JPH0732280B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0732280B2
JPH0732280B2 JP60213030A JP21303085A JPH0732280B2 JP H0732280 B2 JPH0732280 B2 JP H0732280B2 JP 60213030 A JP60213030 A JP 60213030A JP 21303085 A JP21303085 A JP 21303085A JP H0732280 B2 JPH0732280 B2 JP H0732280B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60213030A
Other languages
Japanese (ja)
Other versions
JPS6273688A (en
Inventor
賢三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60213030A priority Critical patent/JPH0732280B2/en
Publication of JPS6273688A publication Critical patent/JPS6273688A/en
Publication of JPH0732280B2 publication Critical patent/JPH0732280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は4元系混晶半導体と同じ禁制帯幅,及び屈折
率を有する活性層、光またはキャリアー閉じ込め層を超
格子型積層構造で構成したヘテロ接合半導体レーザ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention comprises an active layer having the same forbidden band width and refractive index as a quaternary mixed crystal semiconductor and a light or carrier confinement layer in a superlattice type laminated structure. And a heterojunction semiconductor laser device.

〔従来の技術〕[Conventional technology]

従来、ヘテロ接合半導体レーザ装置は、基本構成要素で
ある3つの半導体、即ち、所定の発振波長を得るために
必要な禁制帯幅を有する活性層半導体、それと格子整合
条件を満足する、活性層半導体よりも禁制帯幅が大き
く、屈折率の小さい第2のクラッド層半導体、およびそ
れらの半導体を高品質にエピタキシャル成長させるため
の基板からなっている。所定の発振波長帯を有するヘテ
ロ接合半導体レーザ装置を製造する場合は、現実の問題
としてまず基板結晶が決まれば、それと格子定数を合わ
せる必要上、混晶半導体の次元が3以下と低ければ、禁
制帯幅の選択の余地は少ない(ケイシーアンドパニッシ
ュ ヘテロストラクチャレーザーズ、1978,アカデミッ
クプレス(Gasey&Panish,Heterostructure Lasers,197
8,Academic Press))。一方、混晶半導体の次元が4以
上と高くなると、禁制帯幅の選択の余地が生じるが、基
板結晶と格子整合させるための混晶半導体の組成制御が
容易でなくなるという一般的な困難さが存在する。
Conventionally, a heterojunction semiconductor laser device has three semiconductors which are basic constituent elements, that is, an active layer semiconductor having a forbidden band width required to obtain a predetermined oscillation wavelength, and an active layer semiconductor satisfying a lattice matching condition with the active layer semiconductor. The second clad layer semiconductor has a larger forbidden band width and a smaller refractive index, and a substrate for epitaxially growing those semiconductors with high quality. When manufacturing a heterojunction semiconductor laser device having a predetermined oscillation wavelength band, if the crystal of the substrate is first determined, it is necessary to match the lattice constant with that of the substrate crystal. There is little room to choose the bandwidth (Kayce & Panish Heterostructure Lasers, 1978, Academic Press (Gasey & Panish, Heterostructure Lasers, 197
8, Academic Press)). On the other hand, if the dimension of the mixed crystal semiconductor is as high as 4 or more, there is room for selection of the forbidden band width, but there is a general difficulty that the composition control of the mixed crystal semiconductor for lattice matching with the substrate crystal becomes difficult. Exists.

