JPS5944797B2 - Manufacturing method of semiconductor laser device - Google Patents

Manufacturing method of semiconductor laser device

Info

Publication number
JPS5944797B2
JPS5944797B2 JP13027982A JP13027982A JPS5944797B2 JP S5944797 B2 JPS5944797 B2 JP S5944797B2 JP 13027982 A JP13027982 A JP 13027982A JP 13027982 A JP13027982 A JP 13027982A JP S5944797 B2 JPS5944797 B2 JP S5944797B2
Authority
JP
Japan
Prior art keywords
laser device
semiconductor
semiconductor laser
active region
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13027982A
Other languages
Japanese (ja)
Other versions
JPS5921084A (en
Inventor
尚男 中島
啓介 小林
望 渡辺
正人 山下
董 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13027982A priority Critical patent/JPS5944797B2/en
Publication of JPS5921084A publication Critical patent/JPS5921084A/en
Publication of JPS5944797B2 publication Critical patent/JPS5944797B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Description

【発明の詳細な説明】 この発明は活性領域を量子井戸型層で構成した単一モー
ド半導体レーザ装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single mode semiconductor laser device in which an active region is composed of a quantum well type layer.

従来、単一モード半導体レーザ装置は活性領域の周囲が
禁制帯幅の大きな半導体によつて囲まれた埋込み形ヘテ
ロ構造がとられている。この埋込み形ヘテロ構造レーザ
装置は2回の液相成長法とメサエツチングを用いて製造
されている。即ち、第1回目の液相成長でダブルヘテロ
構造液晶が作られ、この液晶を化学エッチングでメサ・
ストライプ状にした後、第2回目の液相成長によりこの
メサ・ストライプが禁制帯幅の大きい半導体によって埋
込まれる。このように従来の埋込み形ヘテロ構造レーザ
装置は製造工程が煩雑でストライプの幅の1511脚が
むずかしく、製品の歩留りが悪かつた。最近、活性領域
を組成の異つた二種の半導体極薄膜を交互に多数積み重
ねた量子井戸型層で構成した半導体レーザ装置が提案さ
れた。
Conventionally, a single mode semiconductor laser device has a buried heterostructure in which an active region is surrounded by a semiconductor having a large forbidden band width. This buried heterostructure laser device is fabricated using two-step liquid phase growth and mesa etching. In other words, a double heterostructure liquid crystal is created in the first liquid phase growth, and this liquid crystal is then chemically etched to create a mesa structure.
After forming into stripes, the mesa stripes are filled with a semiconductor having a large forbidden band width by a second liquid phase growth. As described above, the manufacturing process of the conventional buried type heterostructure laser device was complicated, and it was difficult to produce 1511 stripes with a width of 1511, resulting in poor product yield. Recently, a semiconductor laser device has been proposed in which the active region is composed of a quantum well type layer in which a large number of two types of semiconductor ultrathin films having different compositions are alternately stacked.

このように活性領域を量子井戸型層とすることにより、
発振電流閾値密度が低くなり、温度の依存性が小さくな
り、量子井戸型層を構成する半導体極薄膜の厚さを変え
ることにより発振するレーザ光の波長を変ることができ
るなどの優れた特徴を具備することになるが、上記半導
体レーザ装置を埋込み形ヘテロ構造とするときは前述と
同じく、製造工程が煩雑で製品の歩留りが低かつた。こ
の発明の目的は活性領域を量子井戸型層とした埋込み形
ヘテロ構造の品質の優れた半導体レーザ装置を容易に製
造する方法を提供することにある。
By making the active region a quantum well layer in this way,
It has excellent features such as a lower oscillation current threshold density, less temperature dependence, and the ability to change the wavelength of the oscillated laser light by changing the thickness of the ultra-thin semiconductor film that makes up the quantum well layer. However, when the semiconductor laser device is formed into a buried heterostructure, the manufacturing process is complicated and the product yield is low, as described above. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily manufacturing a high-quality semiconductor laser device having a buried heterostructure in which the active region is a quantum well layer.

