ノンドープInGaAsP井戸層成長溶液56の各成長
溶液間を積層数分だけ往復スライドさせる。この時スラ
イダ″−51はn−InP基板62が各成長溶液直下に
くる度に一担停止させるのではなく、一定のスピードで
連続的にスライドさせることによシ基板と成長溶液の接
触時間を少なくシ、成長時間の短縮化を図っている。所
定の積層数分だけ往復スライドが終了したら続いてn−
InP基板を順次P −InP成長溶液57及びP −
InCaAsP成長溶液68の直下にスライドさせ成長
を行なう。31\-/゛Conventional technology Recently, as semiconductor lasers used as light sources in optical communication systems have been put into practical use, advances in crystal growth technology have led to
Development of products with higher performance is progressing. For example, a semiconductor laser that uses a superlattice in which different types of crystals with a thickness of several nanometers to several nanometers are alternately laminated in the light emitting region is one example.
ll Iaser (hereinafter referred to as MQW laser). Because this MQW laser has a thin superlattice structure, it appeared as an application of new crystal growth techniques that can grow ultra-thin films, such as molecular beam epitaxy (MBE) and metal organic vapor phase epitaxy (MOVP). The liquid phase epitaxial growth method is the most common crystal growth method used to create semiconductor lasers, etc., but this growth method has a faster growth rate than the MBE method and MOCVD method, so it is difficult to grow a superlattice structure. However, liquid phase epitaxial growth has been considered to be unsuitable for the above-mentioned values.Compared to the above-mentioned two growth methods, liquid-phase epitaxial growth can obtain better quality crystals and is simpler, and in terms of materials, the GaAβA11l/GaAs system has the above-mentioned values. There are many reports on MQW lasers using two growth methods, but since the InGILASP/rnP system has not been completed, Sasai et al.
Attempting to grow lasers and obtaining good characteristics (Nati
onalTechnical Report Vol.
32 No. 2 Apr1986 255-26
1). To explain Sasai et al.'s method with reference to FIG. 5, 61 is a slider, 52 is an n-InP substrate, 53 is a solution reservoir, 54 is an n-InP growth solution, 551L, 55
1) is a non-doped InGaAsP barrier layer growth solution (
Wavelength 1.1 μm) 56 is non-doped InGaAs
P well layer growth solution (wavelength 1.3 pm), 57 is P-
The InP growth solution 58 is a P-In(raAsP growth solution.The n-InP substrate 62 is initially positioned to the left of the n-InP growth solution 54, and when the temperature reaches a predetermined temperature, the slider 61 is turned to the n-InP growth solution. -1nP substrate 52 is n-1
Growth is performed by sliding it so that it is directly under the nP growth solution 54. Next, non-doped I is grown as a superlattice structure.
The nGaAsP barrier layer growth solutions 65zL, 55b, and the 5-benon-doped InGaAsP well layer growth solution 56 are slid back and forth for the number of layers to be deposited. At this time, the slider "-51 does not stop once every time the n-InP substrate 62 comes directly under each growth solution, but slides continuously at a constant speed to increase the contact time between the substrate and the growth solution. We aim to shorten the growth time by reducing the number of layers.After the reciprocating slide is completed for the predetermined number of layers, the n-
The InP substrate is sequentially treated with P-InP growth solution 57 and P-
Growth is performed by sliding it directly under the InCaAsP growth solution 68.
この方法では超格子構造の成長に際し連続的な往復スラ
イドで成長時間の短縮を図るとともに通常の液相エピタ
キシャル成長の場合よIptso℃程度成長温度を下げ
て行なうことで成長速度の減速化も図っている。以上の
ような成長によシ佐々井らはBH槽構造MQWレーザを
試作し、良好な特性を得ている。In this method, when growing a superlattice structure, the growth time is shortened by continuous back-and-forth sliding, and the growth rate is also slowed down by lowering the growth temperature by approximately Iptso℃ compared to normal liquid phase epitaxial growth. . Based on the growth described above, Sasai et al. prototyped a BH tank structure MQW laser and obtained good characteristics.
発明が解決しようとする問題点
しかし以上のような構成では次のような問題点を有して
いた。すなわち前述のような連続的な往6ベー。Problems to be Solved by the Invention However, the above configuration has the following problems. In other words, continuous 6 bases as mentioned above.