第2図は一例としてIn0.53Ga0.47As/In0.52Al0.48As/In
P系長波長半導体レーザ装置の基本構成を示す。第2図
において、1はn型金属電極、2はn型InP基板、3は
下部クラッド層であるn型In0・52Al0.48As、4は活性層
であるアンドープIn0.53Ga0.47As、5は上部クラッド層
であるp型In0.52Al0.48As、6はキャップコンタクト層
であるp型In0.53Ga0.47As、7はp型金属電極である。
Figure 2 shows an example of In 0.53 Ga 0.47 As / In 0.52 Al 0.48 As / In
1 shows the basic configuration of a P-based long wavelength semiconductor laser device. In Figure 2, 1 is an n-type metal electrode 2 is n-type InP substrate, 3 an undoped In 0.53 Ga 0.47 As, 5 is n-type In 0 · 52 Al 0.48 As, 4 is a lower cladding layer is the active layer Is an upper clad layer of p-type In 0.52 Al 0.48 As, 6 is a cap contact layer of p-type In 0.53 Ga 0.47 As, and 7 is a p-type metal electrode.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第2図に示した従来の半導体レーザ装置においては、ク
ラッド層と活性層の3元混晶半導体組成はInP基板2と
格子定数を一致させるためには、一意的に決まる。従っ
て、クラッド層3,5および活性層4の禁制帯幅および屈
折率も一意的に決まってしまう。このために、禁制帯幅
などの物理定数を変化させるためには、4元系などの次
元数の高い、製造が困難な4元またはそれ以上の多元系
混晶半導体を用いる必要があるなどの問題点があった。
また、上記例では、クラッド層半導体In0.52Al0.48Asの
Al組成が大きいために、酸化による劣化を起こし易いと
云う欠点があった。
In the conventional semiconductor laser device shown in FIG. 2, the ternary mixed crystal semiconductor composition of the clad layer and the active layer is uniquely determined so that the InP substrate 2 has the same lattice constant. Therefore, the forbidden band width and the refractive index of the cladding layers 3 and 5 and the active layer 4 are also uniquely determined. Therefore, in order to change the physical constants such as the forbidden band width, it is necessary to use a quaternary or higher multi-element mixed crystal semiconductor having a high dimensional number such as a quaternary system and difficult to manufacture. There was a problem.
In the above example, the cladding layer semiconductor In 0.52 Al 0.48 As
Since the Al composition is large, there is a drawback that deterioration due to oxidation is likely to occur.

この発明は上記のような問題点を解消するためになされ
たもので、4元系の混晶半導体と素子機能上同等または
それよりも優れた物理定数が得られるとともに、発振波
長などの素子機能に関連した物理定数選択の自由度を高
くできる半導体レーザ装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to obtain a physical constant equivalent to or better than a quaternary mixed crystal semiconductor in terms of device function, and to achieve device function such as oscillation wavelength. It is an object of the present invention to obtain a semiconductor laser device capable of increasing the degree of freedom in selecting physical constants related to.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体レーザは、InP基板上に複数の半
導体層が積層されてなるレーザ構造を有する半導体レー
ザ装置において、上記基板と格子整合するInGaAs層及び
InAlAs層を交互に三層以上積層して、上記レーザ構造を
構成する光閉じ込め層またはキャリアー閉じ込め層ある
いは活性層として所望される禁制帯幅,及び屈折率を有
するものであって、上記基板と格子整合する単層のInGa
AlAs層と同じ禁制帯幅,及び屈折率を実現した積層構造
を上記光閉じ込め層またはキャリアー閉じ込め層あるい
は活性層として備えたものである。
A semiconductor laser according to the present invention is a semiconductor laser device having a laser structure in which a plurality of semiconductor layers are laminated on an InP substrate, and an InGaAs layer lattice-matched to the substrate and
InAlAs layers are alternately laminated in three or more layers, and have a forbidden band width and a refractive index desired as an optical confinement layer, a carrier confinement layer or an active layer constituting the above laser structure, and the substrate and the lattice. Matching single-layer InGa
The optical confinement layer, the carrier confinement layer, or the active layer has a laminated structure that achieves the same forbidden band width and refractive index as the AlAs layer.

〔作用〕[Action]

本発明においては、InP基板上に複数の半導体層が積層
されてなるレーザ構造を有する半導体レーザ装置におい
て、上記基板と格子整合するInGaAs層及びInAlAs層を交
互に三層以上積層して、上記レーザ構造を構成する光閉
じ込め層またはキャリアー閉じ込め層あるいは活性層と
して所望される禁制帯幅,及び屈折率を有するものであ
って、上記基板と格子整合する単層のInGaAlAs層と同じ
禁制帯幅,及び屈折率を実現した積層構造を上記光閉じ
込め層またはキャリアー閉じ込め層あるいは活性層とし
て備えた構成としたから、4元系の混晶半導体であるIn
GaAlAsの製造上の困難さ、および物理定数選択上の制約
を解決できる。上記の如き積層構造は、分子線エピタキ
シー法あるいは有機金属CVD(Chemical Vapor Depositi
on)法あるいはそれ等の類似の方法によって、容易に作
製できる。
In the present invention, in a semiconductor laser device having a laser structure in which a plurality of semiconductor layers are laminated on an InP substrate, three or more InGaAs layers and InAlAs layers lattice-matched with the substrate are alternately laminated, and the laser A forbidden band width and a refractive index desired as an optical confinement layer or a carrier confinement layer or an active layer constituting the structure, and the same forbidden band width as a single-layer InGaAlAs layer lattice-matched with the substrate, and Since a laminated structure having a refractive index is provided as the optical confinement layer, the carrier confinement layer, or the active layer, it is a quaternary mixed crystal semiconductor.
GaAlAs manufacturing difficulties and physical constant selection constraints can be solved. The laminated structure as described above has a molecular beam epitaxy method or an organic metal CVD (Chemical Vapor Depositi
It can be easily prepared by the on) method or a similar method.