このため本発明に於てはエピタキシャル成長法にて活性
層を組成の異なる二種の化合物半導体極薄膜を交互に三
層以上積み重ねた量子井戸形層で構成し、しかる後に上
記活性層の中央領域を除いた左右の領域に亜鉛を拡散し
てその領域を二種の半導体の平均組成とする。
For this reason, in the present invention, the active layer is formed by an epitaxial growth method using a quantum well layer formed by alternately stacking three or more ultrathin films of two types of compound semiconductors with different compositions, and then the central region of the active layer is Zinc is diffused into the removed left and right regions, and the regions are made to have an average composition of the two types of semiconductors.

このように構成した平均組成の半導体の屈折率は活性領
域の屈折率よりも小さくなつて、活性領域で発振したレ
ーザ光の横方向への閉込めを行う。従つて、本発明によ
れば亜鉛の拡散処理のみで量子井戸形構造を活性領域と
した埋込み形ダブルヘテロ構造半導体レーザ装置が容易
に製造できることになり、温度依存性が少く、また積み
重ねる半導体の層の厚さを変えることにより発振波長も
変るという優れた特性を備えている。以下、本発明を図
示の実施例に基いて説明する。
The refractive index of the semiconductor having the average composition thus configured is smaller than the refractive index of the active region, thereby confining the laser beam oscillated in the active region in the lateral direction. Therefore, according to the present invention, a buried double-hetero structure semiconductor laser device with a quantum well structure as an active region can be easily manufactured only by zinc diffusion treatment, has little temperature dependence, and can be easily manufactured by stacking semiconductor layers. It has the excellent property that the oscillation wavelength can be changed by changing the thickness. Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明による半導体レーザ装置の製造過程の一
実施例を示し、GaAs等の半絶縁性基板結晶1の上に
酸素をドープして半絶縁性としたGal−XAムAs層
2をエピタキシヤル成長法により形成する。この半絶縁
性層2の上には厚さが30〜100Aの組成の異なる二
つの化合物半導体極薄膜5,6を交互に三層以上積み重
ねた量子井戸型層と呼ばれている多重積層3を形成する
。この多重積層3はレーザ装置の活性領域として用いら
れ)GaAsリGal.xA4AspGaAsl−XP
x,GaAsl−XSbx,InlィGaxAsyPl
−ッ等の2元系、3元系或は4元系の組成の異なる二つ
の化合物半導体により構成される。半絶縁層2の上に所
定の段数の半導体極薄膜多重積層が形成したら、その上
に更に半絶縁性のGa,−XAtXAS層4をエピタキ
シヤル成長法で形成する。
FIG. 1 shows an embodiment of the manufacturing process of a semiconductor laser device according to the present invention, in which a Gal-XA layer 2 made semi-insulating by doping oxygen is formed on a semi-insulating substrate crystal 1 made of GaAs or the like. Formed by epitaxial growth method. On this semi-insulating layer 2, a multi-layered layer 3 called a quantum well layer is formed by alternately stacking three or more layers of two ultra-thin compound semiconductor films 5 and 6 with different compositions, each having a thickness of 30 to 100 A. Form. This multilayer stack 3 is used as the active region of the laser device). xA4AspGaAsl-XP
x, GaAsl-XSbx, Inl-GaxAsyPl
It is composed of two compound semiconductors having different binary, ternary, or quaternary compositions such as -. After a predetermined number of multi-layer semiconductor ultrathin films are formed on the semi-insulating layer 2, a semi-insulating Ga, -XAtXAS layer 4 is further formed thereon by epitaxial growth.

上述の半絶縁層2,4となる化合物半導体は多重積層3
を構成する二種の化合物半導体の平均組成よりも大きな
組成を有する化合物半導体を用いる。
The compound semiconductor that becomes the semi-insulating layers 2 and 4 described above is a multilayer stack 3.
A compound semiconductor having a composition larger than the average composition of the two types of compound semiconductors constituting the compound semiconductor is used.