復スライド8ではノンドープInGaAsP井戸層(〜
200人)を薄くできてもノンドープInGaAsP井
戸層を薄くできな−(〜500人)。これはn −In
P基板52がノンドープInGaAsP井戸層成長溶液
66の直下は通過するのみであるが、ノンドープIn(
raAsPバリア層成長溶液55a及び56bの直下で
はスライド方向が反転する分だけ接触時間が長くなるた
めである。バリア層の厚みは井戸層への電子の注入効率
に影響し、厚い場合には注入効率の低下から半導体レー
ザのしきい値電流を下げることができない。さらに前述
の往復スライドでは成長溶液の引込みによって組成のば
らつきが生じやすい。In the second slide 8, a non-doped InGaAsP well layer (~
200 people), but it is not possible to make the non-doped InGaAsP well layer thin (~500 people). This is n −In
Although the P substrate 52 only passes directly under the non-doped InGaAsP well layer growth solution 66, the non-doped InGaAsP (
This is because the contact time becomes longer as the sliding direction is reversed directly under the raAsP barrier layer growth solutions 55a and 56b. The thickness of the barrier layer affects the injection efficiency of electrons into the well layer, and if the barrier layer is thick, the threshold current of the semiconductor laser cannot be lowered because the injection efficiency decreases. Furthermore, in the above-mentioned reciprocating slide, variations in composition are likely to occur due to the withdrawal of the growth solution.
本発明は以上のような往復スライドによるバリア層の薄
膜化の困難を取除きバリア層のみならず井戸層をもさら
に薄膜化を可能とするとともに組成のばらつきをおさえ
た超格子構造を得る液相エピタキシャル成長方法を提供
することを目的とする。The present invention eliminates the difficulty of thinning the barrier layer by reciprocating slides as described above, makes it possible to thin not only the barrier layer but also the well layer, and provides a liquid phase solution to obtain a superlattice structure with suppressed compositional variations. The purpose is to provide an epitaxial growth method.
問題点を解決するための手段
7ペーノ
本発明は基板を設置するスライダーと該スライダーに対
して相対的にスライド可能な成長溶液を収納する複数(
n個)の貫通孔を有する溶液溜と、前記溶液溜上にあっ
て溶液溜に対して相対的にスライド可能であり、前記溶
液溜の複数の貫通孔に成長溶液を分配するだめの2つの
成長溶液を収納する貫通孔を有する分配溶液溜とを備え
、前記分配溶液溜の2つの貫通孔の底部開口部が、前記
溶液溜上で分配溶液溜がスライドする際、1つは1゜3
.6.・・・・・・、n番目の前記溶液溜の貫通孔の上
部開口部に対応し、他の1つは2,4.・・・・・・。Means for Solving Problems 7Peno The present invention comprises a slider for installing a substrate and a plurality of sliders for storing a growth solution that can be slid relative to the slider.
a solution reservoir having n through-holes; and two reservoirs disposed on the solution reservoir, slidable relative to the solution reservoir, and distributing the growth solution to the plurality of through-holes of the solution reservoir. a distribution solution reservoir having through-holes for accommodating a growth solution, the bottom openings of the two through-holes of the distribution solution reservoir being such that when the distribution solution reservoir slides over the solution reservoir, one is 1°3.
.. 6. . . . corresponds to the upper opening of the through hole of the n-th solution reservoir, and the other one corresponds to 2, 4, . .......
(n−1)番目の貫通孔の上部開口部に対応し、スライ
ド方向において前記溶液溜の各貫通孔の下部開口部幅が
、前記基板の幅よりも小さいボートを用い、前記分配溶
液溜の2つの貫通孔に異種の成長溶液を収納し、均一に
溶解させた後、前記分配溶液溜を前記溶液溜上でスライ
ドさせ、前記異種の成長溶液の1つを1.3,5.・・
・・・・、n番目の前記溶液溜の貫通孔に、他の1つを
2.4.・・・・・・、(n−1)番目の前記溶液溜の
貫通孔に分配した後、前記基板を設置したスライダーを
一定スピードで停止させることなく連続的にスライドさ
せて前記基板を前記溶液溜の貫通孔に交互に収納された
2つの異なる成長溶液に接触させて超格子構造を基板上
に成長させることにより上記目的を達成するものである
。Using a boat, which corresponds to the upper opening of the (n-1)th through hole, and in which the width of the lower opening of each through hole of the solution reservoir in the sliding direction is smaller than the width of the substrate, After storing different types of growth solutions in the two through-holes and dissolving them uniformly, slide the distribution solution reservoir over the solution reservoir, and add one of the different types of growth solutions to 1.3, 5.・・・
..., the other one is inserted into the through hole of the n-th solution reservoir 2.4. After dispensing the solution into the through-hole of the (n-1)th solution reservoir, the slider on which the substrate is installed is continuously slid at a constant speed without stopping, so that the substrate is dispensed with the solution. The above object is achieved by growing a superlattice structure on a substrate by bringing it into contact with two different growth solutions alternately stored in through holes of a reservoir.