〔実施例〕〔Example〕

以下、この発明の一実施例を図を用いて説明する。第1
図はIn0.53Ga0.47As/In0.52Al0.48As/InP系長波長半導
体レーザ装置に、この発明を施した一実施例を示す。
An embodiment of the present invention will be described below with reference to the drawings. First
The figure shows an embodiment in which the present invention is applied to an In 0.53 Ga 0.47 As / In 0.52 Al 0.48 As / InP long-wavelength semiconductor laser device.

第1図において、第2図と同一符号は同一部分を示し、
3aおよび5aは各々n型およびp型の超格子構造からなる
クラッド層であり、このクラッド層3aおよび5aには、In
P基板2と格子整合した極薄膜In0.52Al0.48Asバリアー
層8とIn0.53Ga0.47As井戸層9からなる、即ち4元系の
混晶半導体を構成する3元系の組成の異なった2種類以
上の化合物半導体極薄膜からなる超格子構造を用いてい
る。
In FIG. 1, the same symbols as in FIG. 2 indicate the same parts,
3a and 5a are cladding layers having an n-type and p-type superlattice structure, respectively.
Ultra-thin In 0.52 Al 0.48 As barrier layer 8 and In 0.53 Ga 0.47 As well layer 9 lattice-matched with the P substrate 2, that is, two kinds of ternary composition different compositions of quaternary mixed crystal semiconductor A superlattice structure composed of the above compound semiconductor ultrathin films is used.

In0.53Ga0.47As/In0.52Al0.48As超格子構造からなるク
ラッド層を用いると、InPと格子整合したIn1-x-yGaxAly
As(x<0.47,y<0.48)4元混晶半導体を用いることな
く、またAl含有量の大きく、酸化され易いIn0.52Al0.48
As厚膜を用いることなく、半導体レーザ装置を構成する
ことが可能となる。In0.53Ga0.47AsとIn0.52Al0.48Asの
禁制帯幅は0.77eVと1.7eVであり、その差は約0.9eVと十
分大きいので、In0.53Ga0.47As/In0.52Al0.48As超格子
構造をクラッド層として用いても、半導体レーザ装置と
しての機能に差しさわりのない禁制帯幅の差を得ること
ができ、しかもクラッド層のAl平均組成を小さくして、
酸化され易い等の欠点を克服することができる。
In 0.53 Ga 0.47 As / In 0.52 Al 0.48 As When a cladding layer with a superlattice structure is used, In 1-xy Ga x Al y lattice-matched with InP is used.
As (x <0.47, y <0.48) In 0.52 Al 0.48 which does not use a quaternary mixed crystal semiconductor and has a large Al content and is easily oxidized.
It is possible to configure a semiconductor laser device without using an As thick film. Bandgap of In 0.53 Ga 0.47 As and In 0.52 Al 0.48 As is 0.77eV and 1.7 eV, since the difference is large enough and about 0.9 eV, the In 0.53 Ga 0.47 As / In 0.52 Al 0.48 As superlattice structure Even when used as a clad layer, it is possible to obtain a difference in forbidden band width that does not impair the function as a semiconductor laser device, and further reduce the Al average composition of the clad layer,
It is possible to overcome drawbacks such as being easily oxidized.