例えば多重積層がGaO.6AtO.4ASとGaAs
の二種の半導体で構成された場合は平均組成とはAtの
全体に対する含有率を意味し、二種の半導体の厚さ及び
層数が同じ場合は0.2となるので、半絶縁層2,4と
なる半導体はAtが少くとも0.2以上含んだもの、例
えばGaO.7AtO.3ASを用いる。そして、上部
の半絶縁層4をp型としたら、下部の半絶縁層2はn型
となるように上下互に逆の導電型の半導体を用いる。こ
のように多重積層の平均組成よりも大きな組成を有する
化合物半導体を活性領域の上下に設けることにより、両
者の屈折率の差によつて活性領域に誘起された光は上下
方向よりは外部へ漏れることがない。次に第1図に示す
ように半絶縁層4の上面にはSiO2膜を付着し、活性
領域となる中央部分以外はSiO2膜を除去し、中央に
帯状に残つたSiO2膜7をマスクとして亜鉛を閉管法
で半絶縁層2まで達するように拡散する(第2図の斜線
部分)この亜鉛の拡散は横方向にも起るのでその点を考
慮してSiO2膜の幅を決定する。
For example, multiple stacks of GaO. 6AtO. 4AS and GaAs
In the case of two types of semiconductors, the average composition means the content rate of At in the whole, and if the thickness and number of layers of the two types of semiconductors are the same, it is 0.2, so the semi-insulating layer 2 , 4 is one containing At least 0.2 or more, for example, GaO. 7AtO. Use 3AS. Semiconductors of vertically opposite conductivity types are used so that the upper semi-insulating layer 4 is of the p-type and the lower semi-insulating layer 2 is of the n-type. In this way, by providing compound semiconductors above and below the active region that have a composition larger than the average composition of the multiple stacked layers, the light induced in the active region due to the difference in refractive index between the two leaks to the outside rather than upward and downward. Never. Next, as shown in FIG. 1, a SiO2 film is attached to the upper surface of the semi-insulating layer 4, and the SiO2 film is removed except for the central part that will become the active region. Zinc is diffused by a closed tube method so as to reach the semi-insulating layer 2 (shaded area in FIG. 2).Since this diffusion of zinc also occurs in the lateral direction, the width of the SiO2 film is determined taking this point into consideration.

二つの異つた化合物半導体により形成された多重積層3
のうち、亜鉛の拡散された領域8は積層状態が消滅し、
二つの半導体の平均組成となる。即ち二つ半導体5,6
としてGaAs<5Ga0.6At0.4ASが積層さ
れた場合、亜鉛の拡散された領域8はGaO.8AtO
.2ASとなり、中央の亜鉛の拡散されない多重積層は
活性領域9として作用する(第2図)。
Multilayer stack 3 formed of two different compound semiconductors
Among them, the layered state disappears in the region 8 where zinc is diffused,
This is the average composition of the two semiconductors. That is, two semiconductors 5, 6
When GaAs<5Ga0.6At0.4AS is stacked as GaAs<5Ga0.6At0.4AS, the zinc diffused region 8 becomes GaO. 8AtO
.. 2AS, and the central undiffused multilayer of zinc acts as an active region 9 (FIG. 2).

このように活性領域9の左右の領域の半導体8の組成を
積層を構成している2つの半導体の平均組成とすること
により、屈折率が活性領域よりも小さくなり、光の横方
向の閉込めを行い、活性領域埋込み形ダブルヘテロ構造
となる。
In this way, by setting the composition of the semiconductor 8 in the left and right regions of the active region 9 to the average composition of the two semiconductors constituting the stack, the refractive index becomes smaller than that of the active region, and light is confined in the lateral direction. As a result, a double heterostructure with a buried active region is obtained.

このあと、SiO2膜を除去し、半絶縁層4の亜鉛の拡
散領域上には正の金属電極10を、亜鉛の拡散されてい
ない領域上には負の金属電極11をそれぞれ設け、この
ようにして構成された多層体の両端面を垂直に臂開して
反射面とすることにより第2図に示す如き半導体レーザ
装置となる。
After that, the SiO2 film is removed, and a positive metal electrode 10 is provided on the zinc diffusion region of the semi-insulating layer 4, and a negative metal electrode 11 is provided on the region where zinc is not diffused. A semiconductor laser device as shown in FIG. 2 is obtained by vertically opening both end faces of the multilayer body to serve as reflective surfaces.