作用
本発明は上記構成により、2つの異なる成長溶液がそれ
ぞれ均一な組成をもって溶液溜の貫通孔に交互に分配さ
れ、スライド方向において基板の幅より小さい幅をもっ
た溶液溜の貫通孔下を一方向に一定スピードで基板をス
ライドさせるため、基板と成長溶液の接触時間、す々わ
ち成長時間を短縮し、寸だ成長溶液の引込みも少なく組
成のばらつきをおさえた超構子構造の成長を可能にした
ものである。According to the above-mentioned structure, the present invention distributes two different growth solutions with uniform composition alternately to the through-holes of the solution reservoir, and flows under the through-hole of the solution reservoir whose width is smaller than the width of the substrate in the sliding direction. Since the substrate is slid at a constant speed in the direction, the contact time between the substrate and the growth solution, and thus the growth time, is shortened, and the growth of a superstructured structure with little draw-in of the growth solution and suppressed compositional variations is possible. It made it possible.
実施例
第1図は本発明の一実施例で、InGaAs P /
InP系MQWレーザを成長する場合に用いるボートの
外観斜視図である。第1図において1はスライダ9ベー
ノ
ー、3は溶液溜、4は分配溶液溜、5はノンドープIn
GaAsPバリア層成長溶液(波長1.1μm)、6は
ノンドープInGaAsP井戸層成長溶液(波長1.3
μm)、7はバリア層溶液収納孔、8は井戸層溶液収納
孔、10はP−InP成長溶液、11はP −InGa
Agp成長溶液である。Embodiment FIG. 1 shows an embodiment of the present invention, in which InGaAs P/
FIG. 2 is a perspective view of a boat used for growing an InP-based MQW laser. In FIG. 1, 1 is a slider 9B, 3 is a solution reservoir, 4 is a distribution solution reservoir, and 5 is a non-doped In
GaAsP barrier layer growth solution (wavelength 1.1 μm), 6 is non-doped InGaAsP well layer growth solution (wavelength 1.3 μm)
7 is a barrier layer solution storage hole, 8 is a well layer solution storage hole, 10 is a P-InP growth solution, 11 is a P-InGa
Agp growth solution.
第1図をさらにわかりやすくするために第2図の横断面
図を用いて説明すると、第2図において2はn−InP
基板、9はn−InP成長溶液である。In order to further understand FIG. 1, using the cross-sectional view of FIG. 2, 2 is n-InP.
The substrate 9 is an n-InP growth solution.
ノンドープInGaAs Pバリア層成長溶液5及びノ
ンドープInGaAsP成長溶液6を収納した分配溶液
溜は溶液溜3に対してスライド可能で、最初は2つの下
部開口部がn−InP成長溶液9を収納した貫通孔の上
部開口部と1番左のバリア層溶液収納孔7の上部開口部
の間に位置させておく。またn−InP基板2を設置し
たスライダー1は溶液溜3に対してスライド可能で最初
n−InP基板2がn−InP成長溶液9よりも左側に
くるようにしておく。バリア層溶液収納孔7及び井戸層
溶液収納孔8の上部開口部は第1図かられかるように左
右10、−ン
に分かれて並んでおり、それぞれ分配溶液溜4をスライ
ドさせた際、分配溶液溜のバリア層溶液及び井戸層溶液
を収納した2つの貫通孔の下部開口部と対応している。The distribution solution reservoir containing the non-doped InGaAsP barrier layer growth solution 5 and the non-doped InGaAsP growth solution 6 can be slid with respect to the solution reservoir 3, and initially the two lower openings are through-holes containing the n-InP growth solution 9. and the upper opening of the leftmost barrier layer solution storage hole 7. Further, the slider 1 on which the n-InP substrate 2 is installed is slidable with respect to the solution reservoir 3, so that the n-InP substrate 2 is initially placed on the left side of the n-InP growth solution 9. The upper openings of the barrier layer solution storage holes 7 and the well layer solution storage holes 8 are arranged in left and right sections 10 and 10, as shown in FIG. This corresponds to the lower openings of the two through holes that housed the barrier layer solution and the well layer solution in the solution reservoir.