第3図はIn0.53Ga0.47As/In0.52Al0.48As超格子構造に
おける実効的な禁制帯幅をクレーニヒ・ペニーモデルを
用いて計算した結果を示す。In0.53Ga0.47As井戸層9の
厚さとして、15Å程度の大きさを採用すれば、ヘテロ接
合半導体レーザとして機能させるのに必要な活性層とク
ラッド層間の禁制帯幅差0.3eVが容易に得られることが
わかる。
Figure 3 shows the results of calculation of the effective band gap in the In 0.53 Ga 0.47 As / In 0.52 Al 0.48 As superlattice structure using the Klenig-Penny model. In 0.53 Ga 0.47 As If the well layer 9 has a thickness of about 15 Å, a band gap difference of 0.3 eV between the active layer and the cladding layer, which is necessary to function as a heterojunction semiconductor laser, can be easily obtained. You can see that

また、In0.53Al0.48Asバリアー層8の厚さとして30Å程
度の値を用いれば、クラッド層の平均的Al組成を48パー
セントから32パーセントまで減少させることができ、酸
化されにくいクラッド層を提供することが可能である。
Further, if the thickness of the In 0.53 Al 0.48 As barrier layer 8 is about 30 Å, the average Al composition of the cladding layer can be reduced from 48% to 32%, and the cladding layer which is not easily oxidized is provided. It is possible.

以上に述べたように、4元系の混晶半導体を用いる代わ
りに、格子整合をとるための組成制御が容易な3元系の
組成が異なる二種類の混晶半導体からなる超格子構造を
用いると、物理定数選択上の自由度を確保しながら、ヘ
テロ接合半導体レーザを構成するために必要な活性層、
クラッド層をつくることができ、半導体レーザ製造上有
利な方法を提供することが可能となる。
As described above, instead of using a quaternary mixed crystal semiconductor, a superlattice structure composed of two kinds of mixed crystal semiconductors having different ternary compositions whose composition is easily controlled to achieve lattice matching is used. And an active layer necessary for constructing a heterojunction semiconductor laser while ensuring the degree of freedom in selecting physical constants,
A clad layer can be formed, and it is possible to provide an advantageous method for manufacturing a semiconductor laser.

なお、上記の実施例ではクラッド層に二種類の3元系混
晶半導体からなる超格子構造を用いたが、これらの超格
子構造は必要とされる素子の機能に応じて、活性層、コ
ンタクト層に用いることも可能である。
Although the superlattice structure made of two kinds of ternary mixed crystal semiconductors is used for the clad layer in the above-mentioned embodiments, these superlattice structures may be used for the active layer and the contact depending on the required function of the device. It can also be used in layers.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、InP基板上に複数の
半導体層が積層されてなるレーザ構造を有する半導体レ
ーザ装置において、上記基板と格子整合するInGaAs層及
びInAlAs層を交互に三層以上積層して、上記レーザ構造
を構成する光閉じ込め層またはキャリアー閉じ込め層あ
るいは活性層として所望される禁制帯幅,及び屈折率を
有するものであって、上記基板と格子整合する単層のIn
GaAlAs層と同じ禁制帯幅,及び屈折率を実現した積層構
造を上記光閉じ込め層またはキャリアー閉じ込め層ある
いは活性層として備えた構成としたから、装置が容易に
でき、また信頼性、特性の優れた装置が得られる効果が
ある。
As described above, according to the present invention, in a semiconductor laser device having a laser structure in which a plurality of semiconductor layers are laminated on an InP substrate, three or more InGaAs layers and InAlAs layers lattice-matched with the substrate are alternately stacked. A single layer of In that has a forbidden band width and a refractive index desired as an optical confinement layer or a carrier confinement layer or an active layer constituting the laser structure and is lattice-matched with the substrate.
Since the laminated structure that achieves the same forbidden band width and refractive index as the GaAlAs layer is provided as the optical confinement layer, the carrier confinement layer, or the active layer, the device can be easily manufactured, and the reliability and characteristics are excellent. There is an effect that the device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による半導体レーザ装置の
構造を示す図、第2図は従来の半導体レーザ装置の構造
を示す図、第3図は本発明実施例の井戸層厚さと禁制帯
幅の関係の計算結果を示す図である。 1はn型金属電極、2はn型基板、3と3aはn型クラッ
ド層、4は活性層、5と5aはp型クラッド層、6はp型
キャップコンタクト層、7はp型金属電極、8は超格子
バリアー層、9は超格子井戸層。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a diagram showing a structure of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing a structure of a conventional semiconductor laser device, and FIG. 3 is a well layer thickness and a forbidden band of an embodiment of the present invention. It is a figure which shows the calculation result of the relationship of width. 1 is an n-type metal electrode, 2 is an n-type substrate, 3 and 3a are n-type cladding layers, 4 is an active layer, 5 and 5a are p-type cladding layers, 6 is a p-type cap contact layer, and 7 is a p-type metal electrode. , 8 is a superlattice barrier layer, and 9 is a superlattice well layer. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】InP基板上に複数の半導体層が積層されて
なるレーザ構造を有する半導体レーザ装置において、 上記基板と格子整合するInGaAs層及びInAlAs層を交互に
三層以上積層して、上記レーザ構造を構成する光閉じ込
め層またはキャリアー閉じ込め層あるいは活性層として
所望される禁制帯幅,及び屈折率を有するものであっ
て、上記基板と格子整合する単層のInGaAlAs層と同じ禁
制帯幅,及び屈折率を実現した積層構造を上記光閉じ込
め層またはキャリアー閉じ込め層あるいは活性層として
備えたことを特徴とする半導体レーザ装置。
1. A semiconductor laser device having a laser structure in which a plurality of semiconductor layers are laminated on an InP substrate, wherein three or more InGaAs layers and InAlAs layers lattice-matched with the substrate are alternately laminated to form the laser. A forbidden band width and a refractive index desired as an optical confinement layer or a carrier confinement layer or an active layer constituting the structure, and the same forbidden band width as a single-layer InGaAlAs layer lattice-matched with the substrate, and A semiconductor laser device comprising a laminated structure having a refractive index as the optical confinement layer, the carrier confinement layer, or the active layer.
JP60213030A 1985-09-26 1985-09-26 Semiconductor laser device Expired - Lifetime JPH0732280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213030A JPH0732280B2 (en) 1985-09-26 1985-09-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213030A JPH0732280B2 (en) 1985-09-26 1985-09-26 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6273688A JPS6273688A (en) 1987-04-04
JPH0732280B2 true JPH0732280B2 (en) 1995-04-10