上述の如く本発明によれば、量子井戸型構造の活性層を
形成した後に亜鉛の拡散処理のみで埋込み形の半導体レ
ーザ装置が得られ、液相成長、メサエツチングのような
複雑な工程を必要としないため、活性領域の幅のバラツ
キが生じることなく再現性良く単一モードのレーザを安
定して発振する。次に本発明の半導体レーザ装置の製造
の一例を説明すると、比抵抗108Ω一礪の半絶縁性G
aAs基板結晶1の上に分子エピタキシヤル法により酸
素ドープのGaO.7AtO..3AS2を厚さ2μm
成長させ、この上にGaO.6A!0.4AS5とキヤ
リア濃度2×1015cm−3のGaAs6をそれぞれ
50Aの厚さで交互に前者を6層、後者を5層、分子線
エピタキシヤル法で成長させる。
As described above, according to the present invention, a buried type semiconductor laser device can be obtained only by zinc diffusion treatment after forming an active layer with a quantum well structure, which eliminates the need for complicated processes such as liquid phase growth and mesa etching. Therefore, a single mode laser can be stably oscillated with good reproducibility without causing variations in the width of the active region. Next, to explain an example of manufacturing the semiconductor laser device of the present invention, a semi-insulating G
Oxygen-doped GaO. 7AtO. .. 3AS2 with a thickness of 2 μm
On top of this, GaO. 6A! 0.4AS5 and GaAs6 having a carrier concentration of 2.times.10.sup.15 cm.sup.-3 are grown alternately in 6 layers of the former and 5 layers of the latter to a thickness of 50 A by the molecular beam epitaxial method.

最后に半導体多重積層3の上にNf!).GaO.7A
tO.3AS4(Snドープ、キヤリア濃度:7×10
17礪′3)を分子線エピタキシヤル法で1。5μmの
厚さで成長させた。
Finally, Nf! ). GaO. 7A
tO. 3AS4 (Sn doped, carrier concentration: 7×10
17'3) was grown to a thickness of 1.5 μm by molecular beam epitaxial method.

次いでこのn型半導体層4の上面にCVD法によりSi
O2を2000Aの厚さで付着し、ホトリソグラフイ法
で中央に6μm巾の帯状のマスクが形成するようにし、
他は除去した。帯の間隙は200μmであつた。このS
iO2膜をマスクとして約800℃の亜鉛を閉管法で深
さ2μm拡散した。2つの半導体で構成された多重積層
の亜鉛が拡散された領域8の組成はGaO.8AtO.
2ASであり、活性領域として働く未拡散領域の幅は2
μmであつた。
Next, Si is deposited on the top surface of this n-type semiconductor layer 4 by the CVD method.
O2 was deposited to a thickness of 2000A, and a strip-shaped mask with a width of 6 μm was formed in the center using photolithography.
Others were removed. The gap between the bands was 200 μm. This S
Using the iO2 film as a mask, zinc at about 800° C. was diffused to a depth of 2 μm using a closed tube method. The composition of the zinc-diffused region 8 of the multilayer structure composed of two semiconductors is GaO. 8AtO.
2AS, and the width of the undiffused region that serves as the active region is 2
It was μm.

この後、SiO2膜を除去し、正の電極として亜鉛拡散
領域上に00Cr1000A,Au500Aから成る金
属膜 10を、負の電極として亜鉛が拡散されていない領域に
ALlGeNi合金膜11をそれぞれ真空蒸着法で付着
し、このようにして得られた帯状の積層体を垂直に臂開
して反射面とし長さ300μm1巾200μm厚さ約4
μmの半導体レーザ装置が得られた。
Thereafter, the SiO2 film is removed, and a metal film 10 made of 00Cr1000A and Au500A is deposited on the zinc-diffused region as a positive electrode, and an ALlGeNi alloy film 11 is deposited as a negative electrode on the region where zinc is not diffused. The strip-shaped laminate thus obtained is opened vertically to serve as a reflective surface, with a length of 300 μm, a width of 200 μm, and a thickness of about 4 μm.
A μm semiconductor laser device was obtained.

この様にして得られた半導体レーザ装置は基体単一モー
ドであり、閾値電流は5mAで発振波長は7800Aで
あつた。
The semiconductor laser device thus obtained was a single mode substrate, had a threshold current of 5 mA, and an oscillation wavelength of 7800 A.