第3図は第2図のA−A’における断面図で、その様子
を示している。成長の手順を説明するとまず第2図のよ
うな状態で昇温し、一定温度に保ちノンドープInGa
AsPバリア層成長溶液5及びノンドープInGaAs
P井戸層成長溶液6を均一に溶解させる。続いて分配溶
液溜4を第2図の矢印に示すように溶液溜3上でスライ
ドさせてそれぞれの成長溶液を溶液溜3の各成長溶液収
納孔7.8に分配する。この様子を第4図に示す。この
ようにすると分配された各成長溶液5/ 、 6/はそ
れぞれ組成が均一で各収納孔に個別に成長溶液を秤量し
て準備するよりも手間が省ける。続いて今度はスライダ
ー1を第4図の矢印に示すようにスライドしますn−I
nP基板2をn −InP成長溶液9の直下に位置させ
所定の時間成長を行なう。次にn −InP基板2を一
定スピードでノンドープInGaAsPバリア層成長溶
液5′及びノンドープInGaAsP井戸層成長溶液6
′の直下を停止することなく通過させP −1nP成長
溶液10の直下までスライドさせ所定の時間成長させる
。最後にn−InP基板2をP−InGaAs P成長
溶液直下に移動させて所定の時間成長することにより一
連の成長を完了する。FIG. 3 is a sectional view taken along the line AA' in FIG. 2, showing the situation. To explain the growth procedure, first raise the temperature in the state shown in Figure 2, then keep it at a constant temperature to grow non-doped InGa.
AsP barrier layer growth solution 5 and non-doped InGaAs
The P well layer growth solution 6 is uniformly dissolved. Subsequently, the distribution solution reservoir 4 is slid on the solution reservoir 3 as shown by the arrow in FIG. 2 to distribute each growth solution to each growth solution storage hole 7.8 of the solution reservoir 3. This situation is shown in FIG. In this way, each of the distributed growth solutions 5/ and 6/ has a uniform composition, which saves time and effort compared to preparing the growth solutions by individually weighing them into each storage hole. Next, slide slider 1 as shown by the arrow in Figure 4 n-I
The nP substrate 2 is placed directly under the n-InP growth solution 9, and growth is performed for a predetermined period of time. Next, the n-InP substrate 2 is grown at a constant speed using a non-doped InGaAsP barrier layer growth solution 5' and a non-doped InGaAsP well layer growth solution 6.
' without stopping, slide it to just below the P -1nP growth solution 10, and grow for a predetermined time. Finally, the n-InP substrate 2 is moved directly under the P-InGaAsP growth solution and grown for a predetermined period of time to complete the series of growth.
本実施例ではノンドープInGaAs Pバリア層(波
長1.1 μm ) /ノンドープInGaAsP井戸
層(波長1.3μm)の超格子構造からなる活性領域の
成長は一方向に一定スピードで通過させ、さらにスライ
ド方向において基板の幅よりも溶液溜の各成長溶液収納
孔の下部開口部幅をせマくシているため、前述の往復ス
ライドによる方法より成長時間をさらに短縮できる。寸
だ一方向にスライドさせるため、往復スライドでは一度
成長溶液の引込みが起こるとその後の成長層にすべて組
成のばらつきが生じるのに対し、一部で仮に引込みが起
っても後の成長層に影響を及はさない。以上のような方
法で、基板の幅を10m、溶液溜の各バリア層及び井戸
層収納孔の下部開口部幅を3wnとし、またスライドス
ピードを50 mm/ Seeとして成長を行なった所
、バリア層及び井戸層の厚みはともに100λ程度と良
好な結果が得られた。またバリア層/井戸層5対の活性
領域をもっBH構造MQWレーザを試作した所、しきい
値電流は最低で10mAのものが得られた。以上のよう
に本実施例によればバリア層、井戸層とも従来より薄膜
化の図られた超格子構造が得られ、MQWレーザとして
も特性の良いものが得られる。In this example, the growth of the active region consisting of a superlattice structure of a non-doped InGaAsP barrier layer (wavelength: 1.1 μm)/non-doped InGaAsP well layer (wavelength: 1.3 μm) is performed in one direction at a constant speed, and then in the sliding direction. Since the width of the lower opening of each growth solution storage hole in the solution reservoir is narrower than the width of the substrate, the growth time can be further shortened compared to the method using the reciprocating slide described above. Since the slide is made in one direction, once the growth solution is drawn in in a reciprocating slide, the composition of the subsequent growth layer will vary, whereas even if some part of the growth solution is pulled in, there will be variations in the composition of the subsequent growth layer. It has no effect. When the barrier layer was grown using the above method, the width of the substrate was 10 m, the width of the lower opening of each barrier layer of the solution reservoir and the well layer storage hole was 3wn, and the slide speed was 50 mm/see. Good results were obtained for both the thickness of the well layer and the thickness of about 100λ. Furthermore, when a BH structure MQW laser having an active region of five barrier layer/well layer pairs was fabricated, a minimum threshold current of 10 mA was obtained. As described above, according to this embodiment, a superlattice structure in which both the barrier layer and the well layer are thinner than before can be obtained, and an MQW laser with good characteristics can be obtained.