Family

ID=16632344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213030A Expired - Lifetime JPH0732280B2 (en) 1985-09-26 1985-09-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0732280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616272B1 (en) * 1987-06-02 1990-10-26 Thomson Csf SEMICONDUCTOR MATERIAL DEVICE MADE ON A DIFFERENT MESH PARAMETER SUBSTRATE, APPLICATION TO A LASER AND METHOD FOR PRODUCING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152178A (en) * 1981-03-17 1982-09-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device with super lattice structure
JPS58225677A (en) * 1982-06-23 1983-12-27 Agency Of Ind Science & Technol High output power semiconductor laser device

Also Published As

Publication number Publication date
JPS6273688A (en) 1987-04-04

Similar Documents

Publication Publication Date Title
JP2746326B2 (en) Semiconductor optical device
EP0114109B1 (en) Semiconductor laser device and method for manufacturing the same
JPH05283791A (en) Surface emission type semiconductor laser
US20070045633A1 (en) Semiconductor optical device having an improved current blocking layer and manufacturing method thereof
JPH0646669B2 (en) Semiconductor laser and manufacturing method thereof
JPH0750445A (en) Manufacture of semiconductor laser
US20060209914A1 (en) Semiconductor device and manufacturing method thereof
EP0208209A2 (en) A buried heterostructure semiconductor laser
JPH07154024A (en) Semiconductor laser
US4761790A (en) Optical semiconductor device
JP3825652B2 (en) Semiconductor optical device
JPH0732280B2 (en) Semiconductor laser device
US5805628A (en) Semiconductor laser
US4430740A (en) Long-wavelength semiconductor laser
JP3317271B2 (en) Semiconductor optical device and method of manufacturing the same
JP2771587B2 (en) Manufacturing method of semiconductor laser
US4759030A (en) Semiconductor laser
JPS5944797B2 (en) Manufacturing method of semiconductor laser device
JP2876543B2 (en) Semiconductor device and manufacturing method thereof
JPH01184972A (en) Semiconductor laser device
JPH05160523A (en) Manufacture of optical device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH0572118B2 (en)
JPH07105552B2 (en) Semiconductor light emitting device
JPS6174385A (en) Semiconductor laser