閾値電流はExpT/TO(Tは温度、TOは定数)で
表わされるが、通常の半導体レーザ装置ではTOは14
0℃附近であるが、本レーザ装置はTOは約280℃で
温度依存性が少ないことを示した。尚、活性領域を構成
する二種の半導体 GaO.6AtO.4ASとGaAsのうち、GaAs
層の厚さのみを50Aより30Aに変えた結果、発振波
長は7200Aとなつた。
The threshold current is expressed as ExpT/TO (T is temperature and TO is a constant), and in a normal semiconductor laser device, TO is 14
Although the temperature is around 0°C, the TO of this laser device is approximately 280°C, indicating that there is little temperature dependence. Note that two types of semiconductor GaO. 6AtO. Among 4AS and GaAs, GaAs
As a result of changing only the layer thickness from 50A to 30A, the oscillation wavelength became 7200A.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザ装置の製造過程を示
す説明図、第2図は本発明によるレーザ装置の斜視図。 図中、1は基板結晶、2,4は半絶縁層、3は多重積層
、9は活性領域、10,11は電極を示す。
FIG. 1 is an explanatory view showing the manufacturing process of a semiconductor laser device according to the present invention, and FIG. 2 is a perspective view of the laser device according to the present invention. In the figure, 1 is a substrate crystal, 2 and 4 are semi-insulating layers, 3 is a multilayer stack, 9 is an active region, and 10 and 11 are electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 2元系、3元系または4元系の組成の異なつた二種
の化合物半導体極薄膜を交互に三層以上積み重ねて構成
した積層状活性層の中央領域を除いた左右の領域に亜鉛
を拡散してその領域を上記活性層を構成する二種の半導
体の平均組成の半導体にすることを特徴とする半導体レ
ーザ装置の製造方法。
1 Zinc is applied to the left and right regions excluding the central region of a laminated active layer formed by alternately stacking three or more layers of two or more compound semiconductor ultrathin films with different compositions of binary, ternary, or quaternary systems. A method of manufacturing a semiconductor laser device, characterized in that the region is made into a semiconductor having an average composition of the two types of semiconductors constituting the active layer by diffusion.
JP13027982A 1982-07-28 1982-07-28 Manufacturing method of semiconductor laser device Expired JPS5944797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027982A JPS5944797B2 (en) 1982-07-28 1982-07-28 Manufacturing method of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027982A JPS5944797B2 (en) 1982-07-28 1982-07-28 Manufacturing method of semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS5921084A JPS5921084A (en) 1984-02-02
JPS5944797B2 true JPS5944797B2 (en) 1984-11-01

Family

ID=15030504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027982A Expired JPS5944797B2 (en) 1982-07-28 1982-07-28 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS5944797B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105718B2 (en) * 1984-06-05 1994-12-21 日本電気株式会社 Semiconductor device and manufacturing method thereof
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
JPS62155579A (en) * 1985-07-31 1987-07-10 Oki Electric Ind Co Ltd Semiconductor laser element
JPH0821748B2 (en) * 1985-09-04 1996-03-04 株式会社日立製作所 Semiconductor laser device
JPS6267890A (en) * 1985-09-20 1987-03-27 Hitachi Ltd Semiconductor laser
JPS62149186A (en) * 1985-12-23 1987-07-03 Nec Corp Manufacture of embedded type semiconductor laser

Also Published As

Publication number Publication date
JPS5921084A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US5093278A (en) Method of manufacturing a semiconductor laser
JPS5944797B2 (en) Manufacturing method of semiconductor laser device
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPS61207090A (en) Semiconductor light-emitting device
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH05160506A (en) Semiconductor laser and its manufacture
JP2912482B2 (en) Semiconductor laser
JPH03129892A (en) Semiconductor light emitting element
KR100281919B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS5884483A (en) Buried hetero-structure semiconductor laser
KR100304658B1 (en) Semiconductor laser device and method for fabricating the same
JPS59181084A (en) Semiconductor laser device
JPS5834988A (en) Manufacture of semiconductor laser
JPS6035591A (en) High performance semiconductor laser device and manufacture thereof
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
JPS59208884A (en) Manufacture of buried method type semiconductor laser element
JPS6244440B2 (en)
JPS61135181A (en) Semiconductor light-emitting device
JPH0732280B2 (en) Semiconductor laser device
JPS6193619A (en) Method of liquid-phase epitaxial growth
JPH0138391B2 (en)
JPS63182883A (en) Manufacture of buried semiconductor laser
JPH0690064A (en) Manufacture of semiconductor laser element
JPS5987889A (en) Manufacture of semiconductor element
JPH0138389B2 (en)