発明の効果
以上のように本発明はスライド方向において基板の幅よ
りせ壕い幅の下部開口部をもった成長溶液収納孔に交互
に異なる成長溶液を均一な組成で分配し、これらの成長
溶液直下を一方向に一定スピードで基板を通過させるた
め従来の往復スライドによる方法よりも薄膜化を可能と
し、組成のばらつきを押えた超格子構造を成長すること
が苛能でその効果は大きい。Effects of the Invention As described above, the present invention alternately distributes different growth solutions with a uniform composition into the growth solution storage hole having a lower opening that is wider than the trench width than the substrate width in the slide direction. Because the substrate is passed directly beneath it in one direction at a constant speed, it is possible to create a thinner film than the conventional method using a reciprocating slide, and it is highly effective because it allows the growth of a superlattice structure with less variation in composition.
第1図は本発明の一実施例の液相エピクキシャ13ペー
ジ
層成長法において用いるボートの外観斜視図、第2図は
第1図におけるボートの横断面図、第3図は第2図のA
−A’における断面図、第4図は分配溶液溜中の2つの
成長溶液を溶液溜の成長溶液収納孔に交互に分配した様
子を示す説明図、第6図は従来の往復スライドによって
MQWレーザを成長するボートの断面図である。
1.61・・団・スライf−12,52・・・・・・n
−InP基板、3.63・・・・・・溶液溜、4・・・
・・・分配溶液溜、5.5′・・川・ノンドープInG
aAsPバリア層成長溶液、6.6′・・・・・・ノン
ドープInGaAsP井戸層成長溶液、7・・・・・・
バリア層溶液収納孔、8・・・・・・井戸層溶液収納孔
。Fig. 1 is an external perspective view of a boat used in the liquid phase epitaxy layer growth method according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the boat in Fig. 1, and Fig. 3 is an A of Fig. 2.
- A' cross-sectional view, Figure 4 is an explanatory diagram showing how the two growth solutions in the distribution solution reservoir are distributed alternately to the growth solution storage hole of the solution reservoir, and Figure 6 is an MQW laser using a conventional reciprocating slide. FIG. 1.61...Dan Sly f-12,52...n
-InP substrate, 3.63...solution reservoir, 4...
...Distribution solution reservoir, 5.5'...River, non-doped InG
aAsP barrier layer growth solution, 6.6'...Non-doped InGaAsP well layer growth solution, 7...
Barrier layer solution storage hole, 8...well layer solution storage hole.
Claims (2)
対して相対的にスライド可能な成長溶液を収納する複数
(n個)の貫通孔を有する溶液溜と、前記溶液溜上にあ
って、溶液溜に対して相対的にスライド可能であり、前
記溶液溜の複数の貫通孔に成長溶液を分配するための2
つの成長溶液を収納する貫通孔を有する分配溶液溜とを
備え、前記分配溶液溜の2つの貫通孔の底部開口部が、
前記溶液溜上で前記分配溶液溜がスライドする際、1つ
は前記溶液溜の複数の貫通孔のうち1、3、5、・・・
・・・、n番目の貫通孔の上部開口部に対応し、他の1
つは2、4、・・・・・・、(n−1)番目の貫通孔の
上部開口部に対応しているボートを用い、前記分配溶液
溜の2つの貫通孔に異種の成長溶液を収納し、均一に溶
解させた後、前記分配溶液溜を前記溶液溜上でスライド
させ、前記異種の成長溶液の1つを1、3、5、・・・
・・・、n番目の前記溶液溜の貫通孔に、他の1つの成
長溶液を2、4、・・・・・・、(n−1)番目の前記
溶液溜の貫通孔に分配した後、前記基板を設置したスラ
イダーを一定スピードで停止させることなく連続的にス
ライドさせ、前記基板を前記1、・・・・・・、n番目
の前記溶液溜の貫通孔に交互に収納された2つの異なる
成長溶液に接触させて超格子構造を基板上に成長させる
ことを特徴とする液相エピタキシャル成長法。(1) A slider for installing a substrate, a solution reservoir having a plurality of (n) through holes for storing a growth solution that can slide relative to the slider, and a solution reservoir located on the solution reservoir. 2 for dispensing the growth solution into the plurality of through-holes of the solution reservoir;
a distribution solution reservoir having through holes for accommodating two growth solutions, the bottom openings of the two through holes of the distribution solution reservoir comprising:
When the distribution solution reservoir slides on the solution reservoir, one of the plurality of through holes of the solution reservoir is 1, 3, 5, . . .
..., corresponds to the upper opening of the n-th through hole, and the other one
One is to use boats corresponding to the upper openings of the 2nd, 4th, . After storage and uniform dissolution, slide the distribution solution reservoir over the solution reservoir to distribute one of the different growth solutions 1, 3, 5,...
..., after distributing one other growth solution to the through-hole of the nth solution reservoir and the other growth solution to the through-hole of the 2nd, 4th, ..., (n-1)th solution reservoir. , the slider on which the substrates are installed is continuously slid at a constant speed without stopping, and the substrates are alternately stored in the through holes of the 1st, . . . , nth solution reservoirs. A liquid phase epitaxial growth method characterized by growing a superlattice structure on a substrate in contact with two different growth solutions.
液溜の貫通孔の幅が基板の幅よりも小さいボートを用い
て行なう特許請求の範囲第(1)項記載の液相エピタキ
シャル成長法。(2) The liquid phase epitaxial growth method according to claim (1), wherein the liquid phase epitaxial growth method is carried out using a boat in which the width of the through hole of the solution reservoir is smaller than the width of the substrate in the direction in which the slider is slid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16580186A JPS6321283A (en) | 1986-07-15 | 1986-07-15 | Liquid phase epitaxy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16580186A JPS6321283A (en) | 1986-07-15 | 1986-07-15 | Liquid phase epitaxy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6321283A true JPS6321283A (en) | 1988-01-28 |
Family
ID=15819250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16580186A Pending JPS6321283A (en) | 1986-07-15 | 1986-07-15 | Liquid phase epitaxy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6321283A (en) |
-
1986
- 1986-07-15 JP JP16580186A patent/JPS6321283A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4468850A (en) | GaInAsP/InP Double-heterostructure lasers | |
DE68923135T2 (en) | Method of manufacturing an electro-optical device with an inverted transparent substrate. | |
JPH0418476B2 (en) | ||
KR910003465B1 (en) | Opto-electronic device | |
US4233090A (en) | Method of making a laser diode | |
US3893044A (en) | Laser device having enclosed laser cavity | |
JPH0677580A (en) | Semiconductor structure for optoelectronic component | |
US4905060A (en) | Light emitting device with disordered region | |
US6036771A (en) | Method of manufacturing optical semiconductor device | |
JPS6321283A (en) | Liquid phase epitaxy | |
Kawamura et al. | Lateral current injection InGaAs/InAIAs MQW lasers grown by GSMBE/LPE hybrid method | |
Hayakawa et al. | Improvements in AlGaAs laser diodes grown by molecular beam epitaxy using a compositionally graded buffer layer | |
CA1314088C (en) | Process for the selective growth of gaas | |
JPS6037192A (en) | Semiconductor light emitting element | |
CA1204526A (en) | Liquid phase epitaxial growth method | |
JP3298572B2 (en) | Method for manufacturing optical semiconductor device | |
Botez et al. | Crystal growth of mode-stabilized semiconductor diode lasers by liquid-phase epitaxy | |
JPS61220389A (en) | Integrated type semiconductor laser | |
JPS6021586A (en) | Compound semiconductor device | |
JPS63100788A (en) | Algainp light-emitting device and manufacture thereof | |
Tsang et al. | A new lateral selective‐area growth by liquid‐phase epitaxy: The formation of a lateral double‐barrier buried‐heterostructure laser | |
JPH04254321A (en) | Liquid phase epitaxial growth method | |
JPH0287619A (en) | Manufacture of semiconductor element | |
JPS63152194A (en) | Semiconductor laser | |
JPH0384985A (en) | Variable wavelength semiconductor laser |